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Abstract

We construct a category of quantum polynomial functors which deforms Fried-
lander and Suslin’s category of strict polynomial functors. The aim of this paper is
to develop the basic structural properties of this category. We construct quantum
Schur and Weyl functors and show that quantum divided powers form projective
generators for the category of quantum polynomial functors of degree d. Using this
result we prove that the category of quantum polynomial functors is braided, and
give a new and streamlined proof of quantum (GL(m),GL(n)) duality, along with
other results in quantum invariant theory.

1 Introduction

The category P of strict polynomial functors was introduced by Friedlander and
Suslin in their study of the cohomology of finite group schemes [FS]. In this work, we
define a new category P, of quantum polynomial functors, which deforms Friedlander
and Suslin’s category. The aim of this paper is to develop the basic properties of
this category, analogous to those of P, and show that this category provides the
framework for a functorial approach to the representation theory of the quantum
general linear group. We apply these ideas to give a new approach to the invariant
theory of quantum general linear groups.

We now describe the contents of the paper in more detail. In Section 2 we set
up the basics of quantum linear algebra which we use throughout. Given two Hecke
pairs (V,Ry) and (W, Ry ) we associate a “rectangular Schur space” S(V,W;d).
The main result of this section is Proposition 2.4 which states that this space is
isomorphic to the space of maps Homy,, (V¥4 W®9), where H, is the Iwahori-Hecke
algebra of type A. We also recall the algebra of quantum m X n matrices Oq(Mm,n).
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In Section 3 we define the category Pg of quantum polynomial functors of degree
d over k, where ¢ € k* and k is a field. Objects in Pg are functors FgV — V), where

V is the category of finite dimensional vector spaces over k, and FgV is the category
with objects natural numbers and morphisms given by

Hompay,(m, n) := Homy, ((K™)®4, (k™)®?).

In Proposition 3.3, we show that there is another equivalent definition of quantum
polynomial functors using quantum matrices. We use this to define a Frobenius twist
functor (=) : P4 — P4, where ¢ is an {-th root of unity and ¢ > 1 is odd.

In Section 4 we prove our main theorem (Theorem 4.7) which describes projective
generators of Pg. This uses a finite generation property for quantum polynomial
functors, which we prove in Proposition 4.5.

In Section 5 we prove that P, is a braided category. We make crucial use of
Theorem 4.7 to show that the R-matrices of the quantum general linear group are
suitably functorial, and thereby define a braiding on P,. We also show that the
braiding behaves well under the duality functor (Proposition 5.6). In Section 6 we
introduce quantum Schur/Weyl functors in P, and we show that they are dual to
each other in Theorem 6.5. We also use them to describe the simple objects in P,.

Finally in Section 7 we specialize to the case when ¢ is generic and study the
invariant theory of GL4(n). We use Theorem 4.7 to give an easy proof of the du-
ality between GLg4(m) and GL,(n). We also formulate and derive the equivalence
of this duality to the quantum first fundamental theorem and Jimbo-Schur-Weyl
duality. We remark that quantum (GL(m), GL(n))-duality is due to Zhang [Zh] and
Phung [Ph]. (Zhang also derives Jimbo-Schur-Weyl duality from (GL4(m), GL4(n))-
duality.) The quantum FFT that we prove first appears in [GLR] with a much more
complicated proof. (Other versions of the quantum FFT appear in [Ph] and [LZZ].)
We remark also that our approach to quantum invariant theory applies to the other
settings where a theory of strict polynomial functors has been constructed (cf. Re-
mark 7.4).

Acknowledgement. We thank Joseph Bernstein for his encouragement and im-
portant discussions during the initial stages of this project, and also Roger Howe
and Andrew Mathas for helpful conversations. We also thank Antoine Touzé for
introducing us to polynomial functors. O.Y. is supported by an Australian Research
Council Discovery Early Career Research Award.

2 Quantum linear algebra

2.1 Hecke pairs
We fix a field k and an element ¢ € k*. Let V denote that category of finite

dimensional vector spaces over k. Let H, be the Iwahori-Hecke algebra of type A:
it is the k-algebra generated by T3, 75, ...,T4—1 subject to the relations:
T,T; = T;T; if i —j| > 1,
T Ty = T TiTi (2.1.1)
(Ti = q)(T; +q ") = 0.
For V € V a Hecke operator is a linear operator R : V&2 — V®2 such that

(i) R satisfies the Yang-Baxter equation, i.e. the following equation holds in
End(V®?):
Ri2Ro3R12 = Ro3zRi2 Ras,



where Rio = R® 1y and Ro3 = 1y ® R.
(ii) R satisfies the Hecke relation (R — ¢)(R+¢ 1) = 0.

We call the tuple (V, R) a Hecke pair. To a Hecke pair (V, R) we associate the right
module pg v : Ha — End(V®?) via the formula

T — 1V®i RR® 1V®d—i—1.

Often we suppress R in the notation and refer to a vector space V' as a “Hecke pair”.
In this case, the R-matrix is implicit and when necessary is denoted Ry .

Now consider two Hecke pairs V, W and a k-algebra C' with multiplication m :
C®C — C. A g-linear operator over C is a k-linear operator P : V — W ® C
such that the following diagram commutes:

®2 _P?_ @2
ver P2 yerg o (2.1.2)

e

ye2 PP e
—— W®* R, C

Here P is the composition:

ve2 PP o cow e B we? g oo L8 we? g

Let T(V, W) be the tensor algebra of Hom(V, W), which is graded

T(V,W) =P TV.W)a,
d>0

where
T(V,W)q := Hom(V, W)®? ~ Hom(V®?, W),

Let I(V, W) be the two sided ideal generated by
R(V,W):={XoRy — Ry oX | X € Hom(V®% W%?)}.

The ideal I(V,W) is homogeneous

I(V,W) = I1(V,W)a,

d>0
where I(V, W), is spanned by
Hom(V, W)®*~! @ R(V,W) @ Hom(V, W)®4-i-1
fori=1,2,...,d — 1. We define
AV, W) = T(V, W) /I(V, W),

The algebra A(V,W) is called the quantum Hom-space algebra from W to V
(cf. [Ph, §3] and [HH, §3]). It has a natural grading

AV, W) = P AV, W),
d>0

where
AV, W) g =T(V,W)a/I(V,W),. (2.1.3)



Note that A(V,W); = Hom(V, W) and hence the canonical map V- — W&Hom (W, V)
induces a linear operator

5V,W V= W@A(VV,V)

By construction éy, is a g-linear operator.
The following lemma shows that the quantum Hom-space is characterized by a
universal property.

