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Abstract

A (partial) transformation o on the finite set {1,...,n} moves an element i of
its domain a distance of |i — icr| units. The work w(a) performed by « is the sum
of all of these distances. We derive formulae for the total work w(S) = 3" cgw(a)
performed by various semigroups S of (partial) transformations. One of our main
results is the proof of a conjecture of Tim Lavers which states that the total work
performed by the semigroup of all order-preserving functions on an n-element chain
is equal to (n — 1)22773,
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MSC: Primary 20M20; Secondary 05A10.

1 Introduction

Fix a positive integer n and write n = {1,...,n}. The partial transformation semi-
group P7, is the semigroup of all partial transformations on n; i.e. all functions between
subsets of n. (Note that the use of the word “partial” does not imply that the domain is
necessarily a proper subset of n. In this way, P7, also includes all full transformations
of n; i.e. all functions n — n.) A partial transformation o moves a point i of its domain to
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a (possibly) new point j in its image. If the elements of n are thought of as points, equally
spaced along a line, then the point ¢ has been moved a distance of |i — j| units. Summing
these values, as ¢ varies over the domain of «, gives the (total) work performed by «, denoted
by w(«). We may also consider the total and average work performed by a collection S
of partial transformations, being the quantities w(S) = ) .qw(a) and W(S) = ﬁw(S)
respectively. It is the purpose of the current article to calculate w(S) and wW(S) when S is
either P7, itself, or one of its six key subsemigroups:

o 7, = {a c P71, } dom(a) = n}, the (full) transformation semigroup;

Z, = {a € P17, } « is injective}, the symmetric inverse semigroup;

S, =7,N7I,, the symmetric group;

PO, = {a € PT, } « is order—preserving};

0, =17,"P0O,; and
POL, =1, NPO,.

For the above definitions, recall that a partial transformation o € P7,, is order-preserving
if ia < ja whenever i,j € dom(a) and i < j.!' The following diagram illustrates the
various inclusions; for a more comprehensive picture, see [2].

PT,

Oy, POL,

{1}

Our interest in this topic began after attending a talk by Tim Lavers at a Semigroups
Special Interest meeting in Sydney 2004, in which the formula w(0,) = (n — 1)22"~3 was

conjectured. We also note that the quantity %E(Sn) = "Z;l has been calculated previously

in relation to turbo coding [1] although, in the absence of such “external” considerations,
we feel that w(S) and w(S) are the more intrinsic quantities.

LOut of habit, we write i for the image of i € n under o € P7,,, although the semigroup operation
on P7, (composition as binary relations) does not feature in the current work.



Our results are summarized in Tables 1 and 2 below, where the reader will notice some in-

teresting relationships such as w(0,,) = w(POZ,) and w(S,) = w(7,). Table 3 catalogues
the calculated values of w(S) forn =1,...,10.

S Formula for w(S)
Sn n!(n;—l)
,]:7( n”(n;—l)
PT, (1) ()
n3—n n— n—1\2
In 3 Zk:é( k:l) k!
POIL, (n —1)2%—3
O, (n —1)2%—3
POn | 325 Xk =l () O () (7)

Table 1: Formulae for the total work w(S) performed by a semigroup S C P7,.

Formula for w(S)
7’L2—
S, 3 L
n2—
7, !
n2—n
P, 3
n3—n n—1 (n—1\2 |
1, 350, (7)) k::o( k ) k!
POL, ﬁ(n —1)22n=3
On % n—1 22n—3
& )( )
n n . . (i—1 j+k—1\ (mn—1\ (n—j+L
PO, — (J;)("*;’ffl) D gt 2ake—o |1 1) )T

Table 2: Formulae for the average work w(S) performed by an element of a semigroup
S CPT,.

The article is organized as follows. In Section 2 we obtain a general formula for w(S)
involving the cardinalities of certain subsets M, ;(S) of S. In Section 3 we consider sep-
arately the seven semigroups described above, calculating the cardinalities |M; ;(.S)|, and

3



n 1 2 3 4 ) 6 7 8 9 10

w(Sp,) |0 2 16 120 960 8400 80640 846720 9676800 119750400

w(7y) 0 4 72 1280 25000 544320 13176688 352321536 10331213040 330000000000

w(P7,) | 0 6 128 2500 51840 1176490 29360128 803538792 24000000000 778122738030

w(Z,) |0 4 56 680 8360 108220 1492624 21994896 346014960 5798797620

w(POZ,)| 0 2 16 96 512 2560 12288 57344 262144 1179648
w(O,) |0 2 16 96 512 2560 12288 57344 262144 1179648
w(PO,) |0 4 48 424 3312 24204 169632 1155152 7702944 50550932

