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ASSOCIATIVE CONES IN THE IMAGINARY OCTONIONS

EMMA CARBERRY

Abstract. A curve in the nearly-Kähler 6-sphere is almost-complex precisely when

the cone over it is an associative (singular) submanifold of ImO, and hence volume
minimising in its homology class. Almost-complex curves in S6 are either totally

geodesic, pseudo-holomorphic or superconformal, the last case being generic and the

subject of this paper. We begin by giving a geometric construction of a particularly
natural G2-framing for superconformal almost-complex curves. This framing can

easily be shown to agree with that in [6]; the exposition here can be viewed as giving

a geometric interpretation of and motivation for this framing together with a simpler
proof that it indeed lies in G2. We then focus our attention on superconformal

almost-complex f : C→ S6 and use the above framing to construct a spectral curve
for maps of finite type (which include all doubly-periodic examples). This curve

is reducible, and we additionally obtain a linear flow in the Jacobian of the “main

component” of the spectral curve. This linear flow is in fact restricted to the real slice
of a sub-torus of this Jacobian and it is notable that the sub-torus is the intersection

of two Prym varieties, rather than a single Prym variety as has arisen in spectral

curve descriptions of other harmonic maps. This later part of the paper is a report
on joint work with Erxiao Wang.

1. Introduction

The purpose of this manuscript is twofold. Firstly, we explore the relationship between
the geometry of superconformal almost-complex curves f : M2 → S6 and the exceptional
Lie group G2. In particular, we construct a canonical G2-framing for f , chosen so as to
include the principal directions of the second ellipse of curvature. The second part of
the paper is a report on joint work with Erxiao Wang, the details of which will appear
elsewhere [14]. The goal here is to give a bijective correspondence between spectral curve
data and superconformal almost-complex f : C → S6 satisfying a finite-type condition,
which in particular is automatically satisfied by all doubly periodic examples, and hence
all superconformal almost-complex tori. By “spectral curve data” is meant an algebraic
curve, together with a rational function and a line bundle on this curve, all of which
satisfy certain symmetries. The construction given here gives one side of this story:
from superconformal almost-complex curves we obtain spectral curve data. It remains
to reverse the construction; this is work in progress. The other types of almost-complex
curves have already been classified by other means. Totally geodesic almost-complex
curves are easily described as they are each given by the intersection of S6 ⊂ Im O
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with an associative 3-plane, whilst Bryant has given a Weierstrass-representation for all
pseudo-holomorphic almost-complex curves [7].

We now discuss some applications of the spectral curve approach in the general context
of spectral curves for harmonic maps, of which almost-complex curves are an example.
Firstly, an explicit one-to-one correspondence between harmonic maps and algebraic
curve data allows one to describe the moduli-space of the relevant harmonic maps. In
particular, the dimension of the sub-torus of the Jacobian of the spectral curve in which
the linear flow lies is a very important invariant, because if for a harmonic map f this
torus has dimension d, then f lies in a d-dimensional family of harmonic maps. It is
easy to find harmonic maps of the complex plane, but difficult to find ones which are
doubly-periodic and hence maps of genus one minimal surfaces. However for constant
mean curvature tori in R3 [15, 28], minimal tori in S3 [11, 12] and minimal Legendrian
tori in S5 [13] this periodicity problem has been solved, demonstrating the existence
of doubly periodic examples coming in families of arbitrarily large dimension. It is
not surprising that the dimension of the family in which a map lives is geometrically
significant. Simple expressions in d (or equivalently in the spectral genus) give lower
bounds on the area of constant mean curvature tori in R3 [16], and the area is an invariant
measuring the geometric complexity of special Lagrangian T 2-cones [21]. Killian and
Schmidt also made essential use of a spectral curve correspondence in their proof of the
Pinkall-Sterling conjecture that the only embedded constant mean curvature tori in S3

are tori of revolution [29].
Almost-complex curves f : M2 → S6 are of particular interest, in part because of their

relationship with associative 3-cycles, which are important in M -theory. The almost-
complex condition is equivalent to requiring that the cone C := R+f(M2) is associative.
This means that its tangent space at each point is the imaginary part of an associative
subalgebra of O, or equivalently that C is calibrated with respect to the associative 3-
form on Im O. If f has image in a totally geodesic S5 ⊂ S6, then we instead make contact
with a different calibrated geometry: the cones over such surfaces are special Lagrangian,
and play a special role in string theory and in particular the SYZ conjecture.

