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Abstract

A (partial) transformation α on the finite set {1, . . . , n} moves an element i of
its domain a distance of |i − iα| units. The work w(α) performed by α is the sum
of all of these distances. We derive formulae for the total work w(S) =

∑

α∈S w(α)
performed by various semigroups S of (partial) transformations. One of our main
results is the proof of a conjecture of Tim Lavers which states that the total work
performed by the semigroup of all order-preserving functions on an n-element chain
is equal to (n − 1)22n−3.
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1 Introduction

Fix a positive integer n and write n = {1, . . . , n}. The partial transformation semi-
group PTn is the semigroup of all partial transformations on n; i.e. all functions between
subsets of n. (Note that the use of the word “partial” does not imply that the domain is
necessarily a proper subset of n. In this way, PTn also includes all full transformations
of n; i.e. all functions n → n.) A partial transformation α moves a point i of its domain to
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a (possibly) new point j in its image. If the elements of n are thought of as points, equally
spaced along a line, then the point i has been moved a distance of |i− j| units. Summing
these values, as i varies over the domain of α, gives the (total) work performed by α, denoted
by w(α). We may also consider the total and average work performed by a collection S

of partial transformations, being the quantities w(S) =
∑

α∈S w(α) and w(S) = 1
|S|

w(S)

respectively. It is the purpose of the current article to calculate w(S) and w(S) when S is
either PTn itself, or one of its six key subsemigroups:

• Tn =
{

α ∈ PTn

∣

∣ dom(α) = n
}

, the (full) transformation semigroup;

• In =
{

α ∈ PTn

∣

∣ α is injective
}

, the symmetric inverse semigroup;

• Sn = Tn ∩ In, the symmetric group;

• POn =
{

α ∈ PTn

∣

∣α is order-preserving
}

;

• On = Tn ∩ POn; and

• POIn = In ∩ POn.

For the above definitions, recall that a partial transformation α ∈ PTn is order-preserving
if iα < jα whenever i, j ∈ dom(α) and i < j.1 The following diagram illustrates the
various inclusions; for a more comprehensive picture, see [2].

PTn

In

POIn

Tn

On Sn

POn

{1}

Our interest in this topic began after attending a talk by Tim Lavers at a Semigroups
Special Interest meeting in Sydney 2004, in which the formula w(On) = (n − 1)22n−3 was
conjectured. We also note that the quantity 1

n
w(Sn) = n2−1

3n
has been calculated previously

in relation to turbo coding [1] although, in the absence of such “external” considerations,
we feel that w(S) and w(S) are the more intrinsic quantities.

1Out of habit, we write iα for the image of i ∈ n under α ∈ PTn, although the semigroup operation
on PTn (composition as binary relations) does not feature in the current work.
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Our results are summarized in Tables 1 and 2 below, where the reader will notice some in-
teresting relationships such as w(On) = w(POIn) and w(Sn) = w(Tn). Table 3 catalogues
the calculated values of w(S) for n = 1, . . . , 10.

S Formula for w(S)

Sn
n!(n2−1)

3

Tn
nn(n2−1)

3

PTn
(n+1)n(n2−n)

3

In
n3−n

3

∑n−1
k=0

(

n−1
k

)2
k!

POIn (n − 1)22n−3

On (n − 1)22n−3

POn

∑n
i,j=1

∑n
k,ℓ=0 |i − j|

(

i−1
k

)(

j+k−1
k

)(

n−i
ℓ

)(

n−j+ℓ
ℓ

)

Table 1: Formulae for the total work w(S) performed by a semigroup S ⊆ PTn.

S Formula for w(S)

Sn
n2−1

3

Tn
n2−1

3

PTn
n2−n

3

In
n3−n

3
Pn

ℓ=0 (n
ℓ)

2
ℓ!

∑n−1
k=0

(

n−1
k

)2
k!

POIn
1

(2n

n )
(n − 1)22n−3

On
1

(2n−1

n )
(n − 1)22n−3

POn
1

Pn
m=0 (n

m)(n+m−1

m )

∑n
i,j=1

∑n
k,ℓ=0 |i − j|

(

i−1
k

)(

j+k−1
k

)(

n−i
ℓ

)(

n−j+ℓ
ℓ

)

Table 2: Formulae for the average work w(S) performed by an element of a semigroup
S ⊆ PTn.

