A possible parametrisation of the boundary of the given ellipse is
\begin{equation*}
(a\cos t,b\sin t),\qquad t\in[0,2\pi]\text{.}
\end{equation*}
According to the above formula the area is therefore given by
\begin{align*}
\frac 12\int_{\frac{x^2}{a^2}+\frac{y^2}{b^2}= 1}\amp x\,dy-y\,dx\\
&=\frac 12\int_0^{2\pi}a\cos t(b\cos t)-b\sin t(-a\sin t)\,dt\\
&=\frac {ab}2\int_0^{2\pi}\cos^2 t+\sin^2 t\,dt\\
&=\frac {ab}2\int_0^{2\pi}1\,dt
=\frac {ab}2 2\pi
=ab\pi
\end{align*}
Hence the area of the ellipse is
\(\pi ab\text{,}\) the same we got in
Example 5.24 using polar coordinates and the transformation formula.