Lemma 2.1. Let V,W be two Hecke pairs and let Q :' V — W @ C be a g-linear
operator over a k-algebra C. Then there exists a unique morphism of algebras @ :
AW, V) — C such that the following diagram commutes:

V2 W AW, V) (2.1.4)
Q \L1W®Q
W&

Proof. By construction of A(W,V), a g-linear operator Q : V. — W ® C' is in fact
equivalent to a homomorphism of algebras @ : A(W,V) — C, and it is then easy to
show diagram (2.1.4) commutes. O

Given three Hecke pairs V,W,U and g-linear operators P : V — W ® C and
Q:W —-U®D wedenote by Qo P: V — U ® D ® C the composition of P and Q.
The following lemma is easy to check.

Lemma 2.2. The composition Q) o P is a q-linear operator over D ® C.

Applying Lemma 2.1 to the g-linear operator dy v o 0y, we obtain a morphism

of algebras
Avwy : AV,U) = A(V,IW) @ AW, U).

It preserves degree, i.e. for each d > 0, we have
Avwuy : AV, U)a — AV, W)a @ A(W,U)q.
Let S(V,W;d) := (A(W,V)q)*. From Ay w,u, we obtain a bilinear map
muw,y : SW,V;d) x S(UW;d) — S(U,V;d).

For any a € S(W,V;d) and b € S(U, W;d), we denote by boa the element my, w,v (a,b) €
S(U,V;d). Tt is given by the following composition

Av,w,u

AWV, U)g —= AV, W)a ® A(W,U)q . (2.1.5)

Lemma 2.3. For VW €V and Py, ..., P, € Hom(V, W) we have

* N V*
(O ker(Pi)> = m

Proof. Define f : V. — W% by f(v) = (Pi(v),..., P,(v)) and consider the short
exact sequence 0 — im(f*) — V* — ker(f)* — 0. O



The following proposition generalizes [PW, Theorem 11.3.1].

Proposition 2.4. Let V,W be Hecke pairs. Then there exists a natural isomorphism
S(V,W;d) ~ Homy, (VO W),
Proof. Fori=1,...,d — 1 define operators T; on Hom(V®¢ W®4) by
Ti(X) == X 0 pay (Ti) — paw (T3) o X,
for X € Hom(V®4 W), Recall that pgy (resp. paw) denotes the right action of
Hq on VO (resp. W®?), Note that

d—1
Homyy, (V& W) = () ker(T)).
i=1

Similarly we define operators T; on Hom(W®? V&) by
T(Y) =Y o paw(T;) = pay (L) oY,

for Y € Hom(W®4, V®4). Note that from (2.1.3) we have

1%

Hom(W®4 y@d)

AWV = = )

Therefore by Lemma 2.3 we have A(W,V )y = (ﬂ ker(ﬁ*)) , where T7* denotes the

dual operator on Hom(W®? V®4)* Now consider the non-degenerate pairing
(-,-) : Hom(V®? Ww®?) x Hom(W®4, V&) - k,
given by (X,Y) := trace(Y o X). For each i we have
(T:(X),Y) = ~(X, T,(Y)).

Therefore, under the identification Hom(V®4, W®4) =~ Hom(W®?,V¥4)* induced
by this pairing, ( ker(T;) is identified with () ker(7}"). Hence

AW, V)g = HOIHHd(V®d, W®d)*,

proving the result.

The following lemma is routine to check.

Lemma 2.5. Given three Hecke pairs V, W, U, then the following diagram commutes:

S(W,V;d) x S(U,W;d) — Homgy,, (W& V&) x Homy,, (U4, W) . (2.1.6)

| |

S(U,V;d) Homy,,(U®4, V&)




2.2 Quantum matrices

Let V,, be the vector spaces k™ with standard basis e1, ez, -+ ,e,. Let R, : V,,®V,, —
V, ® V,, be a linear operator defined as follows:
e; e ife<y
R, (e; ®ej) = ge; @e¢; ifi=y ) (2.2.7)

(g—qg Ve ®ej+ej®e; ifi>j

where ¢ € k. The following is well-known and easy to check (see e.g. Lemma 4.8 in
(T]).
Lemma 2.6. For any n, R, : V,*? — V.¥2 is a Hecke operator.

Let pan : Ha — End(V,2?) denote the corresponding right Hg4-module. Let
Oy( M) = A(Vin, Vi)

denote the quantum Hom-space algebra from (V,,, R,,) to (Vi Ry ). This is the alge-
bra of quantum m x n matrices. Let {z;;} be the standard basis of Hom(V,,,, V)
mapping ey — d;;€;.

The following lemma is easy.

Lemma 2.7. The algebra Oq(Mm’n) is generated by xj;, 1 < j < m, 1 < i< n,
subject to the following relations: where i > j and k > £:

TikZie = qTi0Tik
TikZjk = qTjkTik
TigTjk = TjkTig
1
TikTje — TjpTik = (¢ — ¢ )T j.
Set Apmn 2 Of(Mypn) = Of(Mem) @ Oy(Mpy, 7). On generators Ay, is given
by

m
Tij Zl‘ik & T
k=1
Usually ¢, m,n are clear from context and we omit them from the notation.

Note that the algebra O, (M,) := O, (M) is a bialgebra with counit € :
O,(M,) — k given by e(z;;) = d;j. In fact, O, (M,) is the well-known quantum
algebra of functions on n x n matrices (cf. [T, §4]).

Our definition of quantum m x n matrices is a direct generalization of O, (M,,).
In particular the ring O (M, ) is a deformation of the ring of functions on the
space m x n matrices over k. Indeed by the above lemma we have O(M;(m,n)) =
O(Hom(k™, k™)), the algebra of functions on Hom(k™, k™).

Let (’)f;(Mm’n) denote the subspace of (’)q(Mm,n) spanned by monomials of de-
gree d. Set Sy(m,n;d) = (O(‘;(anm))*. Let mpm,n : Sq(m, 4;d) @ Sq(n,m;d) —
Sq(n,£;d) be the corresponding bilinear maps. The map m,, p , induces an algebra
structure on Sy (n,d) := Sy(n,n;d) called the ¢-Schur algebra (cf. [T, §11]).

3 Main definitions

3.1 Classical polynomial functors

We recall the category of strict polynomial functors.



Let &4 denote the symmetric group on d letters. For any V' € V the symmetric
group S acts on the tensor product V&% by permuting factors. For V € V the d-th
divided power of V is defined as the invariants (V) = (®9V)®4. Let I'?V denote
the category consisting of objects V' € ¥V and morphisms

Hompa(V, W) = I'Y(Hom(V, W)).
The diagonal inclusion &4 C &4 x &4 induces a morphism
U)o T4V) = THU V).
Composition in I'?V is then defined as

'Y (Hom(V,U)) @ I'(Hom(W, V)) —= I'Y(Hom(V, U) ® Hom(W, V))

|

I'Y(Hom(W, U)).

