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Abstract. The minimal faithful degree of a finite group G, de-
noted by µ(G), is the least non-negative integer n such that G em-
beds inside Sym(n). In this article we calculate the minimal faith-
ful permutation degree for all of the irreducible Coxeter groups.

1. Introduction

The minimal faithful permutation degree µ(G) of a finite group G is
the least non-negative integer n such that G embeds in the symmetric
group Sym(n). It is well known that µ(G) is the smallest value of
∑n

i=1 |G : Gi| for a collection of subgroups {G1, . . . , Gn} satisfying
⋂n

i=1 core(Gi) = {1}, where core(Gi) =
⋂

g∈GG
g
i .

We will often denote such a collection of subgroups by R and refer
it as the representation of G. The elements of R are called transitive
constituents and if R consists of just one subgroup G0 say, then we
say that R is transitive in which case faithfulness requires that G0 is
core-free.

The study of this area dates back to Johnson [4] where he proved
that one can construct a minimal faithful representation {G1, . . . , Gn}
consisting entirely of so called primitive subgroups. These cannot be
expressed as the intersection of subgroups that properly contain them.

Here we give a theorem due to Karpilovsky [5], which also serves as
an introductory example. We will make use of this theorem later and
the proof of it can be found in [4] or [4].

Theorem 1.1. Let A be a finite abelian group and let A ∼= A1 × . . .×
An be its direct product decomposition into non-trivial cyclic groups of
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prime power order. Then

µ(A) = a1 + . . .+ an,

where |Ai| = ai for each i.

A theme of Johnson [4] and Wright [10] was to investigate the in-
equality

µ(G×H) ≤ µ(G) + µ(H) (1)

that clearly holds for finite groups G and H . Johnson and Wright first
investigated under what conditions equality holds in (1). In [10] Wright
proved the following.

Theorem 1.2. Let G and H be non-trivial nilpotent groups. Then
µ(G×H) = µ(G) + µ(H).

Further in [10], Wright defined a class of finite groups C in the
following way; for all G ∈ C , there exists a nilpotent subgroup G1 of
G such that µ(G1) = µ(G). It is a consequence of Theorem (1.2) that
C is closed under direct products and so equality in (1) holds for any
two groups H,K ∈ C . Wright proved that C contains all nilpotent,
symmetric, alternating and dihedral groups, though the extent of it
is still an open problem. In [2], Easdown and Praeger showed that
equality in (1) holds for all finite simple groups.

In the closing remarks of [10], Wright flagged the question whether
equality in (1) holds for all finite groups. The referee to that paper
then provided an example where strict inequality holds.

This example involved the monomial reflection groupG(5, 5, 3) which
has minimal degree 15, and the centralizer of its embedded image in
Sym(15), which turns out to be cyclic of order 5. It was observed by
the referee that

µ(G(5, 5, 3)) = µ(G(5, 5, 3)× CSym(15)(G(5, 5, 3))) = 15 < 20,

thus providing strict inequality in (1). This motivated the author of
this article in [8] to consider minimal degrees of the complex reflection
groups G(p, p, q) thereby providing an infinite class of examples where
strict inequality holds.

In [9], the author proved that a similar scenario occurs with the
groupsG(4, 4, 3) andG(2, 2, 5). That is forG either one of these groups,
we have

µ(G) = µ(G× C(G))

where C(G) is the centralizer of G in its minimal embedding, which
is non-trivial, µ(G(4, 4, 3)) = 12 and µ(G(2, 2, 5)) = 10. So we obtain
two more examples of strict inequality in (1) of degrees 12 and 10
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respectively. However the author does not know whether 10 is the
smallest degree for which strict inequality occurs.

It is well known that G(2, 2, n) is isomorphic to the Coxeter group
W (Dn) and so in pursuit of more examples of strict inequality in (1),
the author turned to the irreducible Coxeter groups. The absence of a
complete account of the minimal faithful permutation degrees of these
groups in the literature is addressed in the remainder of this article.
However, finding more examples of strict inequality in (1) remains a
work in progress.

2. The Classical Groups W (An),W (Bn) and W (Dn)

The Coxeter group W (An) is the symmetric group Sym(n+ 1) and
so it has minimal degree n + 1. The Coxeter group W (Bn) is the full
wreath product C2 ≀ Sym(n) which acts faithfully as signed permuta-
tions on {±1,±2, . . . ,±n}, which shows that µ(W (Bn)) ≤ 2n. On the
other hand, the base group is an elementary abelian 2-group of rank
n of minimal degree 2n by Theorem 1.1, so µ(W (Bn)) is at least 2n,
proving µ(W (Bn)) = 2n.