Table 3: Calculated values of w(S) for small values of n.

thereby obtaining explicit formulae for w(S) in each case. The formulae obtained in this
way are in a closed form when S is one of S,,, 7,,, P7,, but expressed as a sum involving
binomial coefficients in the remaining four cases. In Section 4 we prove Lavers’ conjecture,
which essentially boils down to a proof of the identity

n 2 o _
3 ‘p_q‘<P+CJ)< n—p q) o,
P n—p

,q=0

giving rise to the postulated closed form for w(O,) = w(POZ,). By contrast, the ex-

pression w(Z,) = "33_ “|Z,—1| may not be simplified further, since no closed form exists

for |Z,,| => 7, (Z)2k!. It is not known to the authors whether a closed form for w(PO,,)
exists, but the presence of large prime factors suggests that the situation could not be as
simple as that of w(0,); for example, w(POy) = 2° - 3 - 80239.

Unless specified otherwise, all numbers we consider are integers, so a statement such as
“let 1 <14 < 5” should be read as “let 7 be an integer such that 1 < i < 5”. It will also be
convenient to interpret a binomial coefficient (Z) to be 0 if p < q.

2 General Calculations

We now make precise our definitions and notation. The work performed by a partial
transformation « € P7,, in moving a point ¢ € n is defined to be

(o) = li —ia]  if ¢ € dom(«)
wi\e) = 0 otherwise,

and the (total) work performed by « is

w(a) = Zwi(a).

1€n
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For S C P71, we write

a€es
for the total and average work performed by the elements of S (respectively).
For the remainder of this section, we fix a subset S C P7,,. For i € n, put
wi(S) = wi(a),
aesS

which may be interpreted as the total work performed by S in moving just the point i.
Rearranging the defining sum for w(.S) gives

w(S) =D wla) =Y > wila) =Y > wila)=Y wl(S).

acsS a€eS i€n i€En acsS 1€En

For i, 5 € n, consider the set
M; ;(S) = {a € S|i€dom(a) and ia =j}
of all elements of S which move ¢ to j, and write
m;;(S) = | M;;(S)]
for the cardinality of M; ;(S). Note that w;(«) = |i — j]| for all @ € M; ;(S), so that

wi(S) =Y |i = jlmi ().

JjENn

We have proved the following.

Lemma 1 Let S C P7,. Then w(S) = Z i — jlm ;(S). 0
7,J€EN

3 Specific Calculations

We now use Lemma 1 as the starting point to derive explicit formulae for w(S) for each
of the semigroups S defined in Section 1. We consider each case separately, covering them
roughly in order of difficulty. When S is one of S,,, 7,,, P7,, or Z,,, we will see that m; ;(5)
is independent of i,j € n, and so w(S) turns out to be rather easy to calculate, relying
only on Lemma 1 and the well-known identity

Z|Z._.‘_2 n+1 _n3—n
==\ 3 )7 73

4,JEN




(The reader is reminded of the convention that (";1) = 0ifn = 1.) In each of the remaining

three cases, the formulae we derive for the quantities m; ;(S) yields an expression for w(S)
as a sum involving binomial coefficients. We defer further investigation of the O,, and POZ,
cases until Section 4, where we show that this so-obtained expression may be simplified.

It may be that some of the intermediate results of this section are already known (for
example Lemmas 2, 6 and 9) but the proofs, which are believed to be original, are included
for completeness; the reader is referred to the introduction of [4] for a review of related
studies. Note that the proofs we give are largely geometrically motivated. A partial
transformation o € P7, may be represented diagrammatically by drawing an upper and
lower row of n dots, representing the elements of n (in increasing order from left to right),
and drawing a line from upper vertex ¢ to lower vertex j whenever i € dom(«) and i = j.
In this way, the quantity m, ;(S) may be interpreted as the number of ways to “extend”
the partial map m; ;, pictured in Figure 1, to an element of S.

Figure 1: The partial map =, ; € P7,, with domain {i} and image {j}.