Let P? be the category consisting of k-linear functors I'?V — V. Morphisms P¢ are
natural transformations of functors. P¢ is the category of polynomial functors of
degree d

We remark that this is not the definition of ¢ which originally appears in e.g.
Friedlander and Suslin’s work [FS]. In their presentation polynomial functors have
both source and target the category V), and it is required that maps between Hom-
spaces are polynomial. In the presentation we use, the polynomial condition is
encoded in the category T'?V. For details see [Kr, Ku] and references therein.

3.2 Definition of quantum polynomial functors

Note that in the above setup, I'*(Hom(V, W)) = Homg,, (V®?, W®4). This observa-
tion motivates our definition of quantum polynomial functors.

For any d > 0, we define a category FZV: it consists of objects 0,1, 2, ... and the
morphisms are defined as

Hompa(m,n) := Homy, (V2 V&),
A quantum polynomial functor of degree d is defined to be a linear functor
M:T9V = V.

We denote by Pg the category of quantum polynomial functors of degree d. Mor-
phisms are natural transformations of functors. Since V is abelian ’Pg is also an
abelian category. Let P, be the category of all quantum polynomial functors,

Py = @’P;.
d

Given M € P, we denote the map on hom-spaces by M,, ,, : Homy, (V.24 V&) —
Hom (M (m), M(n)).

Remark 3.1. When ¢ = 1 our construction recovers the classical category P<.
Indeed the natural functor T'¢Y — T9V defined by n ~— k™ is an equivalence of
categories, and induces an equivalence P = P9,



P, has a monoidal structure. For any M € Pg and N € Py define the tensor
product M ® N € Pg“‘e as follows: for any n, (M ® N)(n) := M(n) ® N(n) and for
any m,n, the map on morphisms is given by the composition

Hode@)He (Vv’%d ® Vn§67 Vn®d ® Vn®e)

d d
Hode+e (Vg +e7 Vn® +e)

Homgy,, (V.24 V) @ Homy, (V,2¢, V,2€)
My n®Nm n

Hom(M (m), M(n)) ® Hom(N (m), N(n))

Hom(M (m) @ N(m), M(n) @ N(n))

A duality is defined on Py as follows. We first identify V;,, = V.3 via the standard
basis e;, i.e. if e, ..., e}, denotes the dual basis of V¥ then V,, — V;} is given by
e; — e}. This induces an identification

o : Homyy, (V,24,V,2%) — Homgy, (V,24, V2.
For M € Pg we define M* ¢ Pg by:
(i) M¥(n) = M(n)",
(ii) M}, ,, : Homy, (V,$?,V,24) — Hom(M?*(m), M*(n)) is given by the composition

M'n/ m
Homyy, (V.24 V24) —Z s Homy, (V,24, V,24) —" Hom(M (n), M (m))

lg

Hom(M (m)*, M(n)")

Given a morphism f: M — N in P,, we define f*: N* — M* by f*(n) = f(n)*. It
is straightforward to check that f* is a morphism of polynomial functors. Therefore
duality defines a contravariant functor § : P, — P4. The following lemma is routine
to check.

Lemma 3.2. Given any two quantum polynomial functors M, N, then we have a
canonical isomorphism
(M @ N)* ~ M* @ NF.

3.3 Examples
Here are some examples of quantum polynomial functors.
1. The identity functor I € 73; is given by I(n) = V;,. On morphisms it is the
identity map.
2. We denote by ®d the d-th tensor product functor. It is given by n + V,©¢
and on morphisms by the natural inclusion

Homyy, (V2 V24 — Hom (V24 V24,

Notice that ®d = I®4 Tt is also easy to see that the right action of Hecke
algebra Hg on V24 gives rise to endomrophisms of ®? as quantum polynomial
functors, i.e. for any w € &y, T, : ® — ®? is a morphism.



3. Given a right Hg-module p define M, € Pg by:
M, : n s Homy, (p, V,29).
Similarly for a left H4-module 7 define N, by:
N, :nw V4@, 1.
Let x4+ be the character of Hy given by x4+ (T;) = ¢, and let x_ be the character

given by x_(T;) = —¢~'. Define the d-th ¢-divided power by 'Y := M, , the
d-th dq—symmetric power by Sg := N4, and the d-th ¢-exterior power
by Ay =Ny

An important role will also be played by the functors I‘g’m = M,ga. Under
this functor n — Homgyy, (V,24, V,&4).

3.4 An equivalent characterization of quantum polynomial
functors

Given a quantum polynomial functor M of degree d we get a vector space M (n) for
any n > 0 and for any m,n, by Proposition 2.4, we naturally get a map:

M 2 Sq(m,n;d) — Hom (M (m), M(n)).
This gives rise to maps
M,'nn 0 Sq(m,n;d) @ M(m) — M(n),
and
M), M(m) = M(n) @ O (M m).

The following proposition gives an equivalent characterization of quantum polyno-
mial functors in terms of the quantum matrix algebra.

Proposition 3.3. A quantum polynomial functor M of degree d is equivalent to the
following data:

1. for each positive integer a vector space M (n) € V;
2. given any two nonnegative integers m,n a linear map

M), M(m) = M(n) @ OY( My )
such that, for any £,m,n, the following diagrams commute

M) Yo M(n)® 01(M,.) (3.4.8)

lMélm i1®An,m,f
10M"

M(m)® OZ(Mm,e) J;M(n) ® Otczl(Mn,m) ® OS(MM,Z)

and for any n,

1"

M(n) —"— M(n) ® O%(M,) (3.4.9)
lid 1®e
M(n)®k

Here € : O,(M,) — k is the co-unit map.

Proof. Tt follows from Proposition 2.4 and Lemma 2.5. O



3.5 Frobenius twist

In this subsection assume that ¢ is a primitive £ root of unity, where £ > 1 is an
odd integer. Define an algebra homomorphism

Fr: O(M,y,.,) — Oq(van) by x;; — a:fj.

By Lemma 7.2.2 in [PW] we have that Ay, .5 0 Oy (M n) = Oy(My, ) ® O (M, )
satisfies

I
‘ ¢ ¢
A(zg;) = szk & Tpj-
k=1
Therefore the following diagrams commutes:

Fr

and

Using this, we can define the Frobenius twist (—)) : P? — Pfd. Indeed given a
strict polynomial functor M € P9, as in the quantum case we get maps

My M(K™) = M(K") @ O(M,m)-

Then set M) (n) = M(k™), and on morphisms define

M?’Y’L,?L 1QFr
— s

(MO e M (k™) M (k™) @ O(Mp,m) —> M (k™) @ Oy (My ).

By Proposition 3.3 and the commutativity of the above two diagrams, M) is a
quantum polynomial functor. The definition of (=)™ : P4 — P.* on natural trans-
formations is straightforward.

4 Finite generation and the representability theo-
rem

Definition 4.1. The quantum polynomial functors M € Pg is m-generated if for

any n the map
My, . Sq(m,n;d) @ M(m) — M(n)

is surjective. M is finitely generated if it is m-generated for some m.

Let i = {i1,...,i,} be a set of positive integers. Define a homomorphism

052 Of( M) — k

10



by xx¢ — 1 if k = ¢ and k € i, and otherwise xyy — 0. By restriction we get a linear
map
¢ : O Mpm) — k.

In other words, ¢Z € Sy(m,n,d). For M € 7)211 set

Mopni = My, (¢8) € Hom(M (m), M(n)).

Lemma 4.2. Let V be a vector space over k. We fix vectors vy,va,- - ,v, € V. For
any homogeneous polynomial of degree d, if d < n then

flor+va+-+wn) = > (=0 o),

iC{l,Q,"' 7”}1|1|Sd k€l
where |i| is the cardinality of the set i C {1,2,--- ,n}.
Proof. This is [FS, Lemma 2.8]. O

Lemma 4.3. If m > d then ¢?1,..4,m} € Sq(m,d) is an integral linear combination
of ¢ where |i| < d.

Proof. There is a homomorphism of algebras ¢ : O, (M,,) — k[t1,t2,- -+ ,ty] given
by zrr — ti; zke — 0 if k # £. Note that for any ¢, ¢; factors through the

homomorphism qgl cKk[t1,ta, -+, tm] — k, where

Gt = {1 ifkei

0 otherwise

i.e. we have the following commutative diagram:

O, (M) —2K[t1, -+, tm] - (4.0.10)

q
Pi -
lffn
k

Let &Z be the restriction of (51- to k4[ty,ta, -+ ,tm]. Observe that for any polynomial
f €Kty ta, -+ ,t,], we have

SUf) = F(3 e,

i€

where e; is the i-th basis in k™. Therefore the lemma follows from Lemma 4.2.
O

Lemma 4.4. Let i,j be sets of positive integers and consider qbz € S4(¢,m,d) and
¢;-l € Sy(m,n,d). Furthermore consider gmj € Sq(¢,n,d). Then we have
¢§ o ¢§ = gml"

Therefore M, n.j © M mi = My n.in;-

11



Proof. 1t suffices to show that (¢; ® ¢i) 0 Ay ¢ = ¢iny, and for this it suffices to
show that both sides of the equation agree on x4, € O (M ¢):

(630 62)(Dnmo(a) = (650 6 (D Tap @ 1) (4.0.11)
= 6i(wap) i) (4.0.12)
p=1

Since @;(Tap)di(zpp) = 1 if and only if a = b =p and a € i N j we have that

Z ¢Z(xap)¢i(pr) = %ml‘(ﬂtab).

p=1
The second statement of the lemma follows immediately. O
Proposition 4.5. M € Pg is m-generated for any m > d.

Proof. We need to show that M, ,, : Sq(m,n,d)® M(m) — M(n) given by ¢ @ v
My, 0 (¢)(v) is surjective for any n.

Suppose m > n and choose ¢ = {1,...,n}. By Lemma 4.4 M,, ,; = My, 5 ; ©
My, m.i. Now note that ¢¢ € Sy(n,d) is the unit element, and hence My, 1, ; = 1ps(n).-
Therefore M., , ; is surjective which implies that M), , is as well.

Now suppose m < n. By Lemma 4.3 the identity operator 1ps(,) is an integral
linear combination of M,, ., ;, where |i] < d. Therefore we have, by Lemma 4.4,

1M(n) = Z ag'Mn,n,i

li|<d

= E aiMm i © My m,is

li|<d

where a; € Z and only finitely many are nonzero. Given v € M(n) let v; = M, m i (v).
Then we have that v =} ;< ; @i M n.i(vi), ie.

len,n Z ai¢g QUi | =v
lil<d
proving that M, , is surjective. O

Proposition 4.6. For any n > 0, the divided power I‘g’” represents the evaluation
functor Pg — V given by M — M (n), i.e. there exists a canonical isomorphism

d
Hompa (g™, M) ~ M(n).
Hence Fg’” 18 a projective object in P;l,
Proof. We first show that given M € Pgl there are natural isomorphisms

Homp (T3, M) = M (n)

12



for any n. Consider the map ¢ : M(n) — Hompa (Tdm, M) given by w — ¢y, where

Ow ngn — M is the natural transformation
Gw(—) =evy oM, _.

In other words, ¢,,(m) : I‘g’”(m) — M(m) is the map

z € Homyy, (V24 V.EN) s M, () (w) € M(m).

Conversely, consider the map 1 : Hompg (T M) — M(n) defined as follows:

f € Hompg (Tg™, M) ~ f(n) : Endy, (V;27) — M(n)

2

~ f(n)(1n) € M(n)

where 1,, € Endy, (V,#4) is the identity operator.

Unpackaging these definitions it is easy to see that ¢ is inverse to 1, proving that
I‘gm represents the evaluation functor. It follows that I‘gm is projective since the
evaluation functor ev, : P§ =V, M — M(n) is exact. O

For an algebra A we let Mod(A) denote the category of finitely generated left
A-modules.

Theorem 4.7. If n > d then FZ’" is a projective generator of 735. Hence the
evaluation functor ’Pg — Mod(S,(n,d)) is an equivalence of categories.

Proof. By Proposition 4.6 we have that Fg’" is projective. To see that it’s a generator
when n > d it suffices to show that M), _ : I'é"™ @ M(n) — M is surjective. This
follows immediately from Proposition 4.5, which gives us that for every m the map
M;, ,,, is surjective. Hence the equivalence follows.

O

We now state a seriues of corollaries of Theorem 4.7. The first is well-known (cf.
[BDK, p.26]) and it is an immediate consequence.

Corollary 4.8. Let d > 0 be an integer. For any two integers m,n > d the q-Schur
algebras Sy(n,d) and Sq(m,d) are Morita equivalence.

To state another corollary, we first note that the functor Fg’" has a natural
decomposition

1%

Fg,n @ I‘Zl R ® I‘g". (4.0.13)

i+ tdn=d
Indeed, by Frobenius reciprocity we have
Ff]ll (m) Q- ® an (m) = Hode1 R QHad,, (X+ @@ Xy Vnéf?d>

= Homﬂd(lndzjl®'“®ﬂdn X+ ® - @ x+), Vir )

and so (4.0.13) follows from the isomorphism which is due to Dipper-James (cf. [T,
Proposition 11.5])

vel= P Ind%l@,,,@mn (Xs ® - ®X4) (4.0.14)
di+-+d,=d

By Proposition 2.4, (4.0.14) induces a partition of the unit of S;(n, d) into orthog-
onal idempotents: 1 = > 15 where the sum ranges over all d= (di, ..., dy) such that
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di +---+d, =d. For M € Mod(S;(n,d)) there is a corresponding decomposition

into weight spaces
M =DM,
where M;=1,M.
Corollary 4.9. Let M € Pj, n >0 and dy,...,d, > 0 such that dy + -+ d, = d.

