Definition 12.6. Laplace operator.
Suppose that \(D\subset\mathbb R^N\text{,}\) and that \(u\colon D\to\mathbb R\) is a function. Then we set
\begin{align*}
\Delta u\amp:=\divergence (\grad u)\\
\amp=\sum_{i=1}^N\frac{\partial^2 u}{\partial x_i^2}\\
\amp=\frac{\partial^2 u}{\partial x_1^2}+\dots
+\frac{\partial^2 u}{\partial x_N^2}\text{,}
\end{align*}
and call \(\Delta\) the Laplace operator or the Laplacian.
