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Abstract. We show regularisation effect of nonlinear gradient noise to the solution of 1D
stochastic parabolic equation. We demonstrate convergence to a martingale (independent upon
space variable) when we rescale noise at the extremum points of the process.
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1. Introduction

Regularisation of partial differential equations by noise has been an object of intense study
for a number of years, see book of Flandoli [3], paper of Flandoli, Gubinelli and Priola [5] and,
more recently, a review of the literature in Gess, Souganidis [9]. For instance, It was shown in
Flandoli, Gubinelli and Priola [5] that the equation

du+ b(x)∇u dt = ∂xu ◦ dβt

can be well posed even if the corresponding deterministic equation is not. Their proof was based
on linearity and homogenuity of the noise. An example of nonlinear equation, where the noise
does not improve regularity can be found in Flandoli [3]. The effect of regularization by non-
linear stochastic perturbations in the setting of stochastic conservation laws has been recently
considered in Gess, Souganidis [9, 10] and Gassiat, Gess [8]. The purpose of our work is to study
regularisation by noise in the parabolic setting. Our estimates (Theorem 4.1 and Proposition
6.1) show that nonlinear gradient noise, when appropriately scaled, leads to flattening out of
the system (compare with Example 6.1 in Section 6 for the linear case).

The process we consider can be described as an Ornstein-Uhlenbeck process with the noise
that is “rescaled” at stationary points of the solution. Informally, it can be described as a limit,
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when ε→ 0, of solutions to the stochastic PDE of the form

dψε = Aψε dt+ g

(
ψεx
ε

)
◦ dWQ

t , x ∈ S1, t ≥ 0,(1.1)

ψ(0) = ψ0 ∈ L2(S1).

where S1 stands for the unit circle,
(
WQ
t

)
is an L2

(
S1
)
-valued Wiener process with the trace-

class covariance operator Q, stochastic integral is understood in Stratonovich sense, A is a
dissipative operator, and g is a bounded function with derivative g′ that is concentrated near

zero (Precise definitions are given later). A typical example of g is g(z) = |z|√
1+z2

, z ∈ R.

Intuition behind this example is that we are “switching off” the noise at the critical points of g
and, as ε→ 0, the limit of equation (1.1) can be informally written as

(1.2) dψ = Aψ dt+ id{ψx 6=0} ◦dW
Q
t , x ∈ S1, t ≥ 0 ,

since g

(
ψεx
ε

)
→ id{ψx 6=0} pointwise. Our result shows that the limit ε → 0 of ψε is actually

space independent function. In particular, we cannot define meaningful solution of equation
(1.2) in this way.

The motivation of the setup comes from micromagnetics. It is well known [1] that the theory
of stochastic Landau-Lifshitz-Gilbert equation

(1.3) du = (u×4u− αu× (u×4u)) dt+ νu×◦dW (t, x), t ≥ 0, x ∈ S1,u ∈ S2

α, ν > 0 (where stochastic integral is understood in Stratonovich sense) does not cover physically
important case of W being R3-valued, cylindrical Wiener process. It is expected that the
following toy model can give insight into this difficulty:

(1.4) du = α(4u + |∇u|2u) dt+ νu⊥ ◦ dη(t, x), α, ν > 0, t ≥ 0, x ∈ S1,u ∈ S1,

where u = (u1, u2) takes values in the circle instead of sphere, u⊥ = (−u2, u1), stochastic
integral is understood in Stratonovich sense and dη is 1D white in time and colored in space
noise. Then putting u = eıφ and using the Itô formula we find that

dφ = α4φdt+ νdη.

Note that now φ is an Ornstein-Uhlenbeck process that is well defined even if dη is the space-
time white noise and, in this case, φ has enough regularity to define eıφ. Furthermore, φ has
a unique Gaussian invariant measure, which can be transformed into the invariant measure of
u. Parameters α and ν are connected with macroscopic temperature T of the system through
fluctuation-dissipation relation

2α

ν2
=

1

kBT

Now rescaling of φ at the extremum points can be interpreted as “cooling off” (for the

function g = |z|√
1+z2

) the system1 at extremal points. Our result states that such “cooling off”

(or “heating up”) at the extremal points leads to flattening out of the system i.e. we deduce
that ψε weakly converges to a martingale ψ independent of the space variable. That seems to
be of interest because we change the system only locally while the result is global.