The article is organized as follows. In Section 2 we obtain a general formula for w(S)
involving the cardinalities of certain subsets Mi,j(S) of S. In Section 3 we consider sep-
arately the seven semigroups described above, calculating the cardinalities |Mi,j(S)|, and
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n 1 2 3 4 5 6 7 8 9 10

w(Sn) 0 2 16 120 960 8400 80640 846720 9676800 119750400

w(Tn) 0 4 72 1280 25000 544320 13176688 352321536 10331213040 330000000000

w(PTn) 0 6 128 2500 51840 1176490 29360128 803538792 24000000000 778122738030

w(In) 0 4 56 680 8360 108220 1492624 21994896 346014960 5798797620

w(POIn) 0 2 16 96 512 2560 12288 57344 262144 1179648

w(On) 0 2 16 96 512 2560 12288 57344 262144 1179648

w(POn) 0 4 48 424 3312 24204 169632 1155152 7702944 50550932

Table 3: Calculated values of w(S) for small values of n.

thereby obtaining explicit formulae for w(S) in each case. The formulae obtained in this
way are in a closed form when S is one of Sn, Tn, PTn, but expressed as a sum involving
binomial coefficients in the remaining four cases. In Section 4 we prove Lavers’ conjecture,
which essentially boils down to a proof of the identity

n
∑

p,q=0

|p − q|

(

p + q

p

)(

2n − p − q

n − p

)

= n22n−1,

giving rise to the postulated closed form for w(On) = w(POIn). By contrast, the ex-
pression w(In) = n3−n

3
|In−1| may not be simplified further, since no closed form exists

for |In| =
∑n

k=0

(

n
k

)2
k!. It is not known to the authors whether a closed form for w(POn)

exists, but the presence of large prime factors suggests that the situation could not be as
simple as that of w(On); for example, w(PO9) = 25 · 3 · 80239.

Unless specified otherwise, all numbers we consider are integers, so a statement such as
“let 1 ≤ i ≤ 5” should be read as “let i be an integer such that 1 ≤ i ≤ 5”. It will also be
convenient to interpret a binomial coefficient

(

p
q

)

to be 0 if p < q.

2 General Calculations

We now make precise our definitions and notation. The work performed by a partial
transformation α ∈ PTn in moving a point i ∈ n is defined to be

wi(α) =

{

|i − iα| if i ∈ dom(α)
0 otherwise,

and the (total) work performed by α is

w(α) =
∑

i∈n

wi(α).
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For S ⊆ PTn, we write

w(S) =
∑

α∈S

w(α) and w(S) =
1

|S|
w(S)

for the total and average work performed by the elements of S (respectively).

For the remainder of this section, we fix a subset S ⊆ PTn. For i ∈ n, put

wi(S) =
∑

α∈S

wi(α),

which may be interpreted as the total work performed by S in moving just the point i.
Rearranging the defining sum for w(S) gives

w(S) =
∑

α∈S

w(α) =
∑

α∈S

∑

i∈n

wi(α) =
∑

i∈n

∑

α∈S

wi(α) =
∑

i∈n

wi(S).

For i, j ∈ n, consider the set

Mi,j(S) =
{

α ∈ S
∣

∣ i ∈ dom(α) and iα = j
}

of all elements of S which move i to j, and write

mi,j(S) =
∣

∣Mi,j(S)
∣

∣

for the cardinality of Mi,j(S). Note that wi(α) = |i − j| for all α ∈ Mi,j(S), so that

wi(S) =
∑

j∈n

|i − j|mi,j(S).

We have proved the following.

Lemma 1 Let S ⊆ PTn. Then w(S) =
∑

i,j∈n

|i − j|mi,j(S). 2

3 Specific Calculations

We now use Lemma 1 as the starting point to derive explicit formulae for w(S) for each
of the semigroups S defined in Section 1. We consider each case separately, covering them
roughly in order of difficulty. When S is one of Sn, Tn, PTn, or In, we will see that mi,j(S)
is independent of i, j ∈ n, and so w(S) turns out to be rather easy to calculate, relying
only on Lemma 1 and the well-known identity

∑

i,j∈n

|i − j| = 2

(

n + 1

3

)

=
n3 − n

3
.
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(The reader is reminded of the convention that
(

n+1
3

)

= 0 if n = 1.) In each of the remaining
three cases, the formulae we derive for the quantities mi,j(S) yields an expression for w(S)
as a sum involving binomial coefficients. We defer further investigation of the On and POIn

cases until Section 4, where we show that this so-obtained expression may be simplified.

It may be that some of the intermediate results of this section are already known (for
example Lemmas 2, 6 and 9) but the proofs, which are believed to be original, are included
for completeness; the reader is referred to the introduction of [4] for a review of related
studies. Note that the proofs we give are largely geometrically motivated. A partial
transformation α ∈ PTn may be represented diagrammatically by drawing an upper and
lower row of n dots, representing the elements of n (in increasing order from left to right),
and drawing a line from upper vertex i to lower vertex j whenever i ∈ dom(α) and iα = j.
In this way, the quantity mi,j(S) may be interpreted as the number of ways to “extend”
the partial map πi,j , pictured in Figure 1, to an element of S.

1 2 i n

1 2 j n

Figure 1: The partial map πi,j ∈ PTn with domain {i} and image {j}.

3.1 The Symmetric Group Sn

To extend the partial map πi,j to a permutation of n, we must add n−1 lines, ensuring that
they correspond to a bijection from n\{i} to n\{j}. It follows then that mi,j(Sn) = (n−1)!
for all i, j ∈ n, and so Lemma 1 gives

w(Sn) =
∑

i,j∈n

|i − j|(n − 1)! =
n3 − n

3
· (n − 1)! =

n!(n2 − 1)

3
.

The average work is given by

w(Sn) =
w(Sn)

n!
=

n2 − 1

3
.2

2This result may be found in [1], in a slightly different form.
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3.2 The Transformation Semigroup Tn

To extend πi,j to a full transformation of n, each upper vertex must be connected by a line
to a lower vertex. Since the lower vertex of such a line is not constrained in any way, we
see that mi,j(Tn) = nn−1 for all i, j ∈ n. By Lemma 1, we therefore have

w(Tn) =
∑

i,j∈n

|i − j|nn−1 =
n3 − n

3
· nn−1 =

nn(n2 − 1)

3
,

and

w(Tn) =
w(Tn)

nn
=

n2 − 1

3
,

giving rise to the first interesting (and seemingly coincidental) identity: w(Tn) = w(Sn).

3.3 The Partial Transformation Semigroup PTn

To extend πi,j to a partial transformation, each upper vertex may be connected to any
lower vertex or else left unconnected. It follows that mi,j(PTn) = (n+1)n−1 for all i, j ∈ n

and so, by Lemma 1, we have

w(PTn) =
∑

i,j∈n

|i − j|(n + 1)n−1 =
n3 − n

3
· (n + 1)n−1 =

(n + 1)n(n2 − n)

3
,

and

w(PTn) =
w(PTn)

(n + 1)n
=

n2 − n

3
.

Although w(PTn) 6= w(Sn) = w(Tn), all three sequences are of course asymptotic to n2

3
.

3.4 The Symmetric Inverse Semigroup In

To extend πi,j to an injective partial transformation, we must add at most n − 1 more
lines, ensuring that they correspond to an injective partially defined map from n \ {i}
to n \ {j}. Since such a partial map obviously corresponds to an injective partial transfor-
mation on {1, . . . , n − 1}, we see that mi,j(PTn) = |In−1| for all i, j ∈ n. It then follows
that

w(In) =
∑

i,j∈n

|i − j| · |In−1| =
n3 − n

3
· |In−1| =

n3 − n

3

n−1
∑

k=0

(

n − 1

k

)2

k!,

and

w(In) =
w(In)

|In|
=

n3 − n

3
·
|In−1|

|In|
.
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3.5 The Semigroup POIn

From this point onward, calculation of the quantities mi,j(S) is not as straightforward.
For 0 ≤ p, q ≤ n let POIp,q denote the set of all order-preserving injective partial maps
from p to q. (Note that we interpret k = {1, . . . , k} to be empty if k = 0.)

Lemma 2 Let 0 ≤ p, q ≤ n. Then |POIp,q| =
(

p+q
p

)

=
(

p+q
q

)

.

Proof Let q′ = {1′, . . . , q′} be a set in one-one correspondence with q. Denote also
by ′ : q′ → q the inverse bijection, so that we write i′′ = i for all i ∈ q. Consider the set

Σ =
{

A ⊆ p ∪ q′
∣

∣ |A| = q
}

.

For A ∈ Σ, define φA ∈ POIp,q by

dom(φA) = A ∩ p and im(φA) = q \ (A ∩ q′)′,

noting that |A∩p| =
∣

∣q\(A∩q′)′
∣

∣, and that an element of POIp,q is completely determined
by its domain and image. It is then easy to check that the maps determined by

A 7→ φA and φ 7→ dom(φ) ∪
(

q \ im(φ)
)′

are mutually inverse bijections between Σ and POIp,q. The result follows since we clearly
have |Σ| =

(

p+q
q

)

. 2

Remark 3 Geometrically, this proof corresponds to the fact that, given p upper vertices
and q lower vertices, an element of POIp,q is determined by choosing q vertices, and
then joining the selected upper vertices to the unselected lower vertices. An alternative
proof begins by noting that POIp,q contains

(

p
k

)(

q
k

)

maps of rank k, and then applies the

identity
∞

∑

k=0

(

p

k

)(

q

k

)

=

(

p + q

q

)

.

Lemma 4 Let i, j ∈ n. Then mi,j(POIn) =
(

i+j−2
i−1

)(

2n−i−j
n−i

)

.

Proof Let α ∈ Mi,j(POIn). Then since iα = j and α is order-preserving, we see that
kα < j whenever k ∈ dom(α) and k < i. Thus, we may define a map λα ∈ POI i−1,j−1 by

dom(λα) = dom(α) ∩ {1, . . . , i − 1} and im(λα) = im(α) ∩ {1, . . . , j − 1}.

Similarly, we have kα > j whenever k ∈ dom(α) and k > i, and so we may also define a
map ρα ∈ POIn−i,n−j by

dom(ρα) =
{

k − i
∣

∣ k ∈ dom(α) , k > i
}

and im(ρα) =
{

k − j
∣

∣ k ∈ im(α) , k > j
}

.

It is then easy to check that the map α 7→ (λα, ρα) defines a bijection from Mi,j(POIn)
to POI i−1,j−1 × POIn−i,n−j. The result now follows from Lemma 2. 2
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Remark 5 The idea of the above proof is summed up in the schematic picture of a typical
element of Mi,j(POIn) illustrated in Figure 2.

1 i n

1 j n

an element of

POIi−1,j−1

“translate” of

an element of

POIn−i,n−j

Figure 2: A schematic picture of an element of Mi,j(POIn).

It follows by Lemmas 1 and 4 that the total work performed by POIn is given by

w(POIn) =
∑

i,j∈n

|i − j|

(

i + j − 2

i − 1

)(

2n − i − j

n − i

)

.

In Section 4 we revisit this formula, and show that in fact w(POIn) = (n − 1)22n−3. An
expression for w(POIn) may be found by dividing through by |POIn| = |POIn,n| =

(

2n
n

)

.

3.6 The Semigroup On

For 0 ≤ p ≤ n and q ∈ n let Op,q denote the set of all order-preserving maps from p to q.

Lemma 6 Let 0 ≤ p ≤ n and q ∈ n. Then |Op,q| =
(

p+q−1
p

)

=
(

p+q−1
q−1

)

.

Proof Consider the set

Ω =
{

α ∈ POIp,q

∣

∣ p ∈ dom(α)
}

.

There is an obvious bijection Op,q → Ω determined geometrically by removing all but the
right-most lines from the connected components in the picture of α ∈ Op,q; see Figure 3.
For i ∈ q, put

Ωi = {α ∈ Ω | pα = i},

so that we have the disjoint union Ω = Ω1 ⊔ · · · ⊔ Ωq. Clearly, the operation of removing
the right-most line gives a bijection between Ωi and POIp−1,i−1 for each i ∈ q so that, by
Lemma 2, we have

|Op,q| = |Ω| =
∑

i∈q

(

p + i − 2

p − 1

)

.

The result now follows from the identity

s
∑

k=0

(

r + k

r

)

=

(

r + s + 1

s

)

. 2
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7−→

Figure 3: The bijection Op,q → Ω; see the proof of Lemma 6 for an explanation of the
notation.

Remark 7 An argument similar to that used in the proof of Lemma 2 may also be used
here. An element α ∈ Ω is completely determined by the sets dom(α)\{p} ⊆ {1, . . . , p−1}
and q \ im(α) ⊆ q. This gives rise to a bijection between Ω and the set

{

A ⊆ {1, . . . , p − 1, 1′, . . . , q′}
∣

∣ |A| = q − 1
}

,

which has cardinality
(

p+q−1
q−1

)

.

Lemma 8 Let i, j ∈ n. Then mi,j(On) =
(

i+j−2
i−1

)(

2n−i−j
n−i

)

.

Proof The proof follows a similar pattern to the proof of Lemma 4. Rather than include
all the details, we simply refer to Figure 4 which gives a schematic picture of an element
of Mi,j(On), indicating a bijection between Mi,j(On) and Oi−1,j ×On−i,n−j+1. 2

1 i n

1 j n

an element of

Oi−1,j

“translate” of

an element of

On−i,n−j+1

Figure 4: A schematic picture of an element of Mi,j(On).

In particular, we have mi,j(On) = mi,j(POIn) for all i, j ∈ n, so that w(On) = w(POIn).
The differing cardinalities of On and POIn mean that w(On) 6= w(POIn). However, since
|POIn| =

(

2n
n

)

= 2
(

2n−1
n

)

= 2|On|, we do have the relationship w(On) = 2w(POIn).

3.7 The Semigroup POn

For 0 ≤ p ≤ n and q ∈ n let POp,q denote the set of all order-preserving partial transfor-
mations from p to q.
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Lemma 9 Let 0 ≤ p ≤ n and q ∈ n. Then |POp,q| =
n

∑

k=0

(

p

k

)(

q + k − 1

k

)

.

Proof For A ⊆ p write POA
p,q =

{

α ∈ POp,q

∣

∣ dom(α) = A
}

. We then have the disjoint
union

POp,q =
⊔

A⊆p

POA
p,q.

Now for any 0 ≤ k ≤ p, there are
(

p
k

)

subsets A ⊆ p for which |A| = k and, for each such

subset A, we have
∣

∣POA
p,q

∣

∣ = |Ok,q| =
(

q+k−1
k

)

, the last equality following by Lemma 6.
This shows that

|POp,q| =
∑

A⊆p

∣

∣POA
p,q

∣

∣ =

p
∑

k=0

(

p

k

)(

q + k − 1

k

)

.

The upper limit may be changed to n, in light of the convention that
(

p
k

)

= 0 if k > p. 2

Lemma 10 Let i, j ∈ n. Then

mi,j(POn) =
n

∑

k,ℓ=0

(

i − 1

k

)(

j + k − 1

k

)(

n − i

ℓ

)(

n − j + ℓ

ℓ

)

.

Proof Again we find that there is a bijection between Mi,j(POn) and POi−1,j×POn−i,n−j+1,
and the result follows from Lemma 9. 2

It follows, by Lemmas 1 and 10, that

w(POn) =

n
∑

i,j=1

n
∑

k,ℓ=0

|i − j|

(

i − 1

k

)(

j + k − 1

k

)(

n − i

ℓ

)(

n − j + ℓ

ℓ

)

.

An expression for w(POn) is found by dividing through by

|POn| = |POn,n| =

n
∑

k=0

(

n

k

)(

n + k − 1

k

)

.

4 The Proof of Lavers’ Conjecture

We now turn to the task of proving the conjectured result of Lavers that w(On) = (n − 1)22n−3.
In light of Section 3.6, this amounts to a proof of the identity

∑

i,j∈n

|i − j|

(

i + j − 2

i − 1

)(

2n − i − j

n − i

)

= (n − 1)22n−3.
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Replacing n by n + 1, and introducing the new parameters p = i − 1 and q = j − 1, the
identity takes on the more pleasing form:

n
∑

p,q=0

|p − q|

(

p + q

p

)(

2n − p − q

n − p

)

= n22n−1.

The remainder of this section is devoted to a proof of this identity and, hence, a proof of
the conjecture.

For 0 ≤ m ≤ 2n, define

f(n, m) =
m

∑

p=0

|m − 2p|

(

m

p

)(

2n − m

n − p

)

,

noting first that f(n, 0) = f(n, 2n) = 0. We now find a closed form for the remaining
values of m.

Lemma 11 We have the following identities :

f(n, 2k + 1) =
2

n

(2n − 2k − 1)!

(n − k − 1)!(n − k − 1)!

(2k + 1)!

k!k!
for 0 ≤ k ≤ n − 1 (12)

f(n, 2k) =
2

n

(2n − 2k)!

(n − k)!(n − k − 1)!

(2k)!

k!(k − 1)!
for 1 ≤ k ≤ n − 1. (13)

Proof We apply two different methods of proof, one to each identity, and each of which
may be adapted to treat the other case.

