By definition of the norm we have
\begin{equation}
\|\vect x_n-\vect x\|
=\Bigl(\sum_{i=1}^N|x_{in}-x_i|^2\Bigr)^{1/2}\text{.}\tag{3.2}
\end{equation}
If
\(\vect x_n\xrightarrow{n\to\infty}\vect x\) then by
(3.1) we know that
\(x_{in}\xrightarrow{n\to\infty}x_i\) for every
\(i=1,\dots,N\text{,}\) and thus every term on the right hand side of
(3.2) goes to zero. This shows that
\(\|\vect x_n-\vect x\|\xrightarrow{n\to\infty}0\) if
\(\vect x_n\xrightarrow{n\to\infty}\vect x\text{.}\)
Now assume that
\(\|\vect x_n-\vect x\|\xrightarrow{n\to\infty}0\text{.}\) Observe that every term in the sum on the right hand side of
(3.2) is non-negative. Hence
\begin{equation*}
0\leq|x_{in}-x_i| \leq\Bigl(\sum_{i=1}^N|x_{in}-x_i|^2\Bigr)^{1/2} =\|\vect x_n-\vect x\|
\end{equation*}
for every \(i=1,\dots,N\text{.}\) By assumption \(\|\vect x_n-\vect x\|\xrightarrow{n\to\infty}0\text{,}\) and thus by the βsqueezing lemmaβ\(|x_{in}-x_i|\xrightarrow{n\to\infty}0\) for all \(i=1,\dots,N\text{.}\)
This shows that thus
\(x_{in}\xrightarrow{n\to\infty}x_i\) for all
\(i=1,\dots,N\) as required.