We now describe the contents of this manuscript in more detail. The 6-sphere may be
considered as the space of unit length imaginary octonions, and Cayley multiplication
induces on it an almost-complex structure J which is nearly-Kähler and optimal amongst
almost-complex structures in the sense of having minimum volume [10]. An almost-
complex curve is an immersion f : M2 → S6 of a Riemann surface whose differential is
complex linear

df ◦ i = J ◦ df. (1.1)

Let f : M2 → S6 be an almost-complex curve, which we are assuming to not be totally-
geodesic. For each p ∈ M2, the tangent space Tf(p)S

6 naturally decomposes into three
2-dimensional subspaces: V1 := f∗(TpM2), the first normal space V2 (which for f not
totally-geodesic is always 2-dimensional), and the orthogonal complement V3 of V1 ⊕ V2.
Together with the line V0 = Rf(p), we have a natural orthogonal decomposition of
Im O ∼= R7. Orthonormal vectors e1, . . . , e7 ∈ Im O form a G2-basis if (e1, . . . , e7) ∈ G2,
one way of expressing this is

e3 = e1 · e2, e5 = e7 · e2, e6 = e5 · e3, e4 = e6 · e2.
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Such a framing is clearly determined by the choice of e1, e2, e7. For the spectral curve
construction, we will need an intrinsic way of choosing a G2-framing. This is done using
ellipses of curvature. The first ellipse of curvature is the image of the unit circle in
TpM

2 under the second fundamental form. When f is totally geodesic this is a point;
we have excluded this case and it is not difficult to show that then the first ellipse of
curvature is a (nontrivial) circle and hence does not pick out any specific directions within
V2. The second ellipse of curvature is the image of the unit circle in TpM

2 under the
third fundamental form III(u, v, w) = (∇uII(v, w))⊥, where ∇ denotes the Levi–Civita
connection. For f pseudo-holomorphic this ellipse is a circle, but in the superconformal
case it is either a nontrivial ellipse (when f is linearly full) or a line segment (when f is
orthogonal to a fixed unit vector N ∈ S6. We assume hereafter that f is superconformal.
Thus the second ellipse of curvature defines geometrically natural orthogonal directions
within V3. We show in Theorem 3 that we may choose a local coordinate z = x+ iy
on M2 such that the choices e1 = f , e2 = fx, e7 = −III( ∂

∂x ,
∂
∂x ,

∂
∂x ) determine a

G2-framing with the property that
(1) if f is linearly full, then e6 and e7 are, respectively, along the minor

and major axes of the second ellipse of curvature
(2) if the image of f is contained in a totally geodesic S5 ⊂ S6, then e7 lies

along the 2nd ellipse of curvature, which is in this case a line segment.
We also give simple expressions for each of e1, . . . , e7.
The above G2-framing F is primitive with respect to the 6th order involution τ which

gives G2/T
2 its usual 6-symmetric space structure (see section 4). For our purposes the

importance of this is that it enables us to define a family of flat connections∇ζ = ∇L+ϕζ ,
ζ ∈ C − {0}, in a trivial rank 7 complex vector bundle V with trivial connection ∇L.
Parallel sections Aζ of EndV then satisfy an equation of Lax type, dA = [A,ϕζ ]. The
finite-type condition referred to above means that it is possible to find such parallel
sections Aζ which are Laurent polynomials in ζ and satisfy some additional conditions.
These Aζ are called polynomial Killing fields; see section 2. This fits into a general
framework of descriptions for equations of Lax type in terms of spectral curve data, see
for example [1, 2, 18, 3, 27]. The related spectral curve constructions for harmonic tori in
several other target spaces [24, 34, 4, 17, 30, 31, 32, 33] are somewhat more complicated
as the Lax pair equation does not arise directly.

Given a superconformal almost-complex f : C → S6 of finite type, we construct an
algebraic curve X, called the spectral curve, together with a degree 7 rational function
λ : X → P1. The curve X is reducible; it can be broken into a rational component and
another curve Y , which we call the main component of the spectral curve. The restriction
of λ to Y has degree 6. We show that Y is generically smooth, and construct a linear map
from the domain C of f to the Jacobian of Y which assigns to each z ∈ C an eigenline
bundle Ez. In fact this map has image in a sub-torus of JacY and the most geometrically
interesting part of the paper is describing how the geometry of G2 determines what the
sub-torus is. It is the real part of the intersection of two Prym varieties. The linear flow
is restricted to one of these because the frame F is special orthogonal, and the further
restriction to the other Prym variety arises because in fact F ∈ G2 ⊂ SO(7). The
symmetries are the same as those found by Hitchin in his study of Langlands duality for
G2-Higgs bundles [26]. The degree of the map λ is equal to the size of the matrices in
the group under consideration; in working with the main component Y it is necessary
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to exploit the relationship between SO(7) and Sp(6) which in that context is an explicit
realisation of Langlands duality. We also compute various invariants, such as the genus
of the spectral curve, the degree of the eigenline bundles and the dimension of the torus
in which they lie.

The structure of this paper is as follows. In section 2 we collect standard facts regard-
ing the octonions, the compact Lie group G2 and almost-complex curves which we will
use in what follows. Section 3 contains the construction of a canonical G2-framing for a
superconformal almost-complex curve using ellipses of curvature and in the last section
is summarised the spectral curve construction for such maps f : C→ S6 of finite-type.

2. Preliminaries: G2 and the Octonions

We use the natural cross product on the imaginary octonions to define an almost-
complex structure on S6, and to see how the compact group G2 naturally appears in the
study of almost-complex curves in S6. We then explain the relationship between these
almost-complex curves and calibrated geometry.

Beginning with the field of real numbers, the Cayley-Dickson construction yields an
infinite sequence of nicely normed algebras, each having dimension twice that of the
previous algebra. The first three algebras so constructed are the complex numbers C,
the quaternions H and the octonions O; at each step one takes pairs of elements and
defines

(a, b)(c, d) := (ac− d̄b, da+ bc̄),

where the conjugation operator is defined by (a, b) = (ā,−b) and the norm by ‖(a, b)‖2 :=
(a, b)(a, b). In the first few stages of this process, an important property of the algebra
is lost in each step: C = R ⊕ Ri is not ordered, H = C ⊕ Cj is not commutative and
O = H ⊕ Hl is not associative. The octonions, also called the Cayley numbers, are the
last algebra in the Cayley-Dickson sequence which form a division algebra. Writing

Reu :=
1
2

(u+ ū), Imu :=
1
2

(u− ū),

octonionic (or Cayley) multiplication defines on Im O ∼= R7 the usual Euclidean inner
product by

〈u, v〉 := −Re(uv) = −1
2

(uv + vu), (2.1)

and also yields on Im O a cross product, in exactly the same way that a cross product
on Im H ∼= R3 may be defined using quaternionic multiplication, namely

u× v := Im(uv) =
1
2

(uv − vu). (2.2)

A cross product on an inner product space V is a bilinear map × : V × V → V such
that u× v is orthogonal to both u and v, and |u× v| = |u||v| sin θ, where θ denotes the
angle between u and v. Due to their relationship with normed division algebras, cross
products exist only in 3 and 7 dimensions.

We define the exceptional Lie group G2 as the automorphism group of the octonions.
Any automorphism must preserve 1, and so G2 may also be characterised as linear
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transformations of Im O preserving Cayley multiplication. From (2.1) and (2.2) this is
equivalent to preserving the inner product and the cross product but

〈u, v〉 = −1
6

tr (w 7→ u× (v × w)) for u, v,w ∈ Im O (2.3)

so it suffices to preserve the cross product. Using (2.3), this is equivalent to preserving
the trilinear functional

φ : Im O× Im O× Im O→ R
(u, v, w) 7→ 〈u× v, w〉

which is the dual of the cross product with respect to the inner product. Note that from
(2.1) and (2.2),

φ(u, v, w) = 〈uv + 〈u, v〉, w〉
= 〈uv,w〉,

in agreement with Bryant’s characterisation of G2 as the real-linear transformations of
Im O preserving the trilinear functional (u, v, w) 7→ 〈uv,w〉 [19].

The Fano mnemonic below is a simple way of recording the multiplication table for
the octonions. Writing e1 = i, e2 = j, e3 = k, e4 = l, e5 = il, e6 = jl, e7 = kl, then if
ea, eb, ec lie along the seven lines/circle with a positive orientation, we have ea · eb = ec.

e6 e3 e5

e1 e2

e7

e4

Fano mnemonic
For orthogonal vectors the cross product agrees with Cayley multiplication and writing

ωabc = e∗a ∧ e∗b ∧ e∗c , the associative form φ is given by the positively oriented lines in the
Fano mnemonic,

φ = ω123 + ω725 + ω536 + ω617 + ω347 + ω145 + ω246.

The cross product on Im O allows us to define on S6 ⊂ Im O an almost-complex
structure J , by

Jp(v) = p× v where p ∈ S6, v ∈ TpS6.

Together with the standard metric g on the 6-sphere, J defines a nearly-Kähler structure,
as straightforward calculations yield (∇vJ)v = 0, g(Jv, Ju) = g(v, u), where ∇ denotes
the Levi–Civita connection.

Let M be a Riemann surface with complex coordinate z = x + iy. An immersion
f : M2 → S6 is termed almost-complex if

df ◦ i = J ◦ df.
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In particular, differentiating and permuting f × fx = fy we have

f × (fxx + fyy) = 0

and so f is a branched minimal immersion.
We now explain the relationship between almost-complex curves in S6 and calibrated

geometry, which was introduced by Harvey and Lawson in [20]. A calibration on a
Riemannian manifold X is a closed k-form ϕ such that

ϕ|ξ ≤ vol|ξ for all oriented tangent k-planes ξ.

A k-submanifold N is calibrated with respect to ϕ if we have equality above for all of
its oriented tangent planes. If N is compact, it must have minimum volume amongst all
homologically equivalent submanifolds, since if Ñ is homologous to N then

volN =
∫
N

ϕ =
∫
Ñ

ϕ ≤ volÑ .

Example 1. The form φ(u, v, w) = 〈u × v, w〉 is a calibration on Im O, and a 3-fold
N3 ⊂ Im O is termed associative if it is calibrated with respect to φ. This is clearly
equivalent to requiring that for all p ∈ N , if u, v, w are an oriented orthonormal basis
then u × v = w. This holds if and only if 1 ⊕ TpN is an associative subalgebra of O,
justifying the terminology. Note that f : M2 → S6 is almost-complex precisely when the
cone C over f(M2) in Im O is associative.

Example 2. The form Re dz = Re(dz1 ∧ . . . ∧ dzn) is a calibration on Cn and the
calibrated submanifolds are called special Lagrangian. When n = 3, this arises as a
special case of the previous example.

On V0 = span{e1, e2, e3, e5, e6, e7}, writing z1 = e1 + ie5, z
2 = e2 + ie6, z

3 = e3 + ie7

then
Re dz = ω123 + ω617 + ω725 + ω536 = φ|V0 .

We may use the action of G2 to define complex coordinates on any other 6-plane V ⊂
Im O; since φ is invariant under this action we see that Re dz = φ|V . Thus if an immersion
N3 → Im O lies in vector subspace V 6 ⊂ Im O, it is special Lagrangian with respect to
this complex structure if and only if it is associative. In particular, if f : M2 → S6 lies
in a totally geodesic S5 = V ∩S6 then f is almost-complex if and only if the cone C over
f in V is special Lagrangian.

3. Ellipses of Curvature and G2-framing

In this section we explain how the geometry of the second ellipse of curvature of a
superconformal almost-complex curve in S6 gives rise to a canonical G2-framing of f .

Let f : M2 → S6 be an almost-complex curve. The second fundamental form of f is
II(X,Y ) = (∇XY )⊥, where ⊥ denotes projection to the orthogonal complement of TM2

in TS6, or equivalently the orthogonal complement of the span of f, fx, fy in Im O. The
first ellipse of curvature of f is the image

{II(v, v) : v ∈ TpM2, ||v|| = 1}

of the unit circle in TpM
2 under II.
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Lemma 1.

II
( ∂
∂y
,
∂

∂y

)
= f × II

( ∂
∂x
,
∂

∂y

)
= −II

( ∂
∂x
,
∂

∂x

)
.

Proof. Denoting derivatives by subscripts and writing κ = 〈fx, fx〉 = 〈fy, fy〉 for the
conformal factor,

II
( ∂
∂x
,
∂

∂x

)
= fxx + κf − κx

2κ
fy +

κx
2κ
fx

II
( ∂
∂y
,
∂

∂y

)
= fyy + κf +

κx
2κ
fx −

κy
2κ
fy

II
( ∂
∂x
,
∂

∂y

)
= fxy −

κy
2κ
fx −

κx
2κ
fy.

Hence

f × II
( ∂
∂x
,
∂

∂y

)
= f × fxy −

κy
2κ
fy +

κx
2κ
fx.

Differentiating f ×fx = fy with respect to y rewrites the first term as f ×fxy = fyy +κf
whilst differentiating f × fy = −fx with respect to x gives f × fxy = −fxx − κf and
hence the result. �

The unit circle in TM2 consists of vectors of the form vθ = cos θ ∂
∂x + sin θ ∂

∂y ; the first
ellipse of curvature is parametrised by

II(vθ, vθ) = cos2 θII
( ∂
∂x
,
∂

∂x

)
+ 2 sin θ cos θII

( ∂
∂x
,
∂

∂y

)
+ sin2 θII

( ∂
∂y
,
∂

∂y

)
= cos(2θ)II

( ∂
∂x
,
∂

∂x

)
+ sin(2θ)II

( ∂
∂y
,
∂

∂y

)
.

We thus observe (as did [6]) that the first ellipse of curvature is a point when f is totally
geodesic and is otherwise a circle. We will assume we are not in the (trivial) totally
geodesic case.

The third fundamental form is defined by

III(X,Y, Z) =
(
∇XII(Y,Z)

)⊥
,

where now ⊥ now denotes projection to the orthogonal complement of TM2⊕ image(II)
in TS6.

Lemma 2. Write III(v) = III(v, v, v). Then

III(vθ) = 2 cos(3θ)III
( ∂
∂x

)
− 2 sin(3θ)III

( ∂
∂y

)
.

Thus the image of the unit circle in TM2 under the third fundamental form is an ellipse,
which we call the second ellipse of curvature of f .
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Proof. This is a straightforward computation:

III(vθ) = cos3 θIII
( ∂
∂x

)
+ 3 cos θ sin2 θIII

( ∂
∂x
,
∂

∂y
,
∂

∂y

)
+ 3 cos2 θ sin θIII

( ∂
∂x
,
∂

∂x
,
∂

∂y

)
+ sin3 θIII

( ∂
∂y

)
= (cos3 θ − 3 cos θ sin2 θ)III

( ∂
∂x

)
+ (sin3 θ − 3 cos2 θ sin θ)III

( ∂
∂y

)
= 2 cos(3θ)III

( ∂
∂x

)
− 2 sin(3θ)III

( ∂
∂y

)
,

where in the second line we used that Lemma 1 implies III( ∂
∂x ,

∂
∂y ,

∂
∂y ) = −III( ∂

∂x ) and
III( ∂

∂x ,
∂
∂x ,

∂
∂y ) = −III( ∂∂y ). �

Elementary arguments [6] demonstrate that the second ellipse of curvature is a cir-
cle precisely when f is pseudo-holomorphic. Bryant has shown [7] that all pseudo-
holomorphic almost-complex curves in S6 can be constructed by a Weierstrass type
representation, namely by integrating a certain holomorphic differential system on the
Grassmannian G̃r(2, Im O) ⊂ P(C ⊗R Im O) of oriented 2-planes in Im O and project-
ing the resulting holomorphic curve to S6. We assumed above that our almost-complex
curves f are not totally-geodesic, and now further exclude the next easiest case of pseudo-
holomorphic curves. We call the remaining almost-complex curves superconformal (this
is consistent with the usual terminology, introduced in [5]) and restrict our attention to
these; they have not been characterised algebraically.

By definition, for any local complex coordinate z = x+ iy on M2 the spaces

V0 = Rf, V1 = TM2, V2 = image(II), V3 = (V0 ⊕ V1 ⊕ V2)⊥

give an orthogonal decomposition of Im O. In the general case, where away from isolated
points the second ellipse of curvature is a non-trivial ellipse, then V3 = image(III).
If the second ellipse of curvature is everywhere a line segment then f has image in a
totally geodesic S5 ⊂ S6 with unit normal N , then N is orthogonal to image(III), so
that V3 = image(III) ⊕ RN . We shall specify a corresponding G2 basis, that is an
orthonormal basis e1, . . . , e7 of Im O such that (e1, . . . , e7) ∈ G2 and

V0 = Re1, V1 = spanR(e2, e3), V2 = spanR(e4, e5), V3 = spanR(e6, e7).

Corollary 1. For any local complex coordinate z = x + iy on M2, by Lemma 1 the
orthonormal framing defined by

e1 = f, e2 =
fx
||fx||

, e3 =
fy
||fy||

,

e4 =
II( ∂

∂x ,
∂
∂x )

||II( ∂
∂x ,

∂
∂x )||

, e5 =
II( ∂

∂x ,
∂
∂y )

||II( ∂
∂x ,

∂
∂y )||

, e6 = e2 × e4, e7 = e3 × e4,

(3.1)

is a G2 basis.

Proof. Recall that for orthogonal vectors the cross product agrees with the Cayley prod-
uct, and we may express the property of being a G2-frame in terms either of Cayley
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multiplication or the cross product. From the Fano mnemonic, the conditions

e3 = e1 × e2, e5 = e1 × e4, e6 = e2 × e4, e7 = e3 × e4

are equivalent to the requirement that (e1, . . . , e7) ∈ G2, and clearly the given basis sat-
isfies these conditions. Note that this is an alternative characterisation to that specified
in the introduction. �

Lemma 3. For any local complex coordinate z = x+ iy on M2, we have

f × III
( ∂
∂x

)
+ fx × II

( ∂
∂x
,
∂

∂x

)
= −III

( ∂
∂y

)
f × III

( ∂
∂y

)
− fy × II

( ∂
∂x
,
∂

∂x

)
= III

( ∂
∂x

)
.

Proof. From Lemma 1, f × II( ∂∂z ,
∂
∂z ) = iII( ∂∂z ,

∂
∂z ) and differentiating gives

fz × II
( ∂
∂z
,
∂

∂z

)
+ f × ∂

∂z
II
( ∂
∂z
,
∂

∂z

)
= i

∂

∂z
II
( ∂
∂z
,
∂

∂z

)
.

Now III( ∂∂z ) and ∂
∂z II( ∂∂z ,

∂
∂z ) differ by a linear combination of f, fz, fz̄, II( ∂∂z ,

∂
∂z ) and

II( ∂∂z̄ ,
∂
∂z̄ ). Acting by f× on the first such term gives zero whilst on the other terms f×

acts as multiplication by i. Hence we also have

fz × II
( ∂
∂z
,
∂

∂z

)
+ f × III

( ∂
∂z

)
= iIII

( ∂
∂z

)
.

Breaking this into real and imaginary parts yields

1
2

(
fx × II

( ∂
∂x
,
∂

∂x

)
− fy × II

( ∂
∂x
,
∂

∂y

))
+ f × III

( ∂
∂x

)
= −III

( ∂
∂y

)
1
2

(
−fy × II

( ∂
∂x
,
∂

∂x

)
− fx × II

( ∂
∂x
,
∂

∂y

))
+ f × III

( ∂
∂y

)
= III

( ∂
∂x

)
.

From the invariance of the cross product under the action of G2, we know that the G2-
basis of (3.1) satisfies e2 × e4 = −e3 × e5 and e3 × e4 = e2 × e5. Conformality of f tells
us that ||fx|| = ||fy|| and from Lemma 1 ||II( ∂

∂x ,
∂
∂x )|| = ||II( ∂

∂x ,
∂
∂y )||, which together

yield the Lemma. �

To define a G2-framing in a canonical and geometrically meaningful way, consider
first the general case, in which the second ellipse of curvature is generically a non-trivial
ellipse. This ellipse singles out two directions within V3, namely its major and minor
axes. We are motivated by Lemma 2 to seek a coordinate z = x + iy such that III( ∂

∂x )
and III( ∂∂y ) are orthogonal. To see that we can do this everywhere, we first extend
the second and third fundamental forms complex-linearly so that they are defined on
TCM2 = TM2⊗C, and extend the first fundamental form 〈·, ·〉 to the natural Hermitian
inner product for which we use the same notation. Using Lemma 1 again,

III
( ∂
∂z

)
=

1
2

(
III
( ∂
∂x

)
+ iIII

( ∂
∂y

))
, III

( ∂
∂z̄

)
=

1
2

(
III
( ∂
∂x

)
− iIII

( ∂
∂y

))
,

and so 〈III( ∂
∂x ), III( ∂∂y )〉 = 0 if and only if 〈III( ∂∂z ), III( ∂∂z̄ )〉 ∈ R. But 〈III( ∂∂z ), III( ∂∂z̄ )〉

is holomorphic [6] and hence constant. Since the second ellipse of curvature was assumed
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to not be a circle this constant is non-zero so by rotating z = x+ iy we may fix〈
III
( ∂
∂x

)
, III

( ∂
∂x

)〉
−
〈
III
( ∂
∂y

)
, III

( ∂
∂y

)〉
= 4
〈
III
( ∂
∂z

)
, III

( ∂
∂z̄

)〉
= a, (3.2)

for some a ∈ R+. Clearly then from Lemma 2, III( ∂
∂x ) and III( ∂∂y ) define, respectively,

the major and minor axes of the second ellipse of curvature.

Theorem 3. (c.f. [6]) Let f : M2 → S6 be a superconformal almost-complex curve, and
choose a local complex coordinate z = x+ iy on M2 as in (3.2). If f is linearly full, then
(away from isolated points) the second ellipse of curvature is a non-trivial ellipse and
III( ∂

∂x ) and III( ∂∂y ) define the major and minor axes of the second ellipse of curvature.
Moreover, taking unit vectors in the directions

f, fx, fy, II
( ∂
∂x
,
∂

∂x

)
, II
( ∂
∂x
,
∂

∂y

)
, ±III

( ∂
∂y

)
, −III

( ∂
∂x

)
gives a G2-framing.

If the image of f is contained in a totally geodesic S5 ⊂ S6 with normal vector N ,
then the second ellipse of curvature is a line segment, III( ∂

∂x ) lies along this line segment
and III( ∂∂y ) = 0. In this case, replacing III( ∂∂y ) above by ±N yields a G2-framing.

Proof. Consider first the case when f is linearly full. For any local coordinate z, the
action f× preserves V3. Choosing z as in (3), III( ∂

∂x ) and III( ∂∂y ) are orthogonal so

f × III(
∂

∂y
) = bIII(

∂

∂x
) and f × III(

∂

∂x
) = −1

b
III(

∂

∂y
), where b = ±

||III( ∂∂y )||
||III( ∂

∂x )||
.

From Lemma 3 then

fx × II(
∂

∂x
,
∂

∂x
) = −(1 +

1
b

)III(
∂

∂y
) and fy × II(

∂

∂x
,
∂

∂x
) = (b− 1)III(

∂

∂x
).

By our choice of z, we have that |b| < 1, so b − 1 < 0, whilst the sign of 1 + 1
b depends

upon that of b. Hence the framing given above lies in G2. The case when f is not linearly
full is clear. �

4. Spectral Curves and Applications

To each superconformal almost-complex f : T 2 → S6 we shall associate a reducible
algebraic curve X, called the spectral curve, and a linear flow in the intersection of two
Prym varieties defined over the curve obtained by removing the rational “component”
of X. The reader is referred to [14] for further details and proofs of the results in this
section.

For any compact simple Lie group G, we may define an automorphism τ of or-
der k, where k is the height of the highest root of the complexified linear algebra gC.
Namely, choose simple roots β1, . . . , βr and write the highest root as a positive sum
θ =

∑r
j=1 ajβ

j , so that its height is given by k =
∑r
j=1 β

j . Now define τ : G → G

by τ = AdC, where C = 1
k

∑r
j=1 tj where each tj lies in the toral subalgebra t and is

determined by βi(tj) = δij . This then gives G/T the structure of a k-symmetric space,
where T is the maximal torus of G. In particular, writing T 3 and T 2 for the maximal
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tori of SO(7,R) and G2 respectively, both SO(7,R)/T 3 and its submanifold G2/T
2 are

given a 6-symmetric space structure by this construction, where in both cases

C := (1, Rπ
3
, R 2π

3
, Rπ),

and Rθ denotes the matrix for rotation through the angle θ. Writing gC
2 := g2 ⊗ C, τ

gives the decomposition

gC
2 =

5⊕
j=0

gj

where gj is the exp 2π
√
−1j/6-eigenspace of τ , and hence

T (G2/T )C =
5⊕
j=0

[gj ].

Let f : M2 → S6 be superconformal almost-complex, with G2 frame F as defined in
the previous section. Then a computation [5] shows that

F−1dF = (u0 + u1)dz + (ū0 + ū1)dz̄, uj ∈ gj ,

and that F−1dF (T 1,0M2) contains a cyclic element, that is an element expressible as∑
j=1 c

jvβj + cv, where vβj , v are in the root spaces of βj ,−θ respectively, and all coef-
ficients are non-zero. We say then that F is τ -primitive.

For ζ ∈ C− {0} define

ϕζ := (u0 + u1ζ)dz + (ū0 + ū1ζ
−1)dz̄;

we make the standard observation that the connections

∇ζ = ∇L + ϕζ

defined by these forms in the trivial rank seven complex vector bundle V over the surface
M2 all have zero curvature. Here V may be thought of as (the pullback under F of) the
tangent bundle to GC

2 , and then ∇L = ∇− 1
2F
−1dF is the connection which trivialises

this bundle by left translation. Since GC
2 is the identity component of the subgroup of

GL(7,C) preserving a generic three-form (see e.g. [25]), we define a GC
2 structure on V

by specifying a generic three-form α, by which we mean one for which

q(v, w) := −1
6

(vyα′) ∧ (wyα′) ∧ α′ (4.1)

satisfies det 6= 0. Here det(q) ∈ (Λ7V ∗)9 is taken when q is viewed as a map V →
V ∗ ⊗ Λ7V ∗.

We specialise now to the case when M2 is the complex plane. Our connection forms
satisfy

τ(ϕζ) = ϕεζ , ϕ̄ζ = ϕζ̄−1 ,

and we search for parallel sections of the endomorphism bundle EndV with the same
symmetries. We say that f is of finite type if there is a polynomial Killing field, i.e. a
solution A =

∑d
j=−dAjζ

j to
dA = [A,ϕζ ]

with
ϕζ = (Ad−1 +Adζ)dz + (A1−d +A−dζ

−1)dz̄
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and Āζ = Aζ̄−1 , τ(Aζ) = Aεζ . All superconformal almost-complex f : T 2 → S6 are of
finite type [8, 5], and the polynomial Killing fields form a commutative algebra [9]. We
call d the degree of Aζ ; note that d = 6k + 1 for some k ∈ Z+ ∪ {0}.

Let Aζ(z) ∈ H0(O(2(6k+ 1))⊗EndV ) be a polynomial Killing field for f of minimal
degree, and define an algebraic curve X̂ by

det(Aζ − µI) = 0.

The eigenvalues of Aζ are of the form 0, µ1, µ2, µ3, −µ1, −µ2, −µ3, and satisfy µ1 +
µ2 + µ3 = 0. Hence X̂ has the form

µ
(
µ6 − a1(ζ)µ4 +

a1(ζ)2

4
µ2 − a2(ζ)

)
= 0.

with
a1(ζ) = µ2

1 + µ2
2 + µ2

3, a2(ζ) = (µ1µ2µ3)2.

The τ -symmetry of Aζ induces an order six involution τ : ζ 7→ εζ; we call the quotient
curve X = X̂/τ the spectral curve of f . Writing aj(ζ) = bj(λ)|λ=ζ6 , the main component
Y of the spectral curve is given by

µ6 − b1(λ)µ4 +
b1(λ)2

4
µ2 − b2(λ) = 0.

The reality condition on the polynomial killing field Aζ induces on the spectral curve an
antiholomorphic involution

ρ : (λ, µ) 7→ (λ̄−1, µ̄).

Theorem 4. [14] For a generic polynomial Killing field, the main component Y of the
spectral curve is smooth.

The spectral curve can be realised as the characteristic polynomial of a Killing field
depending only on λ = ζ6. Let

Cζ = diagonal(1, Sζ , Sζ2 , Sζ3)

where

Sζ =

(
1
2 (ζ + ζ−1) − 1

2i (ζ − ζ
−1)

1
2i (ζ − ζ

−1) 1
2 (ζ + ζ−1)

)
and define

Aλ(z) = AdCζ−1Aζ(z).

The Laurent polynomial Aλ has degree 2(k+ 1) when Aζ has degree 2(6k+ 1) and X is
given by the characteristic polynomial of Aλ.

Let α be the generic three-form giving the trivial C7 bundle V on C its G2 structure.
It induces a metric g on V by

g =
q

(det(q))1/9

where q was defined in (4.1). For each z ∈ C, write Vz for the fibre of V over z and let
V z = P1 ⊗ Vz, with metric gz on V z as above.
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Lemma 4. [14] Let V0 be the line bundle defined by V z0 ⊂ kerAζ(z) and Ez = V z/V z0 ⊗
O(− 1

6deg(Vz/Vz
0)). Then

ωz(v1, v2) = gz(Aζ(z)v1, v2)

defines a symplectic form on E, and the restriction of the polynomial killing field Aζ(z)
acts as a symplectic endomorphism of E.

For each z ∈ C define Ez → Ŷ to be the unique line bundle contained in the sub-sheaf
ker(µ · id−ζ∗Aζ)(z) ⊂ ζ∗E. These bundles are preserved by the order six involution
τ , and hence descend to eigenline bundles Ez on the main component Y of the spectral
curve.

We have on Y the involution

σ : (λ, µ) 7→ (λ,−µ);

and so may define C1 ' Y/σ. