
GAUSS-MARKOV PROCESSES ON HILBERT SPACES
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Abstract. K. Itô characterised in [13] zero-mean stationary Gauss Markov-processes
evolving on a class of infinite-dimensional spaces. In this work we extend the work of
Itô in the case of Hilbert spaces: Gauss-Markov families that are time-homogenous are
identified as solutions to linear stochastic differential equations with singular coefficients.
Choosing an appropriate locally convex topology on the space of weakly sequentially
continuous functions we also characterize the transition semigroup, the generator and its
core thus providing an infinite-dimensional extension of the classical result of Courrège [3]
in the case of Gauss-Markov semigroups.
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1. Introduction

The aim of the paper is to derive several characterizations of Gauss-Markov processes
on infinite dimensional Hilbert spaces.

1991 Mathematics Subject Classification. 60G15, 60H15, 60J99.
Key words and phrases. Gauss–Markov process, Ornstein–Uhlenbeck process, Gaussian measure, bw-

topology, strict topology, generator.
The work of Ben Goldys was partially supported by the ARC Discovery Grant DP120101886. Part

of this work was prepared during his visit to the Institute of Mathematics of the Polish Academy of
Sciences. Ben Goldys gratefully acknowledges excellent woking conditions and stimulating atmosphere of
the Institute.

The work of Szymon Peszat and Jerzy Zabczyk was supported by Polish Ministry of Science and Higher
Education Grant N N201 419039 “Stochastic Equations in Infinite Dimensional Spaces”.

1



2 BEN GOLDYS, SZYMON PESZAT, AND JERZY ZABCZYK

Let H be a real separable Hilbert space and let {µ(t, x) : x ∈ H, t > 0} be a family of
Gaussian transition kernels on H, that is

µ(t, x) = N (m(t, x), Q(t, x)) , (1.1)

and for every Borel set B ⊂ H,

µ(s+ t, x)(B) =

∫
H

µ(s, x)(dy)µ(t, y)(B), s, t > 0, x ∈ H. (1.2)

It is well known, see for example Theorem 7.4 in [14], that there exist a measurable space
(Ω,F ) endowed with a filtration (Ft), an H-valued and (Ft)-adapted stochastic process
Z defined on H, and a family of measures {Px : x ∈ H} on Ω such that for every x ∈ H
the process Z is Markov on the probability space (Ω,F , (Ft) ,Px), its transition kernel is
µ(t, x) and Px (Z(0) = x) = 1. Let us recall that the system (Ω,F , (Ft) , Z, {Px : x ∈ H})
is called a Markov family.

Our aim in this paper is to derive three explicit characterizations of such processes. Our
Theorem 2.2 describes the structure of the transition semigroup, Theorem 2.3 provides a
construction of a stochastic equation which the process satisfies and Theorem 2.4 charac-
terizes the generator of the transitions semigroup. In particular, we will prove that there
exist

• a C0-semigroup (L(t)) (with the generator A) acting on H,
• a vector bH = bH(λ) ∈ H defined for a certain λ > 0,
• a selfadjoint operator Q > 0 in H,

such that for any h ∈ dom (A?) the mean value and the covariance operator of Z(t, x)
satisfy for certain λ > 0,

〈m(t, x), h〉 = 〈L(t)x, h〉+

∫ t

0

〈L(s)bH , (λ− A?)h〉 ds, t > 0, x ∈ H,

and

〈Q(t, x)h, h〉 =

∫ t

0

∣∣Q1/2L?(s)h
∣∣2 ds, t > 0, x ∈ H.

Given this representation of m and Q we derive the second and the third characteriza-
tions. The second one is an extension of the work of K. Itô who obtained in [13] a similar
representation for a stationary Gauss-Markov process with zero mean. Since we do not as-
sume stationarity and we work with a Gauss-Markov family of processes instead of a single
process, the approach of [13] can not be adopted and a different argument is required to
derive representations for m(t, x) and Q(t, x). Given these representations, we prove that
there exists an (Ft)-adapted standard cylindrical Wiener process on H such that{

dZ = (AZ + bV ) dt+Q1/2dW,
Z(0) = x ∈ H, (1.3)

where bV = (λ − A)bH is uniquely defined in a larger Hilbert space V ⊃ H to which the
semigroup (L(t)) can be extended.
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Our third, purely analytic result is in the spirit of a theorem of Ph. Courrège [3]. Namely,
Courrège obtained a representation of generator for an arbitrary Markov semigroup, that
is strongly continuous in C0