3.1 The Symmetric Group S,

To extend the partial map m; ; to a permutation of n, we must add n—1 lines, ensuring that
they correspond to a bijection from n\ {7} to n\{j}. It follows then that m; ;(S,) = (n—1)!
for all 7,7 € n, and so Lemma 1 gives

o n®—n nl(n? —1
w(S) = Y li—sln -1 =" = D,
4,JEN
The average work is given by
_ w(S,) n*-1
S,) = — 2
D(Sx) n! 3

2This result may be found in [1], in a slightly different form.



3.2 The Transformation Semigroup 7,

To extend 7, ; to a full transformation of n, each upper vertex must be connected by a line
to a lower vertex. Since the lower vertex of such a line is not constrained in any way, we
see that m; ;(7,,) = n""! for all 4, j € n. By Lemma 1, we therefore have

LI L R Gl ]

1,JEN

and

giving rise to the first interesting (and seemingly coincidental) identity: w(7,) = wW(S,).

3.3 The Partial Transformation Semigroup P7,

To extend m; ; to a partial transformation, each upper vertex may be connected to any
lower vertex or else left unconnected. It follows that m; ;(P7,) = (n+1)""! for alli,j € n
and so, by Lemma 1, we have

B o n_l_n3—n ne1 (nA1)" (n? —n)
= il byt = T gy = D),

4,JEN

and

- _ w(PT,) n*—n
OPT) =y T s

Although wW(P7,) # w(S,) = w(7,), all three sequences are of course asymptotic to %2

3.4 The Symmetric Inverse Semigroup Z,

To extend 7, ; to an injective partial transformation, we must add at most n — 1 more
lines, ensuring that they correspond to an injective partially defined map from n\ {i}
ton \ {j}. Since such a partial map obviously corresponds to an injective partial transfor-
mation on {1,...,n — 1}, we see that m; ;(P7,) = |Z,—1| for all 7, j € n. It then follows

that
nnl n—1
S i T = g = (", )
0

1,J€n k=

and
w(Z,) n*—n |T,4|

. 3 1Za]




3.5 The Semigroup POZ,

From this point onward, calculation of the quantities m;;(S) is not as straightforward.
For 0 <p,q <n let POZ,, denote the set of all order-preserving injective partial maps
from p to q. (Note that we interpret k = {1,...,k} to be empty if £ = 0.)

Lemma 2 Let 0 < p,q <n. Then |POZ,,| = (p;q) _ (p;rq)_

Proof Let @ = {l’,...,q'} be a set in one-one correspondence with q. Denote also
by ’':q — q the inverse bijection, so that we write i =i for all i € q. Consider the set
Y={ACpud||A =g}

For A € 3, define ¢4 € POZ, , by
dom(da) =ANp and  im(¢a) =q\(ANd),

noting that |[ANp| = }q\(Aﬂq’ )'|, and that an element of POZ, , is completely determined
by its domain and image. It is then easy to check that the maps determined by

A ¢y and ¢ +— dom(¢) U (q \ im(qb))/

are mutually inverse bijections between ¥ and POZ, ,. The result follows since we clearly

have |X| = (p;rq). O

Remark 3 Geometrically, this proof corresponds to the fact that, given p upper vertices
and ¢ lower vertices, an element of POZ,, is determined by choosing ¢ vertices, and
then joining the selected upper vertices to the unselected lower vertices. An alternative
proof begins by noting that POZ, , contains (p ) (q) maps of rank £, and then applies the

k) \ke
(P[4 p+a
1dent1tyz<)():( )
pr k) \k q

Lemma 4 Leti,5 € n. Then mm-(P(’)In) - (Hj—?) (2n—z’—j>'

i—1 n—i

Proof Let o € M, ;(POZ,). Then since i = j and « is order-preserving, we see that
ka < j whenever k € dom(a) and k < 4. Thus, we may define a map A\, € POZ;_; ;_1 by
dom(A,) =dom(a) N{1,...,i—1} and im(\,) =im(a)N{l,...,7—1}.

Similarly, we have ka > j whenever k£ € dom(«a) and k > i, and so we may also define a
map pPq € POIn—i,n—j by

dom(p,) = {k—i|k € dom(a), k>i} and im(p,) ={k—j|k€im(a), k> j}.

It is then easy to check that the map a +— (A, p) defines a bijection from M; ;(POZ,)
to POZ;_1 j—1 X POZI,_;n—;. The result now follows from Lemma 2. O



Remark 5 The idea of the above proof is summed up in the schematic picture of a typical
element of M, ;(POZ,) illustrated in Figure 2.

“translate” of

an element of

POTi-1g-1 POT.
n—in—j

Figure 2: A schematic picture of an element of M; ;(POZ,,).

It follows by Lemmas 1 and 4 that the total work performed by POZ, is given by
_ oot =2\(2n—1i—)
7,7€EN
In Section 4 we revisit this formula, and show that in fact w(POZ,) = (n — 1)2?"73. An
expression for W(POZ,) may be found by dividing through by |[POZ,| = [POTL,,| = (*").

3.6 The Semigroup O,
For 0 <p <nand g € nlet O,, denote the set of all order-preserving maps from p to q.

Lemma 6 Let 0 < p<n and g € n. Then |O,,| = (p+z_1) = ("23{1)-

Proof Consider the set
Q= {a€POI,,|pe dom(a)}.

There is an obvious bijection O, , — ) determined geometrically by removing all but the
right-most lines from the connected components in the picture of o € O, ,; see Figure 3.
For ¢ € q, put

Q; ={a € Q|pa =i},
so that we have the disjoint union Q = €y U --- U ,. Clearly, the operation of removing
the right-most line gives a bijection between 2; and POZ,_; ;_; for each 7 € q so that, by

Lemma 2, we have
p+i—2
0, =121=3 (P71 77).

i€q
- 1
The result now follows from the identity E (T + k) = (r et ) O
r s
k=0



NV NLA

Figure 3: The bijection O, , — §2; see the proof of Lemma 6 for an explanation of the
notation.

Remark 7 An argument similar to that used in the proof of Lemma 2 may also be used
here. An element a € € is completely determined by the sets dom(a)\ {p} C {1,...,p—1}
and q \ im(«) C q. This gives rise to a bijection between 2 and the set

{Ac{t,....p—11,....¢}||Al=q—1},

pP+q— 1) )

which has cardinality ( 1

Lemma 8 Leti,j € n. Then m;;(0,) = (’ﬂ 2) (zn_ifj).

i—1 n—i

Proof The proof follows a similar pattern to the proof of Lemma 4. Rather than include
all the details, we simply refer to Figure 4 which gives a schematic picture of an element
of M; ;(O,,), indicating a bijection between M, ;(O,,) and O;_1 ; X Op_ip_j+1- a

“translate” of
an element of

Oi—1,5

an element of

On—in—j+1

1 7 n

Figure 4: A schematic picture of an element of M, ;(O,).

In particular, we have m; ;(O,,) = m, ;(POZ,) for all i, j € n, so that w(0,) = w(POL,).
The differing cardinalities of O,, and POZ,, mean that w(O,,) # wW(POI,). However, since
|POZ,| = (*") =2(**"") = 2|0,|, we do have the relationship w(0,) = 20(POL,).

3.7 The Semigroup PO,

For 0 <p <n and ¢ € nlet PO, , denote the set of all order-preserving partial transfor-
mations from p to q.

10



- k-1
Lemma 9 Let 0 < p <n and ¢ € n. Then |PO,,| = Z (Z) (q + ) )

k=0

Proof For A C p write PO, = {a € PO, |dom(a) = A}. We then have the disjoint
union
PO, = | | PO},

ACp

Now for any 0 < k < p, there are (7) subsets A C p for which |A| = k and, for each such

subset A, we have ‘POQ(I‘ = |Oql = (‘”’Z‘l), the last equality following by Lemma 6.
This shows that

6 +h-1
POl =S Pozl =Y (1))

ACp k=0

The upper limit may be changed to n, in light of the convention that (Z) =0ifk>p. 0O

Lemma 10 Leti,j € n. Then

mi,jmon):;::% (z;l) <j+l;—1) <n£—z> <n—i+f>.

Proof Again we find that there is a bijection between M, ;(PO,,) and PO;_1 ;X POy _i n—j+1,
and the result follows from Lemma 9. O

It follows, by Lemmas 1 and 10, that
. o fi-W\[(jtEk=1\(n—di\[n—j+¢
e =323 () ()T
i,j=1 k=0
An expression for w(PQO,,) is found by dividing through by

“/n\ n+k—1

k=0

4 The Proof of Lavers’ Conjecture

We now turn to the task of proving the conjectured result of Lavers that w(O,,) = (n — 1)22"73,
In light of Section 3.6, this amounts to a proof of the identity

ottt =2\ (2n—i— 23
- = (n—1)2273,
g;h ﬂ(z—1)< n—i (n=1)

11



Replacing n by n + 1, and introducing the new parameters p = ¢ — 1 and ¢ = j — 1, the
identity takes on the more pleasing form:

m —np—
Z lp—q <p+q) ( b q) = n2* 1,
p,q=0 n=p

The remainder of this section is devoted to a proof of this identity and, hence, a proof of
the conjecture.

For 0 < m < 2n, define

-2 () ()

noting first that f(n,0) = f(n,2n) = 0. We now find a closed form for the remaining
values of m.

Lemma 11 We have the following identities:

2 ©2n—2k—-1!  (2k+1)
nin—k—DIn—k—1! k&
2 (2n—2k) (2K)!
n(n—k)\(n—k—Dkk-1)!

f(n,2k+1) = for 0<k<n-1 (12)

f(n,2k) = for 1<k<n-1. (13)

Proof We apply two different methods of proof, one to each identity, and each of which
may be adapted to treat the other case.

We first present a purely human-discovered proof of (12). Let 0 < k < n — 1. Consider the
degree k polynomial

2k + 1
Zl2k+1—2p|< ) ) (= k= 1)k-p)

in an indeterminate z. In the defining sum for f(n, m), the terms with p =i and p = m —i
are equal. In this way, we calculate

2(2n — 2k —1)!
nl(n —k—1)!

So it suffices to prove the polynomial identity

Pul(x) = %@: 1. (14)

We do this by induction on k, noting first that when & = 0 both sides of (14) are identically
equal to 1. Suppose now that 1 <k <n—1 and that 0 < ¢ < k. We consider Py(k+/(+1).

12



In the defining sum, terms with p < k — ¢ — 1 will be zero and so, replacing the index of
summation by r = p — k 4+ £, we have

2k +1
Pk+0+4+1)= E:m£+1—2ﬂ< + :yk+£+ww4wﬂwﬂ,

which is readily checked to be equal to

2k+1) 0
K (20+ 1)

Pi(k+(+1).

By an inductive hypothesis,

20+ 1)!
Pg(l’) = %(QE — 1)(@),

and it quickly follows that (14) holds for the k distinct z-values x = k+ 1,k 4+ 2,...,2k.

Since the identity (14) involves polynomials of degree k, it suffices to verify it for one more
w2k +1)!

value of x and, when x = 0, both sides are easily checked to be equal to (—1) o

So (14) holds, and the proof of (12) is complete.
We now present a computer-aided proof of (13) using the WZ method [5]. Let 1 <k <n—1.
Define N
2n(k —p) () ()
2k (2n—2k)
kn = k) () o)
noting that the desired result is equivalent to

F(n,k,p) =

N
—_

F(n,k,p) = 1. (15)

Il
=)

p
A computer implementation® of Gosper’s algorithm [3] gives us the identity
F(?’L + ]-7 k>p) - F(?’L, kap) = G(?’L, kvp + 1) - G(?’L, kap)a
where the function G is defined by

p(k+1—p)
mF(n, k,p).

Summing over p € {0,...,k — 1}, and noting that G(n, k, k) = G(n,k,0) = 0, we obtain
the equality

G(n,k,p) =

k—1 k—1
Y F(n+1,kp)=>Y F(nkp).
p=0 p=0

So it suffices to prove (15) in the case n = k + 1 only. This however is a triviality as only
the p =k — 1 term in the sum is non-zero. This completes the proof of (13). a

3 Available at http://www.cis.upenn.edu/ wilf/progs.html
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Proposition 16 The following identity holds:

Z p— <p+ q) <2"n__pp_ q) — 2t (17)

p,q=0

Proof Consider the two generating functions

o0

ZQZ‘Z} " =(1—42)"%?%  and Z<k;2)4m (1—4z)73

=0 k=0

After squaring the first, and equating coefficients of 2"~!, Lemma 11 gives

3
—

"N fn, 2k + 1) = (n+ 1)4"-1.
2 2
k=0
Similarly, starting from
> %x’f =2z(1—42)"*? and ) (S) AF=1gh — 422(1 — 42) 73,
k=1 " ’ k=2

squaring the first, and looking at the coefficient of 2™, we obtain

n—1
ngan: ()4"1
k=1

Returning to the original sum, we rewrite it to first sum over those p and ¢ for which
p+ q=mis fixed, and get

Sl ) (25 ) - S

p,q=0

n—1
= f(n,0) +an2k+1 + 3 f(n,2k) + f(n, 2n)
k=1

() e

— n22n—1 7

completing the proof. O
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