The calculation for the Coxeter groupW (Dn) is a little harder and so
we appeal to an argument given in [6] to do most of this calculation. We
first need to establish some definitions and preliminary results relating
to permutation actions.

Definition 2.1. Let p be a prime and n an integer. The permutation
module for the symmetric group Sym(n) is the direct sum of n copies
of the cyclic group of order p denoted by Cn

p where Sym(n) under the
usual action that permutes coordinates. Define two submodules of Cn

p ,

U = {(a1, a2, . . . , an) ∈ Cn
p |

n
∏

i=1

ai = 1}

V = {(a, a, . . . , a) | a ∈ Cp}.

In the above, U is a submodule of dimension (n − 1) and is called
the deleted permutation module.

The next result is a direct calculation.

Proposition 2.2. U and V are the only proper invariant modules un-
der the action of the alternating group Alt(n).

The Coxeter group W (Dn) is the split extension of the deleted per-
mutation module U , when p = 2, with the symmetric group Sym(n).
It can be also realized as the group of even signed permutations of the
set {±1, . . . ,±n} and so is a subgroup of index 2 in the group W (Bn).
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Theorem 2.3.

µ(W (Dn)) =

{

4 if n = 3
2n if n 6= 3.

Proof. When n = 2, this group is the Klein four group and so µ(W (D2)) =
4. For n = 3, we have W (D3) ∼= (C2×C2)⋊Sym(3) which is isomorphic
to the symmetric group Sym(4) and so µ(W (D3)) = 4.

For n = 4, we observe the left action of the quaternion group Q8 =
{±1,±i,±j,±k} on H (see Section 3 for more details) considered as a
4-dimensional real vector space with basis {1, i, j, k}. The matrices for
this action are the 4 by 4 identity matrix, and the matrices:
for i,









0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0









for j,








0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0









and for k,









0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0









It is easy to see that these elements are contained in the subgroup of
even signed permutation matrices and so are elements of W (D4) and
moreover, the group they generate is isomorphic to Q8. Now Q8 has
minimal degree 8, since all non-trivial subgroups intersect at the centre,
so its minimal degree is given by the Cayley representation. Therefore

8 = µ(Q8) ≤ µ(W (D4)) ≤ µ(W (B4)) = 8,

proving µ(W (D4)) = 8.

For n greater or equal to 5, the proof that µ(W (Dn)) = 2n fol-
lows from a special case of [6, Proposition 5.2.8], where they calculate
minimal permutation degree of U ⋊ Alt(n) where n ≥ 5 relying on
the simplicity of Alt(n). Since U ⋊ Alt(n) is a proper subgroup of
U ⋊ Sym(n), and has minimal degree 2n, it follows immediately that
U ⋊ Sym(n) does too. �
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3. Real Reflection Subgroups

The Coxeter groups W (H3),W (H4) and W (F4) can be realized as
reflection groups on real 4-dimensional space, that is, subgroups of
O4(R). The reflection subgroups of real three and four dimensional
space have been studies extensively and the reader is referred to [7].

We will first deal with the Coxeter group W (H3). This calculation
is easy by the following result.

Theorem 3.1. [2, Theorem 3.1] Let S1 × . . .× Sr be a direct product
of simple groups. Then

µ(S1 × . . .× Sr) = µ(S1) + . . .+ µ(Sr).

The Coxeter group W (H3) is isomorphic to the direct product C2 ×
Alt(5) (see [7]) which are clearly simple groups. Moreover, it is easy to
see that the minimal degree of Alt(5) is 5 and so by Theorem 3.1, we
have µ(W (H3)) = 2 + 5 = 7.

For the groups W (H4) and W (F4), we first recall the quaternions

H =
{

a+ bi+ cj + dk | a, b, c, d ∈ R, i2 = j2 = k2 = ijk = −1
}

.

Earlier we treated H as a 4-dimensional real vector space, however, it
is well-known that it may also be treated as an algebra equipped with
a norm function. That is, for every quaternion h = a+ bi+ cj+dk, the
norm of h is a2 + b2 + c2 + d2. The set of quaternions of norm 1 form
a subgroup of the multiplicative group H

∗ called the unit quaternions,
denoted by S3. It is well-known that all finite subgroups of H

∗ are
contained in S3.