~

Then under the isomorphism Homp, (I‘g’”, M) = M(n) we have

Homp, (I @ -+ @ T, M) = M(n)a,.....d,-
Proof. There is a canonical element (g, . 4,) € Fgl e Ffj” (n) corresponding
to the inclusion

H
Ind?'l:1®"'®7'[d" (X+ R ® X+) — Vn®d

under (4.0.14). The map Homp, (I'"* @ --- @ 4" M) — M(n)q,.....q, is given by
f = f(n)(va.,..d,))- This map lands in the (dy,...,d,) weight space since f is
a natural transformation. More precisely, under our identifications we have the

following commutative diagram:

f(n)
Homyy, (Indjgs o gp, (x+ @+ @ x4), V) M(n)

llm,...,dn) llml,-..,dn)

f(n)
Homﬂd(lndzzl R QHa, (XJr X X+)> Vn®d) M(n)

which implies that f(n)(c,,....a,)) = L(a,,....a,)f () (t(ay,....d,))- Consider the dia-
gram

Hompq (Fgl K- an7M) - M(n)dl«,~~>dn

| |

Homp, (T4, M) —————— M(n)

This diagram clearly commutes. Since both vertical maps are inclusions and the
bottom map is an isomorphism by Theorem 4.7, the top map is an isomorphism. [

The final corollary recovers a basic result relating the Hecke algebra and the
g-Schur algebra.

Corollary 4.10. The map Hq — Homp, (®4,@%) is an isomorphism. Hence for
any n > d, the map Hq — Homg, (. 0)(V,24, V,E) is an isomorphism.

Proof. By Corollary 4.9, we have Homp, (®¢, ®?) ~ (V?*); ;. The space (V;*%);
has of basis €;, ® €;, ® - - - ® €;,, where i1,49,--- ,ig are all distinct. Under this iso-
morphism, the map Hg — (Vd®d)1)m71 is given by Ty > €y(1) @ €y(2) @+ @ ew(a),
for any w € G&4. It is easy to see that this is a bijection.

The second statement now follows from the first one using Theorem 4.7. O
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5 Braiding on P,

In this section we will use Theorem 4.7 to define a braiding on the category of
quantum polynomial functors, thus showing that P, is a braided monoidal category.
Observe first that if M € Pg then, by Proposition 3.3, the map M,/L’n induces on
M (n) the structure of an O%(M,,)-comodule:
M), : M(n) = M(n) ® O3(M,).

n,n

We will use the Sweedler notation to denote this coaction:
vEMn) =Y vy@v € M(n)® OL(M,)

For a coalgebra C' we let CoMod(C') be the category of finitely generated right C-
comodules. Now suppose we are given V'€ CoMod(O,(m)q) and W € CoMod(O,4(m)e).
Then VW € CoMod(O4(m)q+e) and there is a well-known morphism induced from
the R-matrix

Ryw : VoW =WV,

which is an isomorphism of (’)g“‘e(Mn)-comodules. We recall the construction of
Ry w following Takeuchi [T, §12].
Define o : Op (M) x OL(M,) — k by

1 ifi<j
1 ifi>j

and in addition o(z;j, ;) = ¢ — ¢ ' if i < j and o(z;;, k) = 0 otherwise.

We extend o to a braiding on O (M,) [T, Proposition 12.9]. This means that it
is an invertible bilinear form on O,(M,,) such that for all z,y,z € O, (M,,):

o(xy, z) = Za(x, z1)o(y, 22)
o(z,yz) = Za(xl, z)o(x2,y)
(w1, y1)T2ys = Y 11210(22, 42)
Here we again we use the Sweedler notation for the coproduct A : O,(M,) —
0,(M,) ® O, (M,) so A(xr) =3 21 ® ra. The R-matrix is given by
Ryw(v®w) = Z o (v1, w1 )wy @ vo.

Note that Ry,

ns

v, = Ry, where R, is defined in Section 2.2.

Lemma 5.1. Let d,e > 0. Then there exists K € Hqye such that for all m > 1

Ry

m?

ve = Pd+e,m(K).
In particular k = Ty, . where wy e € Gqie 1s given by

. ite ifl<i<d
w(l)_{i—d ifd<i
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Proof. For U € CoMod(O4(m)q),V € CoMod(O4(m).) and W € CoMod(Oy(m)y)
the following two diagrams commute:

R
UoVeoWw orew VoW eU (5.0.15)
m /‘\@/Ru,:v
VoUeWw
and
R
UoVeoWw reny WeUeV (5.0.16)
m /{@1‘;
UeWeV

These are well-known properties of the R-matrix, and follow from the fact that o is
a braiding.

We will use these diagrams to prove the lemma by induction on d+e. If d+e = 2
then the statement is tautological. If d+ e > 2 then suppose first e > 2. By (5.0.15)
and the inductive hypothesis we have:

Rysa yoe = Ryoa yoc-igy, = (lyee1 @ Rysa ;) o (Ryed yoc1 @ Ly, )
= (Iyee ® pat1,m(Twa,) © (Pate—1,m(Tw, . 1) ® 1v,)
= patem(Tw,) © Pate,m(Tw,)
= pd+e,m(Tw1Twz)

where wi,wy € G4, are given by

) fl1<i<e-—1
wy (i) = 1+1 ife<i<e+d-—1
e fi=e+d
and
e—1+1 f1<i<d
weo(i) = i—d Hfd+1<i<e+d-1
e+d ifi=e+d

Since wiwe = wq e and £(w1)+£(wa) = £(wq,.) (where £ is the usual length function),
we have that Ty, Ty, = Ty, . and the result follows.

In the case that e < 2 then d > 2 and a similar induction applies, where one uses
(5.0.16) instead of (5.0.15) . O

Now suppose M € Pg and N € Py. Define
RM’NZM(X)N—)N@M

by RN (m) = Bas(m),N(m)-

Theorem 5.2. R induces a braiding on the category P,. In other words, let M € Pg
and N € Pg. Then Ry n € Homp (M ® N,N @ M) and moreover Ry N is an
isomorphism.

Proof. We only need to show that Ry, n € Homp, (M ® N, N ® M); the fact that
Ry, N is an isomorphism then follows immediately.

16



We first prove Ry, € Homp, (M ® N, N ® M) in the case where M = ®d and
N = ®°. In that case we need to show that for any z € Homy,,,  (V,24T¢, V24te)
the diagram

Qe (x)
ng ® Vﬂ(?e N
Ryga yge J{

VEe o Ve

Vel @ yee (5.0.17)

lepd,v,;@e

d+e z

commutes. Cleary we have that @""(x) € Homy,,, (V,24te, V,E4te) ie. for all
T E Hd+e

®d+e (z) © pate,m(T) = paten(T) 0 ®d+e ().