2. Definitions

We identify S1 with the interval [0, 2π). Let H = L2(S1,R) with scalar product (·, ·). Then
the system

e1 =
1√
2π
, e2k+1 =

1√
π

cos kx, e2k =
1√
π

sin kx, k ≥ 1 ,

1for different g it could also be “heating up”
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is an orthonormal basis in H. Let

Hl := lin{e1, . . . , el}, l ∈ N ,

and let πl : H → Hl denote the orthogonal projection onto Hl. For n ∈ N ∪ {0} and p ≥ 1
w denote by Wn,p(S1) the Sobolev space of all functions f ∈ Lp(S1) such that their weak
derivatives up to order n have finite Lp norm. For p = 2 we will use a simplified notation
Wn(S1) = Wn,2(S1). For a Hilbert space X we denote by Wα,p([0, T ], X), α ∈ (0, 1), p > 1, the
Sobolev space of functions u ∈ Lp([0, T ], X) such that

T∫
0

T∫
0

|u(t)− u(s)|pX
|t− s|1+αp

dt ds <∞

endowed with the norm

||u||pWα,p([0,T ],X) =

T∫
0

|u(t)|pX dt+

T∫
0

T∫
0

|u(t)− u(s)|pX
|t− s|1+αp

dt ds

We will assume that the H-valued Wiener process WQ
t is defined by the series

WQ
t (x) =

∞∑
i=1

qiβ
i
tei(x) ,

where {βit}∞i=1 is a sequence of independent real-valued Brownian motions and

(2.1)

∞∑
l=1

q2l <∞,
∞∑
l=1

l2q22l <∞ ,

q22k = q22k+1, k ∈ N .

Assumption 1. A : W 2(S1)→ H is a linear operator such that for certain α > 0 and β ∈ R

(2.2) (−Af, f)W 1(S1) ≥ α|f |2W 2(S1) + β|f |2W 1(S1), .

From now on and until Section 6 we will assume that

Assumption 2.

g, g′ ∈ Cb(R) ,

where Cb(R) stands for the space of bounded continuous functions defined on R.

Equation (1.1) can be reformulated as an Itô equation as follows:

(2.3)


dψε =

(
Aψε +

1

2ε2
M |g′|2

(
ψεx
ε

)
ψεxx

)
dt+ g

(
ψεx
ε

)
dWQ

t ,

ψε(0) = ψ0,

where M = 1
2π

∞∑
l=1

q2l (derivation of the Stratonovich correction is given in appendix).

In order to define a weak solution to equation (2.3) we need some preparations. First, we define
a function

(2.4) G(x) =

x∫
0

|g′|2(y) dy, x ∈ R.

Then the following simple lemma follows from integration by parts.
3



Lemma 2.1. For any φ, ψ ∈ C2(S1) we have

(2.5)
1

ε2

∫
S1

φψxx
∣∣g′∣∣2(ψx

ε

)
dx = −

∫
S1

φx
ε
G

(
ψx
ε

)
dx ,

where G is defined by (2.4).

Next, we note that in view Assumption 1 we have a Gelfand triple

W 2
(
S1
)
⊂W 1

(
S1
)
⊂
(
W 2

(
S1
))?

= H ,

with continuous and dense imbeddings and A is coercive in W 1
(
S1
)
. Therefore, the operator

A? : W 2
(
S1
)
→ H is bounded. In particular C2

(
S1
)

is dense in the domain of A?. Now, we
are ready to define a weak solution to (2.3).

Definition 2.1. Let ε > 0 be fixed. We say that there exists a weak martingale solution
of equation (2.3) if there exist a filtered probability space (Ω,F , (Ft) ,P) and a progressively
measurable, W 1

(
S1
)
-valued process ψε, such that for every T > 0

ψε(·) ∈ C ([0, T ], H) ∩ L2
(
0, T ;W 1

(
S1
))
, P− a.s.

and for every t > 0 and any φ ∈ C2(S1)

(ψε(t), φ) = (ψ0, φ) +

t∫
0

(ψε, A∗φ) ds− M

2

t∫
0

(
φx
ε
,G

(
ψεx
ε

))
ds

+

t∫
0

(
g

(
ψεx
ε

)
, φ

)
dWQ

s , P− a.s.,

We say that ψε is a strong martingale solution if it is a weak martingale solution, such that for
every T > 0

ψε(·) ∈ C
(
[0, T ],W 1

(
S1
))
∩ L2

(
0, T ;W 2

(
S1
))

and for every t > 0

ψε(t) = ψ0 +

t∫
0

(
Aψε +

M

2ε2
∣∣g′∣∣2(ψεx

ε

)
ψεxx

)
ds

+

t∫
0

g

(
ψεx
ε

)
dWQ

s , P− a.s.(2.6)

We will denote

Aε : W 2(S1)→ H, Aεf := Af +
M

2ε2
∣∣g′∣∣2(fx

ε

)
fxx

σε : W 1(S1)→ L∞(S1), σε(f) := g

(
fx
ε

)
.