There is a surjection of the semidirect product (S3×S3)⋊C2 onto the
orthogonal group O4(R) (where C2 acts by interchanging components).
The kernel of this homomorphism is the diagonal subgroup of the centre
of S3 × S3 and so we have an isomorphism (S3 ◦ S3) ⋊ C2

∼= O4(R)
where ◦ denotes central product. Thus the finite reflection subgroups
of O4(R) are tightly controlled by the finite subgroups of S3. This is
helpful as there are only five classes of finite subgroups of S3.

Proposition 3.2. [7, Theorem 5.14]
Every finite subgroup of S3 is conjugate in S3 to one of the following
groups:

(1) the cyclic group Cm of order m,

(2) the binary dihedral group Dm of order 4m,

(3) the binary tetrahedral group T of order 24,
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(4) the binary octahedral group O of order 48,

(5) the binary icosahedral group I of order 120.

We recall a well known fact that every Coxeter group acts faithfully
on its associated root system. Moreover when the Coxeter group is
irreducible, roots of any given length are contained in a single orbit, on
which the group also acts faithfully (see [3]). Thus the size of any orbit
in the root system is always an upper bound for the minimal degree of a
Coxeter group. It is the case that for W (H4) and W (F4), we cannot do
any better than the size of their root systems for their minimal degrees.
Below we state convenient structures of W (H4) and W (F4) that allow
us to calculate their minimal degree. A proof of these structures can
be found in [7].

Proposition 3.3. We have these abstract isomorphisms;

W (H4) ∼= (I ◦ I) ⋊ C2 W (F4) ∼= (Q8 ◦Q8) ⋊ (Sym(3) × Sym(3)),

where ◦ denotes central product.

Lemma 3.4. Let G be a finite group and p is prime. Suppose that
the centre Z(G) is cyclic of order p and that it is the unique minimal
normal subgroup of G. Then the central product G ◦ G has a unique
minimal normal subgroup isomorphic to Cp, namely Z(G) ◦ Z(G).

Proof. Let N̄ be a non-trivial normal subgroup of G ◦G. Let N be the
preimage of N̄ in G×G, a normal subgroup of G×G strictly containing
the diagonal copy of Z(G).

Let (x, g) be any element of N not contained in the diagonal copy
of Z(G). If x, g ∈ Z(G), then (x, g) and this diagonal copy generate
Z(G) × Z(G), which is therefore contained in N . Otherwise, one of
x and g, say g, is not contained in Z(G), so there is some element
h ∈ G such that g−1h−1gh 6= 1. But N contains = (x, g)−1(x, g)(1,h) =
(1, g−1h−1gh) as well as its normal closure. So N contains {1} ×Z(G)
and therefore contains Z(G) × Z(G) in this case also. Passing to the
quotient, we find Z(G) ◦ Z(G) is contained in N̄ . �

We now deal with the Coxeter group W (F4). Firstly, we note that
the binary tetrahedral group T is abstractly isomorphic to Q8 ⋊C3 and
a presentation for it can be given thus

〈x, y, b | b3 = 1, x2 = y2, xy = x−1, xb = y, yb = xy〉.

Also note that Sym(3) is abstractly isomorphic to C3 ⋊ C2. Thus we
may present another decomposition for W (F4) which is more conve-
nient to work with.

Lemma 3.5. T × T ∼= (Q8 ×Q8) ⋊ (C3 × C3) and so T ◦ T ∼= (Q8 ◦
Q8) ⋊ (C3 × C3).
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Proof. The first isomorphism is clear since, under the appropriate ac-
tions,

T × T ∼= (Q8 ⋊ C3) × (Q8 ⋊ C3)
∼= (Q8 ×Q8) ⋊ (C3 × C3).

For the second isomorphism, recall that the central product of a
group by itself is formed by taking the quotient of the direct product
by the diagonal subgroup of the center. Since Z(T ) = Z(Q8) ∼= C2,
we have that T × T surjects onto (Q8 ◦ Q8) ⋊ (C3 × C3) with kernel
ZD(T × T ), the diagonal subgroup of the centre of T × T . Thus the
second isomorphism follows. �

This lemma implies that T ◦ T has a unique Sylow 2-subgroup,
namely Q8 ◦ Q8. Writing Sym(3) as C3 ⋊ C2, we may give a pre-
sentation for Q8 ⋊ Sym(3) as the group generated by {x, y, b, a} with
x, y, and b obeying all relations given above with the following:

a2 = 1, ba = b−1, xa = y−1.

With this we may rearrange the above isomorphisms to get:

W (F4) ∼= (Q8 ◦Q8) ⋊ (Sym(3) × Sym(3))
∼= (Q8 ◦Q8) ⋊ ((C3 ⋊ C2) × (C3 ⋊ C2))
∼= (Q8 ◦Q8) ⋊ ((C3 × C3) ⋊ (C2 × C2))
∼= ((Q8 ◦Q8) ⋊ (C3 × C3)) ⋊ (C2 × C2)
∼= (T ◦ T ) ⋊ (C2 × C2)

Now the root system of the Coxeter group W (F4) consists of 48 roots
of two lengths; 24 long and 24 short roots (see [3]). Thus 24 is an upper
bound for the minimal degree of W (F4) and we will prove that in fact
it is 24 by showing µ(T ◦ T ) = 24.

Observe that Lemma 3.4 applies to T and so T ◦T has a unique min-
imal normal subgroup isomorphic to C2. Thus every minimal faithful
representation is given by a core-free subgroup. Below we prove that
any such subgroup must have index at least 24.

Since T ◦ T is a proper subgroup of W (F4), 24 is an upper bound
for its minimal degree. On the other hand, the central product Q8 ◦Q8

is a proper subgroup of T ◦ T which has minimal degree 16 by [2,
Proposition 2.4] and so

16 ≤ µ(T ◦ T ) ≤ 24.

Proposition 3.6. If L is a core-free subgroup of T ◦ T , then |T ◦ T :
L| ≥ 24.
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Proof. Suppose for a contradiction that core(L) = {1} and |T ◦ T :
L| < 24. Then, since |T ◦ T | = 2532, 12 < |L| ≤ 18. This leaves two
cases:

Case (i): |L| = 16.

Then L is a 2-group and is thus contained in the unique Sylow 2-
subgroup of T ◦ T , namely Q8 ◦Q8. Now Q8 ◦Q8 is a nilpotent group
and L is a subgroup of index 2 and thus is normal in Q8◦Q8. Therefore
L contains the center of Q8◦Q8 which is also the center of T ◦T , which
contradicts that core(L) is trivial.

Case (ii): |L| = 18.

Then L has a set of Sylow 3-subgroups of order 9. By Sylow’s the-
orem, the number of Sylow 3-subgroups divides 2 and is congruent to
1 mod 3. Therefore, there is a unique Sylow 3-subgroup Syl(3), and
thus L is a semidirect product of Syl(3) by cyclic group subgroup of
order 2.

Write L = Syl(3) ⋊ 〈w〉. Now by Lemma 3.5, any element of order
3 in T ◦ T normalizes Q8 ◦ Q8. But on the other hand, w normalizes
Syl(3) in L. Thus

[w, Syl(3)] = w−1Syl(3)−1wSyl(3) ⊂ (Q8 ◦Q8) ∩ Syl(3) = {1}.

So w in fact must commute with Syl(3) and since the only element
which does this is the central involution, we have 〈w〉 = Z(T ◦ T ).
Again this contradicts that core(L) = {1}.

Therefore any core-free subgroup of T ◦ T has index at least 24 as
required. �

Theorem 3.7. The minimal faithful permutation degree of T ◦ T and
W (F4) is 24.

We now turn our attention to W (H4). Note that the size of the root
system is 120 (see [3]). Our method for calculating the minimal degree
of this Coxeter group is to show that the minimal degree of its proper
subgroup I ◦ I is 120. Now the binary icosahedral group has a unique
minimal normal subgroup, namely its centre which is isomorphic to C2.
Lemma 3.4 implies that the central product I ◦ I also has a unique
minimal normal subgroup isomorphic to C2. Therefore, every minimal
faithful permutation representation of I ◦ I is necessarily transitive.
Thus as before finding a minimal permutation representation reduces to
simply searching through the subgroup lattice for core-free subgroups
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and selecting the one of minimal index. The LowIndexSubgroups com-
mand in MAGMA (see [1]) returns that the smallest such index is 120,
thus proving µ(I ◦ I) = 120.

Remark 3.8. In the process of calculating the minimal degree of W (F4)
and W (H4), we have exhibited examples of groups where the minimal
degree of a proper quotient is larger than the minimal degree of the
group. Specifically, it can be shown that µ(T ×T ) = 16, yet µ(T ◦T ) =
24. Similarly, we have µ(I ◦ I) > µ(I × I).

4. The Groups W (E6),W (E7) and W (E8)

In this section we will use the fact that for every Coxeter group, there
is a well-defined length function which induces a sign homomorphism
W −→ C2;w 7→ (−1)l(w). The kernel of this homomorphism is an
index 2 subgroup denoted by W+ called the rotation subgroup. It is
the case that for the groupsW (E6) andW (E7) their rotation subgroups
are simple groups. Calculating the minimal permutation degree for a
simple group reduces to finding the maximal subgroups, which have
been well studied.

Let us first deal with the group W (E6). By Humphreys [3], its
rotation subgroup W (E6)

+ is a simple group isomorphic to SU4(F2)
and by [6, Table 5.2.A], it has minimal degree 27. On the other hand,
W (E6) acts faithfully on the set of positive/negative roots of E7 that
are not contained in E6. By inspection of the size of the root systems,
this set has size 27 as well. Therefore the minimal degrees of W (E6)
and its rotation subgroup co-inside, both being 27.

We now turn our attention to W (E7). Again by [3] this group is a
split extension of its rotation subgroup by a cyclic group of order 2.
Now its rotation subgroup W (E7)

+ is a simple group isomorphic to
O7(F2) and again by [6, Table 5.2.A], its minimal degree is 28. So we
have the following decomposition

W (E7) ∼= O7(F2) × C2,

where each direct factor is a simple group. Thus by Theorem 3.1 we
have µ(W (E7)) = 28 + 2 = 30.

Before we deal with the group W (E8), we require a lemma about
covering groups.

Lemma 4.1. Let G be a p to 1 non-split central extension of the simple
group S. Then

µ(G) ≥ pµ(S).
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Proof. We have that G maps surjectively onto S with kernel Cp. Let
this mapping be ϕ. It quickly follows that this kernel is the unique
minimal normal subgroup of G since if N is a non-trivial proper normal
subgroup of G distinct from ker(ϕ), then ϕ(N) is a non-trivial proper
normal subgroup of S contradicting simplicity. So the minimal degree
µ(G) is the index of the largest subgroup which does not contain the
kernel. Let this subgroup be L and observe that L is isomorphic to its
image in S under ϕ. Therefore we have

µ(G) = |G : L| = p|S : ϕ(L)| ≥ pµ(S),

where the last inequality is necessary since ϕ(L) need not be maximal
in S. �

Now the rotation subgroup of W (E8) is a 2 : 1 non-split central
extension of the simple group O8(F2). By [6, Table 5.2.A] this group
has minimal degree 120 and so by Lemma 4.1,

µ(W (E8))
+ ≥ 2µ(O8(F2)) = 240.

On the other hand, the root system of W (E8) has size 240 as well and
so we deduce that µ(W (E8)

+) = µ(W (E8)) = 240.

5. The Groups W (I2(m))

The groups W (I2(m)) are isomorphic to the dihedral groups of order
2m. The minimal degrees of these groups were calculated by Easdown
and Praeger in [2].

Proposition 5.1. For any integer k =
∏m

i=1 p
αi

i > 1, with the pi dis-
tinct primes, define ψ(k) =

∑m

i=1 p
αi

i , with ψ(1) = 0. Then for the
dihedral group D2rn of order 2rn, with n odd, we have

µ(D2rn) =















2r if n = 1, 1 ≤ r ≤ 2
2r−1 if n = 1, r > 2
ψ(n) if n > 1, r = 1
2r−1 + ψ(n) if n > 1, r > 1.

6. Direct Products

Recall that a finite Coxeter group is the direct product of irreducible
Coxeter groups. While in many areas of study it is enough just to
concentrate on the irreducible components, this is not the case when
dealing with minimal degrees. Thus knowledge of the minimal degrees
for all the irreducible Coxeter groups does not imply the minimal degree
for an arbitrary Coxeter group.

We can make the following observations with what is known about
minimal degrees of direct products. The groups W (An) and W (Bn)
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are contained in the Wright class C and so

µ(W (An) ×W (Bn)) = µ(W (An)) + µ(W (Bn)).

Also since W (H3) and W (E7) are direct products of simple groups, we
have by Theorem 3.1

µ(W (H3) ×W (E7)) = µ(W (H3)) + µ(W (E7)).

On the other hand, we have the following isomorphism for odd n

greater than or equal to 5; W (Dn) ×W (A1) ∼= W (Bn). So we have

µ(W (Dn) ×W (A1)) = µ(W (Bn))

but µ(W (Dn)) + µ(W (A1)) = 2n+ 2 > 2n = µ(W (Bn)).
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