In particular this is true for 7 = &, which, by Lemma 5.1, is precisely the commuta-
tivity of (5.0.17).

Now, by Theorem 4.7, any M € Pg is a subquotient of some copies of ®d.
Therefore to prove the theorem in general it suffices to prove it for M = M'/M"
and N = N’/N", where M" ¢ M' ¢ @ and N’ ¢ N' ¢ ®°. In other
words, we need to show that for M and N as in the previous sentence and any
z € Homy,, , (V,29F¢ V,®4+¢) the diagram

M(m) T N(m) 22D prn) T N(n)
Rar(m), N(m) Ry(ny,N(n)
N(m) @ M(m) —2M _ N(n) @ M(n)

the diagram commutes. This is a consequence of the commutativity of (5.0.17) and
the fact that the R-matrix is compatible with restriction. In other words, given
V € CoMod(O,4(m)q) and W € CoMod(O4(m).) and sub-comodules V' C V and
W' C W then Ry wr = Rvw|view:. -

Let Q(n,d) be the set of tuples I = (i1,42, - ,i4), where 1 < i < n for any
1 <k <d. We call I increasing if i1 < iy <--- <14 and [ is strictly increasing
if 41 <ig < --- < ig. We denote by e; the element ¢;, ®e;, ® - R e;, € Vn®d. We
now introduce a pairing (,) on V,®¢, for any I,J € Q(n,d),
(er,er) =101,
where d;; is the Kronecker symbol.

Lemma 5.3. Given any w € G4, I,J € Q(n,d), we have
(6[ Ty, 6]) = (6[, €y - Tw_l)‘

Proof. It can be reduced to the case d = 2. In this case, it suffices to check that for
any i, j, k, £,

(Rn(e; @ej),er @er) = (e; @ ej, Rylex Qey)).
This is a straightforward computation from the definition of the R-matrix R,,. O

Lemma 5.4. There exists a canonical isomorphism. (®d)ﬁ ~ ®d.

Proof. It easily follow from the definition of duality functor f. O
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By this lemma, we can identify % and (®%)?.

Proposition 5.5. Given any w € &4, we have

(T =Ty 1 R = ®°.
Proof. It follows from Lemma 5.3 and Lemma 5.4. O

The following proposition is about the compatibility between the duality functor
g and the braiding R.

Proposition 5.6. Given any two quantum polynomial functors M, N € P,, we have

(Ru.n)* = Ry e

Proof. It suffices to check the following diagram commutes,

#
(N @ M) (ar o N (5.0.18)

o I
Nt @ M? Mﬁ Mt @ Nt
where the horizontal maps are the canonical isomorphisms in Lemma 3.2. By the
functoriality of R, as the argument in Theorem 5.2 we can reduce to the case M = ®d
and N = ®°. Under the identification (®")* ~ ®" for any n, it is enough for us
to check (Rga ge)* = Rge ga. By Theorem 5.2 and Proposition 5.5, we only need to

show that w;i = We,q4, which is clearly true. O

6 Quantum Schur and Weyl Functors

In this section we assume ¢?> # —1. In this section we define quantum Schur and
Weyl functors. As in the setting of classical strict polynomial functors, these families
of functors play a fundamental role, and we use them here to construct the simple
objects in P, (up to isomorphism). In several key calculations in this section we
appeal to theorems in [HH].

6.1 Quantum symmetric and exterior powers

We call I € Q(n,d) strict if for any 1 < k # £ < d, ix, # ip. Let QT (n,d) be
the set of strictly increasing tuples of integers in (n,d). We denote by zr; the
monomials ;, j, Tiyjp - * - Tigjy 10 Of(Mpm) where I = (iq,i2, -+ ,iq) € Q(n,d) and
J = (j1,j2, s ,jd) S Q(m,d)

Recall that we defined /\Z(n) = V% ®4, x_. Note that /\Z(n) is isomorphic to
the d*® graded component of

Ng(n) = T(V,)/1(Rn)

where T'(V;,) is the tensor algebra of V;, and I(R,,) is the two-sided ideal of T'(V},),
generated in degree two by R, (v ®@ w) + ¢ tw ® v, for v,w € V,,.

As usual for exterior algebras, we use A to denote the product in the algebra
/\; (n). For any I € Q(n,d) we denote by €7 the image of ey in /\Z(n)

éjzeilAei2A~--Aeid.
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Moreover we have the following basic calculus of g-wedge products:

0 ifi=j
e Nej = 1 e
—q ej Ne; ifi >3
Lemma 6.1. Let I = (iy,i2, - ,iq) € Q(n,d).
1. If there exists 1 < k # £ < d such that iy, = iy then e;; Nej, N---Ne;, =0.
2. If I is strictly increasing o € &4, then

Ciy N iy N Neiny = (=0 ) Pei, Neiy Ao Ny,
where £(0) is the length of o.

Proof. Both parts follow easily from the definition of the ¢ wedge products, cf.
Equations (2.3),(2.4) in [HH]. O

A consequence of above lemma is that /\Z(n) has a basis e;; A---Ae;, for 1 <

i1 < -+ <iq <n. The g-antisymmetrization map ag(n) : /\Z(n) — V.24 is given by

[ VAN Ciy Z (_qil)é(w)eiw(l) Q& eiw(d)’
weSy

forl1 <ig < - <ig<n.
We define the following elements of Hg:

za= Y ¢™T,

weSy

ya= Y (—a )T,

weSq

In the current setting, it is convenient for us to denote the right action of Hg4 on V%4
by a dot.

Lemma 6.2. Given any tuple I = (i1,i2, -+ ,iq) € Q(n,d) we have
caln)(es A< Aei) = er - a

Proof. Suppose first that [ is strict. Let Iy be the strictly increasing tuple such that
I = Iy - o for a unique permutation ¢ € &4. The following computation proves the
lemma in this case:

aq(n)(er) = (—¢ )" al(ey,)

= (=g Y (a7 Werpu
WES,

(—¢ )" ey, - ya

€1y ° (TH *Yd

=€r-Yd

(6.1.19)

where the first equality follows from Lemma 6.1 (2), the third and the last equali-
ties holds because I is strictly increasing and the fourth equality follows from the
following fact:

Ty ya = (—g )"y,
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Now suppose that I is not strict. Then by Lemma 6.1 (1) it is enough to show
€1 Ya = 0. (6120)

Let I = (i1,i9, - ,iq). Assume that k is the maximal number such that i1, 4s, - , ik
are all distinct but ix1 is equal to one of 41,49, - - - ,ix. Let o be the (unique) element
in &, C &g, such that (iy-1(1),i5-1(2)-"** ,io-1(k)) are strictly increasing. Then
er =er.o—11, and

€r - Yd = 61'0*1<T0yd) = (_q_l)z(a)ej.a—l “Yd.-

Hence to show the formula (6.1.20), we can always assume that i1 < io < «-- < i
and ix41 = iq, where 1 < a < k. Take the element S =T,41 - Tx_1Tk € Hq. Then
er =ey - S, Where I/ = (7:177’.27 T 7ia,ik+17ia+1via+27 e ;ik;ik+2aik+37 e 7id) and
then

1)k7

er-yqa=er(Sya) = (—q¢ )" “er - ya

Note that e;T, = gey:. On the other hand
er(Ta-ya) = (—q ") (er - ya)-
By the assumption that ¢ # —1, it forces ey - y4 = 0, and hence e - yq = 0. O
Recall also that we define the quantum symmetric power
Sd(n) = V24 @4, Cq,
and the quantum divided power functor

Fg(n) = Homy, (X+, Vn®d).