We first present a purely human-discovered proof of (12). Let 0 ≤ k ≤ n − 1. Consider the
degree k polynomial

Pk(x) =

k
∑

p=0

|2k + 1 − 2p|

(

2k + 1

p

)

x(p)(x − k − 1)(k−p)

in an indeterminate x. In the defining sum for f(n, m), the terms with p = i and p = m− i

are equal. In this way, we calculate

f(n, 2k + 1) =
2(2n − 2k − 1)!

n!(n − k − 1)!
Pk(n).

So it suffices to prove the polynomial identity

Pk(x) =
(2k + 1)!

k!k!
(x − 1)(k). (14)

We do this by induction on k, noting first that when k = 0 both sides of (14) are identically
equal to 1. Suppose now that 1 ≤ k ≤ n−1 and that 0 ≤ ℓ < k. We consider Pk(k+ℓ+1).
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In the defining sum, terms with p ≤ k − ℓ − 1 will be zero and so, replacing the index of
summation by r = p − k + ℓ, we have

Pk(k + ℓ + 1) =
ℓ

∑

r=0

|2ℓ + 1 − 2r|

(

2k + 1

k − ℓ + r

)

(k + ℓ + 1)(k−ℓ+r)ℓ(ℓ−r),

which is readily checked to be equal to

(2k + 1)!

k!

ℓ!

(2ℓ + 1)!
Pℓ(k + ℓ + 1).

By an inductive hypothesis,

Pℓ(x) =
(2ℓ + 1)!

ℓ!ℓ!
(x − 1)(ℓ),

and it quickly follows that (14) holds for the k distinct x-values x = k + 1, k + 2, . . . , 2k.
Since the identity (14) involves polynomials of degree k, it suffices to verify it for one more

value of x and, when x = 0, both sides are easily checked to be equal to (−1)k (2k + 1)!

k!
.

So (14) holds, and the proof of (12) is complete.

We now present a computer-aided proof of (13) using the WZ method [5]. Let 1 ≤ k ≤ n−1.
Define

F (n, k, p) =
2n(k − p)

(

2k
p

)(

2n−2k
n−p

)

k(n − k)
(

2k
k

)(

2n−2k
n−k

) ,

noting that the desired result is equivalent to

k−1
∑

p=0

F (n, k, p) = 1. (15)

A computer implementation3 of Gosper’s algorithm [3] gives us the identity

F (n + 1, k, p) − F (n, k, p) = G(n, k, p + 1) − G(n, k, p),

where the function G is defined by

G(n, k, p) =
p(k + 1 − p)

2n(n + 1 − p)
F (n, k, p).

Summing over p ∈ {0, . . . , k − 1}, and noting that G(n, k, k) = G(n, k, 0) = 0, we obtain
the equality

k−1
∑

p=0

F (n + 1, k, p) =
k−1
∑

p=0

F (n, k, p).

So it suffices to prove (15) in the case n = k + 1 only. This however is a triviality as only
the p = k − 1 term in the sum is non-zero. This completes the proof of (13). 2

3Available at http://www.cis.upenn.edu/~wilf/progs.html
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Proposition 16 The following identity holds :

n
∑

p,q=0

|p − q|

(

p + q

p

)(

2n − p − q

n − p

)

= n22n−1. (17)

Proof Consider the two generating functions

∞
∑

k=0

(2k + 1)!

k!k!
xk = (1 − 4x)−3/2 and

∞
∑

k=0

(

k + 2

2

)

4kxk = (1 − 4x)−3.

After squaring the first, and equating coefficients of xn−1, Lemma 11 gives

n

2

n−1
∑

k=0

f(n, 2k + 1) =

(

n + 1

2

)

4n−1.

Similarly, starting from

∞
∑

k=1

(2k)!

k!(k − 1)!
xk = 2x(1 − 4x)−3/2 and

∞
∑

k=2

(

k

2

)

4k−1xk = 4x2(1 − 4x)−3,

squaring the first, and looking at the coefficient of xn, we obtain

n

2

n−1
∑

k=1

f(n, 2k) =

(

n

2

)

4n−1.

Returning to the original sum, we rewrite it to first sum over those p and q for which
p + q = m is fixed, and get

n
∑

p,q=0

|p − q|

(

p + q

p

)(

2n − p − q

n − p

)

=
2n
∑

m=0

f(n, m)

= f(n, 0) +

n−1
∑

k=0

f(n, 2k + 1) +

n−1
∑

k=1

f(n, 2k) + f(n, 2n)

=
2

n

[(

n + 1

2

)

4n−1 +

(

n

2

)

4n−1

]

= n22n−1,

completing the proof. 2
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