We define the Galerkin approximation of equation (1.1) as follows

(2.7)

 dψm,ε = πm(Aε(πmψ
m,ε)) dt+ πm (σε (πmψ

m,ε))πmdW
Q
s ,

ψm,ε(0) = πmψ0.

For every m ≥ 1 equation (2.7) can be considered as an SDE in Rm with continuous coefficients
and therefore has a local solution.
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3. A Priori Estimates

In the following proposition we will deduce energy estimates uniform in ε and m to conclude
the existence of a global solution to equation (2.7).

Proposition 3.1. For every ε > 0, t > 0 and any m = 1, 2, . . .

E |ψm,ε(t)|2H − 2E
t∫

0

(Aψm,ε, ψm,ε)H ds

+ME
t∫

0

∫
S1

ψm,εx

ε
G

(
ψm,εx

ε

)
dx ds

≤ E|ψm,ε0 |
2
H +ME

t∫
0

∫
S1

|g|2
(
ψm,εx

ε

)
dx ds.(3.1)

Moreover, we have following estimate from below

E|ψm,ε|2H(t)− 2E
t∫

0

(Aψm,ε, ψm,ε)H ds

+ME
t∫

0

∫
S1

ψm,εx

ε
G

(
ψm,εx

ε

)
dx ds

≥ E|ψm,ε0 |
2
H .(3.2)

Furthermore,

E|ψm,εx |2H(t)− 2E
t∫

0

((Aψm,ε)x, ψ
m,ε
x )H ds

≤ E|ψm,ε0x |
2
H +M2E

t∫
0

∫
S1

|g|2
(
ψm,εx

ε

)
dx ds,(3.3)

where M2 = 1
π

∞∑
l=1

l2q22l.

Proof.

• Since ψm,ε(t) ∈ Hm for every t ≥ 0 and m ≥ 1, we can apply the Itô formula to deduce
that

|ψm,ε|2H(t) = |ψm,ε|2H(0) + 2

t∫
0

(Aψm,ε, ψm,ε)H ds+
M

ε2

t∫
0

∫
S1

ψm,εψm,εxx |g′|2
(
ψm,εx

ε

)
dx ds

(3.4)

+ 2
∞∑
i=1

t∫
0

∫
S1

ψm,εg

(
ψm,εx

ε

)
qiei(y) dydβi(s) +

∞∑
i=1

t∫
0

∫
S1

q2i |πm
(
g

(
ψm,εx

ε

)
ei

)
|2 dy ds
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Combining identity (3.4) and Lemma 2.1 we get

|ψm,ε|2H(t)− 2

t∫
0

(Aψm,ε, ψm,ε)H ds+M

t∫
0

∫
S1

ψm,εx

ε
G

(
ψm,εx

ε

)
dx ds(3.5)

= |ψm,ε|2H(0) + 2
∞∑
i=1

qi

t∫
0

∫
S1

ψm,εg(
ψm,εx

ε
)ei(y) dydβi(s)

+
∞∑
i=1

t∫
0

∫
S1

q2i |πm
(
g(
ψm,εx

ε
)ei

)
|2 dy ds .

We note that

Mm,ε(t) := 2
∞∑
i=1

qi

t∫
0

∫
S1

ψm,εg

(
ψm,εx

ε

)
ei(y) dydβi(s), t ≥ 0,

is a local martingale. Define stopping time

τm,ε(k) := inf{t ≥ 0; |ψm,ε(t)|2H ≥ k} .

Then Nm,ε(t) := Mm,ε(t ∧ τm,ε(k)), t ≥ 0 is a martingale. We will show that for every
m ≥ 1 and ε > 0

lim
k→∞

τm,ε(k) =∞, P− a.s.

Putting t := l ∧ τm,ε(k) in identity (3.5) and taking supremum over all l ≤ r we obtain

sup
l≤r
|ψm,ε|2H(l ∧ τm,ε(k))− 2

r∧τm,ε(k)∫
0

(Aψm,ε, ψm,ε)H ds(3.6)

+M

r∧τm,ε(k)∫
0

∫
S1

ψm,εx

ε
G(
ψm,εx

ε
) dx ds ≤ |ψm,ε|2H(0)(3.7)

+ 2 sup
l≤r

∣∣∣ ∞∑
i=1

qi

l∧τm,ε(k)∫
0

∫
S1

ψm,εg(
ψm,εx

ε
)ei(y) dydβi(s)

∣∣∣(3.8)

+
∞∑
i=1

q2i

r∧τm,ε(k)∫
0

∫
S1

|πm
(
g(
ψm,εx

ε
)ei

)
|2 dy ds

Consequently, taking expectation of inequality (3.6), applying the Burkholder-Davis-
Gundy inequality and the Gronwall inequality we find that there exists C > 0 such
that

sup
k

E sup
l≤r
|ψm,ε|2H(l ∧ τm,ε(k)) ≤ C .

Therefore,

P(τm,ε(k) ≤ t) = P(sup
l≤t
|ψm,ε|2H(l) ≥ k) ≤ 1

k
E sup

l≤t
|ψm,ε|2H(l ∧ τm,ε(k)) ≤ C

k
→ 0

and a.s. convergence τm,ε(k)→∞ for k →∞ follows (by taking subsequence over k).
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Now we have from identity (3.5)

E|ψm,ε|2H(t ∧ τm,ε(k))− 2E
t∧τm,ε(k)∫

0

(Aψm,ε, ψm,ε)H ds

+ME
t∧τm,ε(k)∫

0

∫
S1

ψm,εx

ε
G(
ψm,εx

ε
) dx ds(3.9)

= E|ψm,ε|2H(0) +

∞∑
i=1

q2i E
t∧τm,ε(k)∫

0

∫
S1

|πm
(
g

(
ψm,εx

ε

)
ei

)
|2 dy ds.

Now we pass with k →∞ in (3.9) and notice that projection |πm|L(H,H) ≤ 1:

E|ψm,ε|2H(t)− 2E
t∫

0

(Aψm,ε, ψm,ε)H ds+ME
t∫

0

∫
S1

ψm,εx

ε
G

(
ψm,εx

ε

)
dx ds(3.10)

≤ E|ψm,ε|2H(0) +ME
t∫

0

∫
S1

|g|2(ψ
m,ε
x

ε
) dy ds,

and the result follows.
• From identity (3.9) follows that

E|ψm,ε|2H(t ∧ τm,ε(k))− 2E
t∧τm,ε(k)∫

0

(Aψm,ε, ψm,ε)H ds+ME
t∧τm,ε(k)∫

0

∫
S1

ψm,εx

ε
G

(
ψm,εx

ε

)
dx ds

(3.11)

≥ E|ψm,ε|2H(0).

Passing with k →∞ we obtain estimate (3.2).
• We apply the Itô formula to deduce that

|ψm,εx |2H(t)− 2

t∫
0

((Aψm,ε)x, ψ
m,ε
x )H ds+

M

ε2

t∫
0

∫
S1

|g′|2(ψ
m,ε
x

ε
)|ψm,εxx |2 dx ds(3.12)

+ 2
∞∑
i=1

qi

t∫
0

∫
S1

ψm,εxx g(
ψm,εx

ε
)ei dx dβ

i(s)

= |ψm,εx |2H(0) +

∞∑
i=1

q2i

t∫
0

∫
S1

∣∣∣∣πm [ψm,εxx

ε
g′(
ψm,εx

ε
)ei + g(

ψm,εx

ε
)(ei)x

]∣∣∣∣2 dx ds
The last term in (3.12) can be rewritten as follows

∞∑
i=1

q2i

t∫
0

∫
S1

∣∣∣∣πm [ψm,εxx

ε
g′(
ψm,εx

ε
)ei

]∣∣∣∣2 dx ds+
∞∑
i=1

q2i

t∫
0

∫
S1

∣∣∣∣πm [g(
ψm,εx

ε
)(ei)x

]∣∣∣∣2 dx ds(3.13)

+ 2
∞∑
i=1

q2i

t∫
0

∫
S1

πm

[
ψm,εxx

ε
g′(
ψm,εx

ε
)ei

]
πm

[
g(
ψm,εx

ε
)(ei)x

]
dx ds
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=

∞∑
i=1

q2i

t∫
0

∫
S1

∣∣∣πm [ψm,εxx

ε
g′(
ψm,εx

ε
)ei

] ∣∣∣2 dx ds+

∞∑
i=1

q2i

t∫
0

∫
S1

∣∣∣πm [g(
ψm,εx

ε
)(ei)x

] ∣∣∣2 dx ds
− 2

∞∑
i=1

q2i

t∫
0

∫
S1

(id−πm)

[
ψm,εxx

ε
g′(
ψm,εx

ε
)ei

]
(id−πm)

[
g(
ψm,εx

ε
)(ei)x

]
dx ds

≤
∞∑
i=1

q2i

t∫
0

∫
S1

∣∣∣πm [ψm,εxx

ε
g′(
ψm,εx

ε
)ei

] ∣∣∣2 dx ds+

∞∑
i=1

q2i

t∫
0

∫
S1

∣∣∣πm [g(
ψm,εx

ε
)(ei)x

] ∣∣∣2 dx ds
+
∞∑
i=1

q2i

t∫
0

∫
S1

∣∣∣((id−πm)

[
ψm,εxx

ε
g′(
ψm,εx

ε
)ei

] ∣∣∣2 dx ds+
∞∑
i=1

q2i

t∫
0

∫
S1

∣∣∣(id−πm)

[
g(
ψm,εx

ε
)(ei)x

] ∣∣∣2 dx ds
=

∞∑
i=1

q2i

t∫
0

∫
S1

(ψm,εxx )2

ε2
|g′|2(ψ

m,ε
x

ε
)e2i dx ds+

∞∑
i=1

q2i

t∫
0

∫
S1

|g|2(ψ
m,ε
x

ε
)(ei)

2
x dx ds

where the first equality follows from the fact that

2
∞∑
i=1

q2i

t∫
0

∫
S1

ψm,εxx g
′
(
ψm,εx

ε

)
eig

(
ψm,εx

ε

)
(ei)x dx ds = 0,

because
∞∑
i=1

q2i ei(ei)x =
1

2

( ∞∑
i=1

q2i |ei|2
)
x

= 0 ,

and thge second inequality is a consequence of the Cauchy-Schwartz inequality.
Combining formula (3.12) with inequality (3.13) we can deduce that

|ψm,εx |2H(t)− 2

t∫
0

((Aψm,ε)x, ψ
mε
x )H ds(3.14)

+ 2
∞∑
i=1

qi
t∫

0

∫
S1

ψm,εxx g

(
ψm,εx

ε

)
ei dx dβ

i(s)

≤ |ψm,εx |2H(0) +M2

t∫
0

∫
S1

|g|2
(
ψm,εx

ε

)
dx ds,

where M2 = 1
π

∞∑
l=1

l2q22l. Conclusion of the proof follows in the same fashion as in part 1

(i.e. considering appropriate stopping time to stop local martingale in formula (3.14),
taking expectation and the limit).

�

Corollary 3.1. Assume that there exists constant C > 0 such that g ∈ L∞(R), 0 6= g′ ∈
L2 ∩ L∞(R) satisfies

(3.15)

 −z∫
−∞

+

∞∫
z

 |g′|2(y) dy ≤ C

z
, z > 0,
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and

(3.16) κ = min


∞∫
0

|g′|2(y) dy,

0∫
−∞

|g′|2(y) dy

 > 0 .

Then there exists C(t, α, β, |g|L∞ , ψ0) > 0 independent of m and ε such that

(3.17)

t∫
0

E|ψm,εx |L1 ds ≤ C
ε

κ
,

Proof. By boundedness of g, dissipativity of A (2.2) and a priori estimates (3.1), (3.3) we have
that

(3.18) E
t∫

0

∫
S1

ψm,εx

ε
G(
ψm,εx

ε
) dx ds ≤ C(t, α, β, |g|L∞ , ψ0).

Hence we have that
(3.19)

E
t∫

0

∫
{ψm,εx ≥0}

ψm,εx

ε
G(
ψm,εx

ε
) dx ds+ E

t∫
0

∫
{ψm,εx <0}

ψm,εx

ε
G(
ψm,εx

ε
) dx ds ≤ C(t, α, β, |g|L∞ , ψ0).

Consequently, condition (3.15) together with the estimate (3.19) gives us that decomposing
∞∫
0

=
ψm,εx /ε∫

0

+
∞∫

ψm,εx /ε

:

E
t∫

0

∫
{ψm,εx ≥0}

ψm,εx

ε

∞∫
0

|g′|2(y) dy dx ds

+ E
t∫

0

∫
{ψm,εx <0}

−ψ
m,ε
x

ε

0∫
−∞

|g′|2(y) dy dx ds ≤ C(t, α, β, |g|L∞ , ψ0),

and the result follows. �

The a priori estimates of Proposition 3.1 are uniform w.r.t. both parameter ε and dimension
m of the approximation space Hm. The next a priori estimate will give us bound on fractional
time derivative of the solution. The estimate is not uniform w.r.t. ε.

Lemma 3.1. For any ε > 0, T > 0, α ∈
(
0, 12
)

there exists C(ε, T, α) such that

(3.20) E|ψm,ε|2Wα,2([0,T ],H) ≤ C(ε, T, α).

Proof. By definition of ψm,ε given in (2.7) ψm,ε has the representation

ψm,ε(t) = ψm,ε(0) +

t∫
0

πm(Aε(πmψ
m,ε)) ds+

t∫
0

πm(σε(πmψ
m,ε)πmdW

Q
s ).

Now for any fixed ε > 0 the drift term is bounded in L2(Ω,W 1,2([0, T ], H)) by a priori estimate
(3.3). Furthermore, diffusion term is bounded in L2(Ω,Wα,2([0, T ], H)) for any α ∈

(
0, 12
)

by
Lemma 2.1, of [4]. �

Now we are ready to take m to infinity in Galerkin approximation (2.7) and show the existence
of strong solution of equation (1.1) for any ε > 0.
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4. Main result

Proposition 4.1. Assume that g ∈ Cb(R), g′ ∈ L2(R) ∩ Cb(R) satisfies conditions (3.15) and
(3.16). If ψ0 ∈ W 1,2

(
S1
)

then there exists a strong martingale solution ψε of the system (2.3)
and a constant C(t, α, β,M, |g|L∞ , ψ0) > 0 such that

(4.1)

t∫
0

E|ψεx|L1 ds ≤ C
ε

κ
,

where κ is defined by (3.16). In particular,

lim sup
ε→0

t∫
0

E|ψεx|L1 ds = 0.

Theorem 4.1. Assume that conditions of Proposition 4.1 are satisfied and A∗(1) = 0 i.e.

(4.2)

∫
S1

Aφdx = 0, ∀φ ∈ C∞(S1).

Then there exists a martingale ψ ∈ L2(Ω, C([0, T ],R)) and a sequence {εl}∞l=1, εl ↘ 0, such that
for any φ ∈ C∞([0, T ]× S1) we have

t∫
0

∫
S1

ψεl(s, x, ·)φ(s, x) dx ds
l→∞−−−→

t∫
0

ψ(s, ·)
∫
S1

φ(s, x) dx ds in law.

Furthermore,

Eψ(t) =
1

2π

∫
S1

ψ0(x) dx.

Remark 4.1. It remains an open problem to find the quadratic variation of ψ.

Remark 4.2. Assumption (4.2) in Theorem 4.1 is made for simplicity. Otherwise, we would
obtain, for ε → 0, a martingale with additional drift term. The structure of the drift would
depend on the exact form of the operator A.

5. Proofs of Proposition 4.1 and Theorem 4.1

Proof of Proposition 4.1. Let {ψm,ε}m∈N,ε>0 be the Galerkin approximation introduced in (2.7).
According to Proposition 3.1 and Lemma 3.1 we have the following a priori estimate

sup
m∈N

[
E|ψm,ε|2Wα,2([0,T ],H) + E|ψm,ε|2L2([0,T ],W 2,2(S1))∩C([0,T ],W 1,2(S1))

]
<∞, α ∈

(
0,

1

2

)
.

If 0 < α < 1
2 then by Theorem 2.1 in [4]

L2([0, T ],W 2,2(S1)) ∩Wα,2([0, T ], H) ⊂ L2([0, T ],W 1,2(S1)) ,
with compact imbedding, hence the family of probability laws L(ψm,ε) is tight in L2([0, T ],W 1,2(S1)).
Hence, there exists a subsequence ψm,ε (still denoted as ψm,ε), such that L(ψm,ε) weakly con-
verges in L2([0, T ],W 1,2(S1)) (for fixed ε > 0). By the Skorokhod embedding theorem (cf. [7],

p.9) there exists a stochastic basis (Ω,F , {Ft}t≥0,P) and random variables ψ̃ε, ψ̃m,ε, m ∈ N,
defined on it and taking values in L2([0, T ],W 1,2(S1)), such that