Let pg be the projection map pg : ®d — /\Z and let g4 be the projection mor-

phism gq : ®d — Sg. Let 44 : Fg — ®d be the natural inclusion map. It is clear
that pg, q4, 14 are morphisms of quantum polynomial functors.

Proposition 6.3. The g-antisymmetrization oq : /\g — ®d is a morphism of
quantum polynomial functors.

Proof. We work with the characterization of quantum polynomial functors given
by Proposition 3.3. We need to check that, for any n,m, the following diagram
commutes:

Ng(m) ——= N\3(n) @ O (M) - (6.1.21)
lad(n) lad(n)(@l
V@d V2d @ O3 (Mp,m)

The quantum polynomial functor ®d gives rise to the bottom map, which for
any I € Q(m,d), is given by

er — Z egRxgy-
JeQ(n,d)

It also induces the quantum polynomial functor structure on /\d, and so for any m,n
and for any I € Q(n,d) the top map is given by

er — Z eg gy,
JeQ(n,d)
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where é; € /\Z(m) and €5 € /\Z(n)
We start with an element e; € /\Z(m)7 where [ is strictly increasing. In the

diagram (6.1.21), if we go up-horizontal and then downward, then by Lemma 6.2, &;
is mapped to

Yo oerva®za= Y, > (=g ) ™e; Ty

JeQ(n,d) JeQ(n,d) weSy

S e YIS e Ty o), (6.1.22)

wES JEQ(n,d)

Z (=g 1)) Z eJ ® T y(1.w))

weSy JeQ(n,d)

where the last equality holds since Ty, is an endomorphism of the quantum polyno-
mial functor ®d, and also e - Ty = €J.40-
If we go downward and then down-horizontal, é; is exactly mapped to

Z(*(fl)e(w)( Z €] ® T (1))

weGy JeQ(n,d)
showing the commutativity of the diagram (6.1.21). O

Proposition 6.4. There exist canonical isomorphisms
d d

Under these identifications, we have the following equalities:

#

(pa)* = g,  (qa)* = ia.

Proof. We first consider /\Z. Let {(€1)"}req(n,ay++ be the dual basis of {€1} cq(n,a)++
in (/\Z(n))*, where €7 = e, ANej, A2 Ne;, € /\Z(n) for I = (i1,42,- - ,in). It nat-

urally gives a set of elements in (V,29)* via the inclusion map (/\Z(n))* — (V@)=
By Lemma 6.1, the element (&7)* can be identified with

er-ya= Y, (=) ™er.

weSy
It exactly coincides with the of image of €; after the g-antisymmetrization map
ag(n). Tt implies that (/\z)ji ~ /\Z under the correspondences (€r)* — &y, moreover
ad = (pd)ﬁ-
We now consider the projection map ¢q : ®d — S,‘Ji. Note that the ¢-symmetric
power S¢(n) is the quotient
y@d
n
d—1 J
> i1 Im(Ti —q)
and the g-divided power Fg(n) is the subspace of V24,

d—1
ﬂ Ker(T; — q).
i=1

By Lemma 5.3, the operator T; — ¢ : V¢ — V® is self-adjoint, with respect to the
bilinear form (,). Therefore by Lemma 2.3, we have (Sg)Tj o~ Fg and (gq)f =iq. O
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6.2 Definition and properties of Quantum Schur and Weyl
functors

Let A = (A1, ..., As) be a partition. By convention our partitions have no zero parts,
S0 A1 > -+ > Ay > 0. The size of A is |A| := A1 + -+ + A; and the length of A is

£(N\) := s. We depict partitions using diagrams, e.g. (3,2) = HEP Let )\ denote
the conjugate partition.

The canonical tableau of shape A is the tableau with entries 1, ..., |A| in sequence
along the rows. For example

1[2]3]
4[5

is the canonical tableau of shape (3,2). Let o) € &4 be given by the column reading
word of the canonical tableau. For instance, if A = (3,2) then o) = 14253 (in one-line
notation). Define the following quantum polynomial functors of degree d:

N = oo Ay
Sy =91® -5
ry=ry ool
and the following morphisms:

ay =y, Qay, - ® ay,
=1y iy, Q- @iy,

DA =Dx; @Dx, @ - Q P,
9 =9 Qgr, @B Qh,-

We define the quantum Schur functor S\ as the image of the composition of the
following morphiphs

Toy

’

A 2> @1 —

Define the quantum Weyl functor W), as the image of the composition of the
following morphisms:

A/
Sy

; T /
ix d TN d Px A
Theorem 6.5. For any partition X\, we have a canonical isomorphism
W)\/ ~ (SA)u.

Proof. We first note that oy = () ~!. Then the theorem follows from Proposition
5.5, 6.4. 0

Suppose that £(A) < n. Then Sy(n) is the Schur module and W) (n) is the Weyl
module of S,(n,d) (cf. Definition 6.7, Theorem 6.19, and Definition 6.21 [HH]).
Let Ly be the socle of the functor Sy/. Recall that this is the maximal semisimple
subfunctor of Sy.

Proposition 6.6. The functors Ly, where A ranges over all partitions of d, form a
complete set of representatives for the isomorphism classes of irreducible objects in

Pi.
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Proof. By Theorem 4.7, P 22 Mod(S,(n, d)) for any n > d. To prove the statement
it suffices to show that {Lx(n)} form a complete set of representatives for irreducible
Sq(n, d)-modules. This follows from Lemma 8.3 and Proposition 8.4 in [HH]. O

7 Invariant theory of GL,(n)

In this section, we assume ¢ is generic. Our aim is to show that the theory of quantum
polynomial functors affords a streamlined derivation of the invariant theory of the
quantum group GL4(n).