(
Rd
)
1 and such that C∞c

(
Rd
)

is a core for its generator. It is
well known, see for example [5] that the space Cnorm

b (H) of bounded continuous functions
on H endowed with the supremum norm is not appropriate for the analysis of Markovian
semigroups on Hilbert spaces. In order to obtain a counterpart of the Courrège theorem we
need to introduce two locally convex topologies. The first one is the bounded weak topology
on H as defined in [10]. It was demonstrated in [17] and recently in [2] that, in fact, it is a
natural concept for Markovian transition semigroups and particularly useful for proving the
existence of an invariant measure. We will use the notation Hbw for the space H endowed
with the bounded weak topology, Cb (Hbw) for the space of bounded continuous functions
on Hbw, and Cnorm

b (Hbw) for the space Cb (Hbw) endowed with the norm topology. It was
shown in [17] that Cb (Hbw) is precisely the space of bounded functions that are weakly
sequentially continuous. Another locally convex topology, known as the strict topology,
should be introduced on the space Cb (Hbw). The strict topology can be defined as the
strongest topology on Cb (Hbw) which on norm bounded sets of Cnorm

b (Hbw) coincides with
the topology of uniform convergence on compacts of Hbw. For alternative definitions of this
topology and its applications to the theory of Markov semigroups, see [12] and references
therein.

Using the representations for m(t, x) and Q(t, x) we show that the transition semigroup
Ptφ(x) = Eφ(Z(t, x)) of the process Z is strongly continuous in Cstrict

b (Hbw). Moreover, we
will identify the core of the generator L in Cstrict

b (Hbw) and will derive an explicit formula
for the generator acting on functions from the core. In the case when A has bounded
inverse this formula takes a simple form

Lφ(x) =
1

2
Tr
(
QD2φ(x)

)
+ 〈x+ bH , A

?Dφ(x)〉 , x ∈ H.

For a general version of this formula see Section 2. These results provide a version of the
Courrège theorem for a Gauss-Markov semigroup in a Hilbert space.

Although the extension concerns a rather narrow class of transition semigroups we believe
that it does suggest how a general infinite dimensional version of the Courrège theorem
should look like.

If the state space H is one-dimensional then results of our paper are part of the mathe-
matical folklore. More generally, it is not very difficult to obtain our result if dim(H) <∞.
Let us note here that in finite dimensional spaces a similar problem is considered in the
framework of affine processes, see for example [9]. In the theory of affine models a much
wider class of processes is considered but the linearity of the function x 7→ m(t, x) and the
fact that x 7→ Q(t, x) is constant are assumed from the very beginning while we do derive
these properties as a result of a careful analysis.

1We use standard notations C0

(
Rd
)

for the space of continuous functions vanishing at infinity, and

C∞
c

(
Rd
)

for the space of infinitely differentiable functions with compact supports.
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In infinite dimensions the only result in this directions was obtained by Itô in [13]. Let us
also recall a related problem to characterise a family of measures that satisfy the so-called
skew convolution equation [19]. In that paper it is assumed again from the very beginning
that the expectation m(t, x) is linear in x and the covariance Q(t, x) constant in x.

Main results are formulated in Section 2. The proofs are presented in the following
sections. In the final Section 6 we discuss an application of our results to models with
boundary noise.

2. Main results

We give now precise formulation of our main theorems. The proofs will be postponed to
the following sections.

By definition we have

m(t, x) = ExZ(t), x ∈ H, t > 0,

and for any h, k ∈ H
〈Q(t, x)h, k〉 = Ex 〈Z(t)−m(t, x), h〉 〈Z(t)−m(t, x), k〉 , x ∈ H, t > 0.

Let φ : H → R be continuous and such that |φ(x)| 6 C (1 + |x|2). Then for any s, t > 0
the Markov property yields

Ey (φ (Z(t+ s))|Zs = x) = Exφ (Z(t)) Py − a.s., x, y ∈ H.
The following hypothesis is a standing assumption for the rest of the paper.

Hypothesis 2.1. (1) For every x ∈ H and h, k ∈ H the functions

t 7→ 〈m(t, x), h?〉 and t 7→ 〈Q(t, x)h?, k?〉
are continuous.
(2) For any t > 0 and h, k ∈ H the functions

x→ 〈m(t, x), h〉 and x→ 〈Q(t, x)h, k〉
are continuous on H.
(3) For any t > 0 and any x ∈ H,

ImQ(t, x) = H.

We note that for every x ∈ H, Hypothesis 2.1 yields

lim
t↓0
〈m(t, x), h〉 = 〈x, h〉 , h ∈ H,

and
lim
t↓0
〈Q(t, x)h, k〉 = 0, h, k ∈ H.

In order to formulate our results we need some preparations. Let L = (L(t)) be any C0-
semigroup on H and let A denote its generator. Then for λ > 0 big enough (λ − A) is
boundedly invertible on H and a new norm on H can be defined by the formula

|x|−1 =
∣∣(λ− A)−1 x

∣∣ , x ∈ H.
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The space V is defined as a completion of H with respect to the norm | · |−1. Clearly,
the topological space V does not depend on λ > 0. The semigroup (L(t)) extends to a
C0-semigroup (LV (t)) on V with the generator AV whose domain is equal to H.

We can formulate now our first main result. It gives a precise description of the functions
m and Q and will also play the crucial role in the proofs of Theorems 2.3 and 2.4 below.
The proof of Theorem 2.2 is postponed to Section 3.

Theorem 2.2. There exists a strongly continuous semigroup (L(t)) with the generator A
on H, a vector bH ∈ H and a selfadjoint operator Q > 0 in H such that:

(1) We have

dom (A?) ⊂ dom
(
Q1/2

)
. (2.1)

(2) For any x ∈ H,

m(t, x) = L(t)x+

∫ t

0

LV (s)bV ds, t > 0, (2.2)

where bV = AV bH ∈ V . In particular, for every h ∈ dom (A?),

〈m(t, x), h〉 = 〈L(t)x, h〉+

∫ t

0

〈L(s)bH , (λ− A?)h〉 ds, t > 0, x ∈ H. (2.3)

(3) The covariance operator Q(t) = Q(t, x) is independent of x ∈ H,

Im (L?(t)) ⊂ Dom
(
Q1/2

)
, t > 0,

and

Q(t) =

∫ t

0

(
Q1/2L?(s)

)? (
Q1/2L?(s)

)
ds. (2.4)

In particular,

〈Q(t)h, h〉 =

∫ t

0

∣∣Q1/2L?(s)h
∣∣2 ds, t > 0, x ∈ H, (2.5)

and ∫ T

0

∥∥Q1/2L?(t)
∥∥2
HS

dt <∞.

(4) For any x ∈ H, any h, k ∈ H and 0 6 s 6 t,

〈Q(s, t, x)h, k〉 = Ex〈Z(s)−m(s, x), h〉〈Z(t)−m(t, x), k〉 = 〈L(t− s)Q(s)h, k〉, (2.6)

hence the operator Q(s, t) = Q(s, t, x) is independent of x ∈ H.

Now we can formulate our second main result. Its proof is postponed to Section 4.

Theorem 2.3. Assume that Hypothesis 2.1 holds. Then there exist a strongly continuous
semigroup of operators (L(t)) on the space H with its associated space V , an element
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bV ∈ V , a selfadjoint and non-negative operator Q in H, and there exists a standard
cylindrical Wiener process W on H such that for every x ∈ H we have

Z(t) = L(t)x+

∫ t

0

LV (t− s)bV ds+

∫ t

0

L(t− s)Q1/2dW (s), t > 0, Px − a.s. (2.7)

Our final result is an extension of the Courrège theorem. We introduce first certain
convenient locally convex topologies.

In the terminology of [10] the bounded weak topology τ bw on H is the strongest locally
convex topology on H that coincides with the weak topology on every ball. We will denote
by Hbw the space H endowed with the topology τ bw. It has been proved in [17] that
φ ∈ Cb (Hbw) if and only if φ is bounded and weakly sequentially continuous on H.

Let τn and τ c denote, respectively, the norm topology and the topology of the uniform
convergence on compacts on the space Cb (Hbw). The strict topology τ s is defined as
the strongest locally convex topology on Cb (Hbw) that coincides with the topology τ c

on compacts. We will use a short notation Cb for the space Cb (Hbw) endowed with the
topology τ s.

We will say that φ ∈ FC∞b (A?) if there exist n > 1, f ∈ C∞b (Rn) and h1, . . . , hn ∈
dom (A?) such that

φ(x) = f (〈x, h1〉, . . . , 〈x, hn〉)
and

sup
x∈H
|〈x,A?Dφ(x)〉| <∞.

It can be easily shown that FC∞b (A?) is dense in Cstrict
b (Hbw). The proof of the result

below is postponed to Section 5.

Theorem 2.4. The semigroup (Pt) is strongly continuous in Cstrict
b (Hbw). Let L denote

the generator of the semigroup (Pt) in Cstrict
b (Hbw). Then the space FC∞b (A?) is a core

for L and for every φ ∈ FC∞b (A?)

Lφ(x) =
1

2
Tr
(
QD2φ(x)

)
+ 〈x,A?Dφ(x)〉+ 〈bH , (λ− A?)Dφ(x)〉 . (2.8)

Remark 2.5. Let us note that bH depends on λ but the formula (2.8) uniquely defines Lφ
since bV = (λ− A)bH does not depend on λ.

3. Proof of Theorem 2.2

We recall first a basic fact about the conditional Gaussian measures.

3.1. Conditional Gaussian measures. Let H1 and H2 be two real separable Hilbert
spaces and let (X, Y ) be a Gaussian vector defined on a probability space (Ω,F ,P) and
taking values in H1 ×H2. Let

mX = EX and mY = EY.
The covariance operator CX of X is determined by the equation

E 〈X −mX , h〉 〈X −mX , k〉 = 〈CXh, k〉 , h, k ∈ H1, (3.1)
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and a similar condition determines the covariance CY of Y . The covariance operator
CXY : H1 → H2 is defined by the condition

〈CXY h, k〉 = E 〈X −mX , h〉 〈Y −mY , k〉 , h ∈ H1, k ∈ H2,

and then C∗XY = CY X . For a linear closable operator G on H the closure of G will be
denoted by G. For a symmetric and compact operator K : H → H we will denote by K−1

its pseudo inverse. For the convenience of the reader we present the following known result
(see. e.g. [16]).

Theorem 3.1. The following holds.
(a) We have

Im (CY X) ⊂ Im
(
C

1/2
X

)
, (3.2)

and the operator K := C
−1/2
X CY X is of Hilbert–Schmidt type on H and K∗ = CXYC

−1/2
X .

(b) We have

E (Y |X) = mY +K∗C
−1/2
X (X −mX) , P− a.s.

(c) The conditional distribution of Y given X is Gaussian N
(
E (Y |X) , CY |X

)
, where

CY |X := CY −K∗K.

Moreover, the random variables K∗C
−1/2
X X and

(
Y −K∗C−1/2X X

)
are independent.

3.2. Proof of the theorem. Let Q(s, t, y) denote the covariance operator,

〈Q(s, t, y)h, k〉 = Ey 〈Z(s)−m(s, y), h〉 〈Z(t)−m(t, y), k〉 , h, k ∈ H.

By (3.2) for any y ∈ H and any 0 < s 6 t,

K(s, t, y) := Q−1/2(s, y)Q?(s, t, y)

is a well defined Hilbert–Schmidt operator on H. The proof is divided into a sequence of
lemmas.

Lemma 3.2. (1) For any s, t such that 0 6 s 6 t the operator-valued mappings x 7→
Q(s, t, x) and x 7→ K?(s, t, x)K(s, t, x) are constant in x ∈ H and for Q(t) = Q(t, t, 0) and
K(s, t) = K(s, t, 0) we have

Q(t− s) = Q(t)−K?(s, t)K(s, t), (3.3)

(2) For any s, t such that 0 6 s 6 t the operator L(t, s) := K?(s, t)Q−1/2(s) with the
domain Im

(
Q1/2(s)

)
has a unique extension to a bounded linear operator L(t, s) : H → H

and for any x, y ∈ H,

m(t− s, x) = m(t, y)− L(t, s)m(s, y) + L(t, s)x. (3.4)

Moreover,

m(t− s,m(s, y)) = m(t, y), 0 6 s 6 t, y ∈ H. (3.5)
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Proof. Invoking Theorem 3.1 we find that for any 0 < s < t and y ∈ H the following
equality holds Py-a.s.

Ey ((Z(t)− Ey(Z(t)|Z(s)))⊗ (Z(t)− Ey(Z(t)|Z(s)))|Z(s))

= Q(t, y)−K?(s, t, y)K(s, t, y).
(3.6)

Applying the Markov property to (3.6) we obtain for 0 < s < t,

Q(t− s, x) = Q(t, y)−K?(s, t, y)K(s, t, y) for µ(s, y)− a.e. x. (3.7)

For any h, k ∈ H,

〈Q(t− s, x)h, k〉 = 〈Q(t, y)h, k〉 − 〈K?(s, t, y)K(s, t, y)h, k〉 for µ(s, y)− a.e. x. (3.8)

Therefore the function x 7→ 〈Q(t− s, x)h, k〉 is constant on a dense set and by Hypothesis
2.1 is continuous on H. It follows that equality (3.8) holds for every x ∈ H. Finally, for
all h, k ∈ H the function y → 〈K?(s, t, y)K(s, t, y)h, k〉 is constant in y ∈ H.

Invoking Theorem 3.1 and the first part of the proof we obtain for 0 < s < t and y ∈ H,

Ey(Z(t)|Z(s)) = m(t, y) +K?(s, t, y)Q−1/2(s)(Z(s)−m(s, y)), Py − a.s. (3.9)

Then the Markov property yields for 0 < s < t,

m(t− s, x) = m(t, y) +K?(s, t, y)Q−1/2(s)(x−m(s, y)) for µ(s, y)− a.e. x, (3.10)

Putting x−m(s, y) = z ∈ H equation (3.10) takes the form

m(t− s, z +m(s, y)) = m(t, y) +K?(s, t, y)Q−1/2(s)z for νs − a.e. z,
where νs = N (0, Q(s)). The measurable linear operator K?(s, t, y)Q−1/2(s) is well defined
linear on a dense linear space Im

(
Q1/2(s)

)
. By Hypothesis 2.1 the operator

K?(s, t, y)Q−1/2(s)

has a unique extension to a bounded linear operator L(t, s, y) on H. Therefore, for any
u, v ∈ H and x = Q1/2(s)u and z = Q1/2(s)v we have

m(t− s, x)−m(t− s, z) = K?(s, t, y)(u− v).

Hence K?(t, s, y) is constant in y ∈ H and (3.4) easily follows. Putting in equation (3.4)
x = m(s, y) we obtain (3.5). �

Lemma 3.3. For 0 6 s 6 t we have L(t, s) = L(t− s) and (L(t)) is a strongly continuous
semigroup on H.

Proof. For any x, z ∈ H (3.4) yields

m(t− s, x)−m(t− s, z) = L(t, s)(x− z). (3.11)

Therefore,
L(t, s)x = m(t− s, x)−m(t− s, 0) (3.12)

depends on t− s only and there exists a function, still denoted by L, such that

L(t, s) = L(t− s), 0 6 s 6 t.
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Invoking (3.11) we obtain

L(s+ t)(x− y) = m(s+ t, x)−m(s+ t, y)

= m(s,m(t, x))−m(s,m(t, y)) = L(s)(m(t, x)−m(t, y))

= L(s)L(t)(x− y).

Finally,
L(s+ t)x = L(s)L(t)x, x ∈ H,

and
L(t)x = m(t, x)−m(t, 0). (3.13)

By Hypothesis 2.1,
lim
t↓0
〈L(t)x, h〉 = 〈x, h〉, h ∈ H.

Since t 7→ m(t, y) is weakly continuous for every y ∈ H, we obtain

sup
t6T
|L(t)y| 6 CT (y).

Therefore, the semigroup property of (L(t)) and a well known result (see e.g. [18]) imply

lim
t↓0

L(t)x = x x ∈ H,

which completes proof of the lemma. �

Lemma 3.4. There exist λ0, C > 0 such that

|m(t, 0)| 6 Ceλ0t, t > 0.

Proof. We have
m(t, x) = m(t, y)− L(t)y + L(t)x,

and therefore, the function
g(t) := m(t, y)− L(t)y

is independent of y ∈ H. Putting m(t, 0) = g(t) it is easy to check that

g(t+ s) = L(t)g(s) + g(t), s, t > 0. (3.14)

For any k > 1 equation (3.14) yields

g(k) =
k−1∑
i=0

L (i) g (1) .

Since (L(t)) is a C0-semigroup in H there exist finite M and λ0 such that

‖L(t)‖ 6Meλ0t, t > 0.

Therefore,

|g (k)| 6

(
k−1∑
i=0

‖L (i)‖

)
|g (1)| 6

(
k−1∑
i=0

Meλ0i

)
|g (1)|
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with

c :=
M

eλ0 − 1
|g(1)|.

Now, take any t = k + s where k > 0 and s ∈ [0, 1). Then

g(t) = g (k + s) = L (k) g(s) + g (k) ,

and hence
|g(t)| 6Meλ0k sup

t61
|g(s)|+ ceλ0k 6 Ceλ0t,

and the lemma follows. �

Lemma 3.5. There exists bH ∈ H such that for bV = (λ− A)bH ∈ V we have

m(t, 0) =

∫ t

0

LV (s)bV ds.

Proof. Let g(t) = m(t, 0). For λ > λ0 the function

ĝ(λ) =

∫ +∞

0

e−λtg(t)dt

is well defined by Lemma 3.4. Taking the Laplace transform of both sides of equation
(3.14) we obtain for λ > λ0,

eλs
∫ ∞
0

e−λ(t+s)g(t+ s)dt− ĝ(λ) = (λ− A)−1g(s),

hence

eλs
(
ĝ(λ)−

∫ s

0

e−λug(u)du

)
− ĝ(λ) = (λ− A)−1g(s).

Therefore,
eλs − 1

s
ĝ(λ)− eλs

s

∫ s

0

e−λug(u)du = (λ− A)−1
(
g(s)

s

)
.

The left-had-side of the above equality converges to

bH = λĝ(λ)

for s ↓ 0 and thereby the function g(s)
s

has a limit bV in V for s ↓ 0. More precisely,

bV = lim
s↓0

g(s)

s
= (λ− A) (λĝ(λ)) .

Invoking again equation (3.14) we obtain

lim
s↓0

g(s+ t)− g(t)

s
= lim

s↓0

(
LV (t)

g(s)

s

)
= LV (t)bV ,

where the convergence holds in V . Finally,

dg

dt
(t) = LV (t)bV ,

and the lemma easily follows. �
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Let us recall that
L(t− s) = K?(s, t)Q−1/2(s).

Hence Lemma 3.5 implies that (3.3) can be written in the form

Q(t+ s) = Q(t) + L(t)Q(s)L?(t), s, t > 0. (3.15)

It is easy to see that V ′ = Dom (A?) endowed with the graph norm and

V ′ ⊂ H ⊂ V.

If R : H → H is a trace class operator, such that R = R? > 0 then it gives rise to an
operator R̃ : V ′ → V which is again of trace class, and R̃ = R̃′ > 0. In the sequel we will
use the same notation R for both operators. For any bounded R : H → H let

L (t)R = L(t)RL?(t).

It may be checked that (L (t)) is a C0-semigroup on the space of trace-class operators on
H. Let (LV (t)) denote an extension of (L(t)) to V . Then L′V (t) can be identified with
the restriction of L?(t) to V ′. Let E denote a separable Banach space of symmetric trace
class operators R : V ′ → V endowed with the nuclear norm. The dual space E? can be
identified as the space of bounded operators from V to V ′ and

E?〈P,R〉E = Tr (RP ) ,

see pp. 34 and 65 of [8] for details. It is easy to see that the adjoint semigroup acting on
E? has the form

L ?(t)R = L′−1(t)RLV (t), R : V → V ′.

Lemma 3.6. There exist λ0 > 0 and C > 0 such that

‖Q(t)‖E 6 Ceλ0t, t > 0.

Proof. The proof is similar to the proof of Lemma 3.4 hence omitted. �

Lemma 3.7. There exists Q ∈ E such that

Q(t) =

∫ t

0

LV (s)QL′V ds.

Moreover, the restriction of Q to an unbounded operator acting in H (still denoted by Q)
is selfadjoint in H, and for every t > 0, L(t)Q1/2 has an extension to a Hilbert–Schmidt
operator on H and ∫ t

0

∥∥L(s)Q1/2
∥∥2
HS

ds <∞.

Proof. Using the same arguments as in the proof of Lemma 3.4 we can show that there
exist λ0, C > 0 such that

‖Q(t)‖E 6 Ceλ0t, t > 0.

Therefore, for any λ > λ0 the operator

Q̂(λ) =

∫ +∞

0

e−λtQ(t)dt,
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where the integral is the Bochner integral in E is a well defined element of E. Let A
denote the generator of the semigroup L on E. In view of (3.15) we can apply the same
arguments as in the proof of Lemma 3.5 to obtain

lim
s↓0

(
(λ−A )−1

1

s
Q(s)

)
= λQ̂(λ), (3.16)

where the convergence holds in E. Let us recall that for h, k ∈ V ′ a bounded operator
h⊗ k : V → V ′ is defined by the formula

(h⊗ k)x = 〈h, x〉k, x ∈ V.
For u, v ∈ Dom(A) ⊂ V we have u⊗ v : V ′ → V . Moreover, u⊗ u ∈ Dom(A ) and

A (u⊗ u) = u⊗ (Au) + (Au)⊗ u. (3.17)

Similarly, if u ∈ V ′ then u⊗ u : V → V ′, u⊗ u ∈ Dom (A ?) and

A ?(u⊗ u) = u⊗ (A?u) + (A?u)⊗ u. (3.18)

Therefore, for h ∈ H ⊂ V and u ∈ V ′,

E 〈h⊗ h,A ?(u⊗ u)〉E? =E 〈h⊗ h, u⊗ (A?u) + (A?u)⊗ u〉E?

=E 〈h⊗ h, u⊗ (A?u)〉E? +E 〈h⊗ h, (A?u)⊗ u〉E?

= 〈h, u〉 〈h,A?u〉+ 〈h,A?u〉 〈h, u〉
= 2 〈h, u〉 〈h,A?u〉
= 2 〈(h⊗ h)u,A?u〉 ,

where the first step follows from (3.18). Therefore, by the properties of the nuclear norm
on E we find that for any R ∈ E and u ∈ V ′,

E 〈R,A ?(u⊗ u)〉E? = 2 〈Ru,A?u〉 . (3.19)

Equation (3.16) yields

lim
s↓0

E

〈
(λ−A )−1

1

s
Q(s), P

〉
E?

=E

〈
λQ̂(λ), P

〉
E?

for any P ∈ E?. Taking P = (λ−A ?) (u⊗ u) with u ∈ Dom (A′V ) ⊂ V ′ and using (3.19)
we obtain

lim
s↓0

〈
1

s
Q(s)u, u

〉
= E

〈
λQ̂(λ), (λ−A ?) (u⊗ u)

〉
E?

= λ
〈
λQ̂(λ)u, u

〉
− 2λ

〈
Q̂(λ)u,A?u

〉
.

The bilinear form

B(u, v) = λ
〈
λQ̂(λ)u, v

〉
− λ

〈
Q̂(λ)u,A?v

〉
− λ

〈
Q̂(λ)v, A?u

〉
,

defined for u, v ∈ Dom (A′V ) is well defined and symmetric as a limit in s ↓ 0 of symmetric
bilinear forms. Moreover,

|B(u, v)| 6 c|u|V ′|v|V ′ .
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Therefore, there exists Q : V ′ → V such that

V

〈
lim
s↓0

1

s
Q(s)u, u

〉
V ′

=V 〈Qu, u〉V ′ .

Clearly, Q is non-negative and

V 〈Qu, v〉V ′ =V 〈Qv, u〉V ′ , u, v ∈ V ′.
Therefore, the bilinear form

BH(u, v) =V 〈Qu, v〉V ′ , u, v ∈ V ′ ⊂ H,

defines a selfadjoint operator in H, still denoted by Q and such that

dom (A?) ⊂ dom
(
Q1/2

)
,

which proves (2.1). Invoking (3.15) again we readily obtain

d

dt
〈Q(t)u, u〉 = 2

〈
Q1/2A?u,Q1/2A?u

〉
,

hence

〈Q(t)u, u〉 =

∫ t

0

〈
Q1/2L?(s)u,Q1/2L?(s)u

〉
ds, u ∈ dom

(
(A?)2

)
.

Finally, by polarisation and the density of dom
(
(A?)2

)
in H we obtain (2.4). Moreover,

Q : V ′ → V is a trace-class operator since Q̂(λ) is. �

4. Proof of Theorem 2.3

We define a V -valued and (Ft)-adapted process

M(t) = Z(t)− Z(0)− tbV −
∫ t

0

AVZ(s) ds.

It is easy to check that

M(t) = Z(t)−m(t, x)−
∫ t

0

AV (Z(s)−m(s, x)) ds, (4.1)

where we put Z(0) = x. Then Px-a.s.

Ex (M (t2)|Ft1) = Ex (Z (t2)−m (t2, x)|Z (t1))

−
∫ t1

0

AV (Z(s)−m(s, x)) ds−
∫ t2

t1

AVEx (Z (s)−m(s, x)|Z (t1))

= L (t2 − t1) (Z (t1)−m (t1, x))

−
∫ t1

0

AV (Z(s)−m (s, x)) ds−
∫ t2

t1

AVL (s− t1) (Z (t1)−m (t1, x)) ds

= Z (t1)−m (t1, x)−
∫ t1

0

AV (Z(s)−m(s, x)) ds

= M (t1) .
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Let Mh(t) = 〈M(t), h〉 for h ∈ V ′ = dom (A?). Then Mh is a continuous Gaussian
martingale with Mh(0) = 0. Since the martingale is Gaussian, we have〈

Mh
〉
t

= E
∣∣Mh(t)

∣∣2 .
It remains to compute E

∣∣Mh(t)
∣∣2. To this end we write

∣∣Mh(t)
∣∣2 = 〈Z(t)−m(t, x), h〉2 +

(∫ t

0

〈Z(s)−m(s, x), A?h〉 ds

)2

− 2

∫ t

0

〈Z(t)−m(t, x), h〉 〈Z(s)−m(s, x), A?h〉 ds.

Then

E
∣∣Mh(t)

∣∣2 = 〈Q(t)h, h〉+

∫ t

0

∫ t

0

E 〈Z(s)−m(s, x), A?h〉 〈Z(u)−m(u, x), A?h〉 duds

− 2

∫ t

0

〈L(t− s)Q(s)A?h, h〉 ds.

Since 〈Q(t)h, h〉 can be written in the form

〈Q(t)h, h〉 =

∫ t

0

〈
Q1/2L?(t− s)h,Q1/2L?(t− s)h

〉
ds

we obtain

d

dt
E
∣∣Mh(t)

∣∣2 = 2 〈Q(t)h,A?h〉+
∣∣Q1/2h

∣∣2
+

∫ t

0

E 〈Z(s)−m(s, x), A?h〉 〈Z(t)−m(t, x), A?h〉 ds

+

∫ t

0

E 〈Z(t)−m(t, x), A?h〉 〈Z(u)−m(u, x), A?h〉 du

− 2

∫ t

0

〈L(t− s)Q(s)A?h,A?h〉 ds− 2 〈Q(t)h,A?h〉

=
∣∣Q1/2h

∣∣2 .
Finally, by the martingale representation theorem, see e.g. [6], there exists a standard
cylindrical Wiener process W on H such that Mh(t) =

〈
W (t), Q1/2h

〉
is adapted to (Ft)

and for any h ∈ dom (A?),

〈Z(t), h〉 = 〈Z(0), h〉+

∫ t

0

〈Z(s), A?h〉 ds+

∫ t

0

〈bV , h〉 ds+
〈
W (t), Q1/2h

〉
.

Now, Theorem 2.3 follows from a result in [4].
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5. Proof of Theorem 2.4

It was proved in [17] that PtC
strict
b (Hbw) ⊂ Cstrict

b (Hbw). Let Br ⊂ H denote the centered
closed ball of radius r. Let us recall that bounded sets of Hbw are precisely the bounded
sets of the norm topology and the sets Br are compact in Hbw. The proof is a simple
modification of the proof of Theorem 4.2 in [12]. We provide details for the proof of strong
continuity. To this end it is enough to show that for every weakly sequentially continuous
φ : H → R and every r > 0,

lim
t→0

sup
x∈Br

|Ptφ(x)− φ(x)| = 0.

Assume that this convergence does not hold. Then there exist ε > 0, a sequence tn → 0
and a sequence (xn) ⊂ Br such that

|Ptnφ (xn)− φ (xn)| > ε.

Therefore ∫
H

|φ (m (tn, xn) + y)− φ (xn)|µ (tn, dy) > ε, (5.1)

where by Lemma 2.2 the measure µ(t, dy) = N (0, Q(t))(dy) is independent of x ∈ H.
Hypothesis 2.1 yields

〈m (tn, 0) , h〉 → 0, h ∈ H,

and clearly

lim
n→∞

〈xn, L? (tn)h〉 = 〈x, h〉, h ∈ H.

Note that (2.3) yields

〈m(t, 0), h〉 =

〈
(λ− A)

∫ t

0

L(s)bH ds, h

〉
and therefore (2.3) holds for all h ∈ H. Finally,

〈m (tn, xn) , h〉 = 〈xn, L? (tn)h〉+ 〈m (tn, 0) , h〉 −→ 〈x, h〉, h ∈ H.

Now, using the dominated convergence, we can pass to the limit in (5.1) obtaining the
desired contradiction.

We pass now to the proof of the second part of the theorem. It is easy to check that for
any φ ∈ FC∞b (A?) formula (5.1) holds and by the definition of the space FC∞b (A?) the
function Lφ is a well defined element of Cstrict

b (Hbw). The proof that FC∞b (A?) is a core
for L is an easy modification of the proofs of Lemma 4.4 and Theorem 4.5 in [12] and thus
omitted.
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6. Example: boundary noise

We will consider here a stochastic PDE with boundary noise introduced in [1], see also
[11]: 

∂u
∂t

(t, ξ) = ∂2u
∂ξ2

(t, ξ), t > 0, ξ > 0,

u(t, 0) = Ẇ (t), t > 0,
u(0, ξ) = x(ξ), ξ > 0.

(6.1)

In [1] solution to (6.1) is defined for all t > 0 and ξ > 0 by the formula

u(t, ξ) =

∫ +∞

0

G(t, ξ, η)x(η) dη +

∫ t

0

∂G

∂η
(t− s, ξ, 0) dW (s), (6.2)

where

G(t, ξ, η) =
1√
4πt

(
e−|ξ−η|

2/4t − e−|ξ+η|
2/4t
)
, ξ, η > 0.

Let ρ(ξ) = min (1, ξ1+α) with α ∈ (0, 1) and H = L2([0,+∞), ρ(ξ)dξ). Finally, let A
denote the Dirichlet Laplacian in L2([0,+∞)).

Proposition 6.1. (1) The operator A has an extension to the generator (still denoted by
A) of an analytic C0-semigroup

(
etA
)
on H.

(2) There exists a selfadjoint unbounded operator Q in H, such that

u(t) = etAx+

∫ t

0

e(t−s)AQ1/2 dW (s).

Proof. Part 1 of the proposition has been proved in [15]. The results in [1] imply that for
any T > 0,

sup
t6T

E|u(t)|2H <∞, (6.3)

and obviously the process is Gaussian. Clearly,

m(t, x) = etAx, t > 0, x ∈ H,
and

Q(t)x(ξ) =

∫ ∞
0

q(t, ξ, η)ρ(η)x(η) dη, x ∈ H, ξ ∈ [0,+∞),

where

q(t, ξ, η) =

∫ t

0

∂G

∂η
(s, ξ, 0)

∂G

∂η
(s, η, 0) ds.

It is not very difficult to show that E |u(t)|2H <∞, and that u is a mean-square continuous,
Gaussian and Markov process in H. For a fixed λ > 0 we denote by D the Dirichlet map,
e.a. for a > 0 we define Da as a solution to the equation (λ− A)φ = 0, that is(

λ− ∂2

∂ξ2

)
φ = 0, φ(0) = a.

It is easy to see that

Da(ξ) = ae−ξ
√
λ, ξ > 0.
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Let H−s(0,+∞) denote the negative Sobolev space. Using arguments similar to those in [7]
one can show that a unique mild solution to equation (6.1) exists in H−s(0,+∞) provided
s > 1

2
. Moreover,

u(t) = etAx+ (λ− A)

∫ t

0

e(t−s)ADdW (s).

�
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K dans C0 satisfaisant au principe
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