ψ̃m,ε → ψ̃ε in L2([0, T ],W 1,2(S1)) P− a.s.

and the probability laws of ψ̃m,ε and ψm,ε on L2([0, T ],W 1,2(S1)) are the same. Therefore, ψ̃m,ε

satisfy the same a priori estimate as ψm,ε. Consequently,

(5.1) ψ̃ε ∈ L2([0, T ],W 2,2(S1)) ∩ C([0, T ],W 1,2(S1)), P-a.s.,
10



and ψ̃m,ε → ψ̃ε in L2(Ω× [0, T ],W 2,2(S1)) weakly. Define

Mm,ε(t) := ψ̃m,ε(t)− πmψ̃m,ε(0)−
t∫

0

πm(Aε(πmψ̃
m,ε)) dt, t ≥ 0.

Then {Mm,ε}t≥0 is a a square integrable martingale with respect to the filtration (Gm,ε)t =

σ({ψ̃m,ε(s), s ≤ t}) with quadratic variation

〈Mm,ε〉t =
∞∑
i=1

q2i

t∫
0

|πm(σ(ψ̃m,ε)ei)|2 ds.

Indeed, since the laws L(ψ̃m,ε) and L(ψm,ε) are the same we have that for all 0 ≤ s ≤ t,
λ ∈ Cb(L2([0, T ),W 1,2(S1))) and φ, γ ∈ C∞(S1)

(5.2) E[(Mm,ε(t)−Mm,ε(s), φ)λ(ψ̃m,ε|[0,s])] = 0,

and
(5.3)

Eλ(ψ̃m,ε|[0,s])[(Mm,ε(t), φ)(Mm,ε(t), γ)− (Mm,ε(s), φ)(Mm,ε(s), γ)

−
∞∑
i=1

q2i

t∫
s

(πm(σ(ψ̃m,ε)ei)φ, πm(σ(ψ̃m,ε)ei)γ) ds] = 0.

It remains to take the limit m → ∞ in equalities (5.2) and (5.3). By a priori estimates
(3.3),(3.1), all the terms in equalities (5.2) and (5.3) are uniformly integrable w.r.t. ω. Thus
it is enough to show convergence P-a.s. Note that for any test function φ ∈ C∞(S1) the drift

term

(
t∫
0

πm(Aε(ψ̃m,ε)) ds, φ

)
H

can be rewritten as follows

(5.4)

 t∫
0

πm(Aε(ψ̃m,ε)) ds, φ

 = −M
2

t∫
0

(
πmφx
ε

,G

(
ψ̃m,εx

ε

))
ds+

t∫
0

(
ψ̃m,ε, A∗φ

)
ds,

where G is given by (2.4). Indeed, representation (5.4) follows from integration by parts.
Consequently, the convergence of the first RHS term in (5.4) follows from the global Lipshitz
property of the function G. Similarly, we can show the convergence of quadratic variation.
Now, the existence of weak solution follows from the Representation Theorem for martingales
(Theorem 8.2, p. 220 [2] ). The weak solution is a strong one by the regularity property (5.1)
and integration by parts formula. The identity (4.1) follows from identity (3.17). �

Proof of Theorem 4.1. We can represent ψε as follows

ψε =

ψε − 1

2π

∫
S1

ψε dx

+
1

2π

∫
S1

ψε dx.

Let

χ(x) :=

x∫
0

φ(y) dy − x

2π

2π∫
0

φ(y) dy, x ∈ [0, 2π).

11



Note that χx = φ− 1
2π

2π∫
0

φ(y) dy. Consequently, we have by integration by parts that

∣∣∣ T∫
0

∫
S1

(
ψε − 1

2π

∫
S1

ψε dx
)
φdx ds

∣∣∣
=

∣∣∣∣∣∣
T∫
0

∫
S1

ψε − 1

2π

∫
S1

ψε dx

χx dx ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
T∫
0

∫
S1

ψεxχdx ds

∣∣∣∣∣∣ ≤ ||χ||L∞([0,T ]×S1)

T∫
0

∫
S1

|ψεx| dx ds

which converges to 0 by Proposition 4.1. Hence it remains to find the limit of

M ε(t) :=
1

2π

∫
S1

ψε dx, t ≥ 0 ,

for ε converging to zero. First, let us note that we have the following representation of M ε:

(5.5) M ε(t) =
1

2π

∫
S1

ψ0(x) dx+
1

2π

t∫
0

∫
S1

g

(
ψεx
ε

)
dx dWQ

s , t ≥ 0,

where we have used Assumption (4.2) to cancel the drift part. Thus we find that Mε is a square
integrable martingale and by the Burkholder-Davis-Gundy inequality

sup
ε>0

E sup
t∈[0,T ]

|M ε(t)|p <∞, p ≥ 1.

Furthermore, we can deduce from representation (5.5) that

sup
ε>0

E|M ε|pWα,p([0,T ],R) <∞, α ∈
(

0,
1

2

)
, p > 1.

Hence, by the compact embedding theorem, the family of martingales {M ε; ε ∈ (0, 1)} is tight
in C([0, T ],R). Consequently, by the Prokhorov Theorem there exists a sequence εl ↘ 0 such
that M εl converges in law to the process ψ in C([0, T ],R). In particular,

T∫
0

M εl(s)

∫
S1

φ(s, x) dx ds
l→∞−−−→

T∫
0

ψ(s)

∫
S1

φ(s, x) dx ds, in law.

The process ψ is a square integrable martingale (see, for instance Proposition 1.12, Chapter 9
of [6]) with expectation

Eψ(t) =
1

2π

∫
S1

ψ0(x) dx .

�

6. Example and counterexample

Here we will present example when the regularisation effect holds although g does not satisfy
conditions of the Proposition 4.1. Furthermore, we will give a counterexample showing that in
the linear case we don’t have this effect.

Example 6.1. Assume that g is linear: g(z) = z. In this case Assumption 2 is not satisfied, and
homogenisation doesn’t hold as following elementary example shows. Let A = ∂2xx with periodic
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boundary conditions and assume that noise WQ = β is a one dimensional Wiener process. Then
system (2.3) has a unique solution of the form

ψε(t, x) = ψ0

(
x+

β(t)

ε

)
, t ≥ 0, x ∈ S1 .

Consequently, the integral
t∫
0

E|ψεx|L1 ds does not depend on ε.

Example 6.2. Assume that g(z) = sin z.

Proposition 6.1. Assume that g(z) = sin z and A satisfies Assumption (2.2). Then there exist a
strong martingale solution ψε of the system (2.3) and a constant C = C(t, α, β,M, |g|L∞ , ψ0) > 0
such that

(6.1)

t∫
0

E|ψεx|2L2 ds ≤ Cε2.

In particular, we have that

lim sup
ε→0

t∫
0

E|ψεx|2L2 ds = 0.

Proof. A priori estimate (6.1) follows directly from the Itô formula. In this case it is not
necessary to use decomposition of integration interval as in Proposition 4.1 and, consequently,
we don’t need conditions g′ ∈ L2(R),(3.15). In the same time, function G is globally Lipshitz
and the proof of convergence is exactly the same as in Proposition 4.1. �

7. Appendix

In the appendix we formally calculate the Stratonovich correction term for equation (1.1). From
(1.1) we have

1

2

〈
g

(
ψεx
ε

)
,WQ

〉
t

=
1

2

〈 ·∫
0

1

ε
g′
(
ψεx
ε

)
dψεx,W

Q

〉
t

=
1

2

〈 ·∫
0

1

ε
g′
(
ψεx
ε

)(
g′
(
ψεx
ε

)
ψεxx
ε
dWQ + g

(
ψεx
ε

)
dWQ

x

)
,WQ

〉
t

=

t∫
0

1

2ε2
∣∣g′∣∣2(ψεx

ε

)
ψεxxρ

Q(x) ds+

t∫
0

1

4ε
g′g

(
ψεx
ε

)
ρQx (x) ds,(7.1)

where

ρQ =
∞∑
n=1

q2ke
2
k.

Note that we can rewrite ρQ as follows

ρQ(x) =
q21
2π

+
1

π

∞∑
n=1

(
q22n+1 cos2 nx+ q22n sin2 nx

)
=

1

2π

∞∑
n=1

q2n +

∞∑
n=1

(q22n+1 − q22n) cos 2nx .

Consequently, condition (2.1) implies that

(7.2) M := ρQ =
1

2π

∞∑
n=1

q2n, ρQx = 0.
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Combining (7.1) and (7.2) we find that

(7.3)
1

2

〈
g

(
ψεx
ε

)
,WQ

〉
t

=
M

2ε2

t∫
0

∣∣g′∣∣2(ψεx
ε

)
ψεxx ds .
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