Following Howe’s approach to classical invariant theory (cf.[Ho]), we first prove a
quantum analog of (GL(m), GL(n)) duality. In the classical case the proof is based
on a geometric argument that the matrix space is spherical. While this geometric
argument fails in the quantum case, we show that (GL,(m),GL,(n)) duality is a
direct consequence of the Theorem 4.7. We then show that, as in the classical case,
quantum analogs of the first fundamental theorem and Schur-Weyl duality follow
from (GL4(m), GLy(n)) duality.

Let O4(GL(n)) be the coordinate ring of the quantum group GL,(n). Recall
that, by definition, this is the localization of O,(M,) by the quantum determinant,

detq = Z (_qil)ag)xla(l) * Tno(n)-

oS,

04(GL(n)) is a Hopf algebra, and we denote its antipode by ¢. For details and
precise definitions see e.g. Chapter 5 of [PW].

By definition an action of GL4(n) on V is a right coaction of O,(GL(n)) on V.
A representation of GL,(n) is a GL4(n)-module. A module over the g-Schur algebra
Sq(n,d) is naturally a representation of Oz(GL(n)). By analogy with the classi-
cal setting, any representation of Oy(GL(n)) coming from Sy(n,d) is a polynomial
representation of degree d.

By Theorem 6.6 Ly(n) is an irreducible representation GL,(n), and any irre-
ducible representation of GL4(n) is isomorphic to Ly(n) for a unique A such that
L(A) < n.

The comultiplication A : Og(My,) = Of(Mym) ® Og(Myy, ) induces actions of
the quantum general linear group by left and right multiplication on quantum m x n
matrices:

1y, 2 Og(My,p) — Og(GL(m)) @ O (Myn,n)

i1 2 Oy( My ) = Oy(My ) © Oy (GL(n))
These maps commute and preserve degree. We define iy, := Po(t®1)ou); , where P is
the flip map. Then using (uz ®1) o pr, we regard OF (M n) as a GLg(m) x GLg(n)-
module.

Given a representation V' of GL,(n) let V* be the contragredient represenation,
i.e. twist the left coaction of Oy(GL(n)) on the dual space V* by the antipode ¢.

Theorem 7.1 ((GL4(m), GLy(n)) duality). As a GL,(m)x GLy(n)-module we have
a multiplicity-free decomposition:

Og(Mm,n) = @ L)\(m)* ® Lk(n)v
A
where X runs over all partitions of d such that £(A\) < min(m,n).
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Proof. By Theorem 4.7 the category 775 is equivalent to the category Mod(S,(n,d)).
Hence the category ’P(‘Ii is semi-simple, and the simple objects are, up to equivalence,

~

the functors Ly where A ranges over partitions of d. (Since ¢ is generic L) 2
Wy = Sy.) By Proposition 4.6 for any m > 0 there exists a natural isomorphism
Homp, (I'¢™, Ly) ~ Lx(m). Moreover, Ly(m) = 0 if o > £(X). Hence we have the
following decomposition

rdm o @L,\ ® Hompg (Ly, rdm)
A

= (P Lr @ Hompy (T4, L)*
A

=P L@ La(m),
A

where the second isomorphism follows from the natural pairing
Hompg (L, ™) x Hompe (Tg™, L) = Hompa (L, L) =~ k.
Evaluating both sides at n yields

Homyy, (V54 V,2%) = €D La(n) ® La(m)*. (7.0.23)
A
This proves the theorem, since

OH (M) = Sy(n,m;d)* = (Homyy, (V24 VEY)* ~ @D La(m)* @ La(n),.
A

O

In analogy with the classical setting, (GL,(m), GL,(n)) duality is equivalent to
quantum FFT and Jimbo-Schur-Weyl duality. We briefly mention these connections.

Given three numbers ¢, m,n define a representation of GL,(m) on Og(M,, .m) ®
Oy(Mp, ) as follows:

Oy (M) ® Og(Mp 0) Lnohy Oy(Mn,m) @ Og(GL(m)) @ Of(Mm,¢) @ Og(GL(m))

|

Og(Mp,m) @ Og(Mp 0) @ Og(GL(m))

In the above diagram, the downward map is given by multiplication in O,(GL(m)).
Theorem 7.2 (Quantum FFT). For any £,m,n the image of the comultiplication

A Oq(MnJ) — Oq(Mmm) ® Oq(Mm,g)

lies in the subspace of GL4(m)-invariants, and, moreover, gives rise to a surjective
map
Oy(Mp o) = (Of(Myp,m) ® Oq(Mm7€))GLq(m).

Proof. First we note that for any representation V' of GL,(m), by complete reducibil-
ity, we have (V*)GLa(m) ~ (VGLa(m))*  Then taking duals, by Proposition 2.4, it
suffices to show that the following map is injective:

(Homyy, (V2 V.2 @ Homyy, (V,E, V,E))FLalm) s Homy,, (VE?, V,EY), (7.0.24)
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where GL,(m) acts diagonally on the left hand side. This follows immediately from
(GLy(m),GL4(n)) duality, since by Equation 7.0.23 the above map is precisely the

inclusion
B L) oLin)— € Li0)* @ Li(n).
L(N)<Lm,n L(N)<tln

O

Finally, consider tensor space V,2%. As a representation of GL,(m) we have a
decomposition

V2t = @B La(m) ® My (7.0.25)
A

where the A runs over all partitions of d, and My = Homg, () (L (m), V,24). Notice
that by the construciton of Ly, we have that Ly(m) = 0 if £(A\) > m. Hence the
sum above is over all partitions A of d such that ¢(A\) < m. Note also that M, are
naturally Hs-modules.

Theorem 7.3 (Jimbo-Schur-Weyl duality). Equation (7.0.25) is a multiplicity-free
decomposition of V.24 as a GLy(m) x Hg-module. In particular, the modules My are
irreducible pairwise inequivalent Hq-modules.

Proof. We will deduce this result from the quantum FFT. Indeed, applying Theorem
(7.2) to the case n = m = ¢, it follows that for any partition A of d such that £(\) < m,
the following map is injective:

@D Homyy, (M, M,,) @ Homyy,, (M,,, My) — Homyy, (My, My),
N

where p runs over all partition of d with () < m. This implies that M) is irreducible
as Hq-module and for any A # p, My and M, are non-isomorphic, proving the
result. O

Remark 7.4.

1. One can easily show that Jimbo-Schur-Weyl duality implies (GL,(m), GL,(n)
duality using Proposition 2.4. This completes the chain of equivalences, and
hence the three basic theorems of quantum invariant theory ((GL,(m), GL4(n))
duality, the quantum FFT, and Jimbo-Schur-Weyl duality) are all equivalent,
as in the classical case done by Howe[Ho].

2. The approach taken here uses only basic facts about quantum polynomial func-
tors which have analogs in other settings where a theory of strict polynomial
functors, namely the classical and super cases [FS, Ax]. Therefore this ap-
proach can be used to give a new and uniform development for the classical,
quantum and super invariant theories of the general linear group.
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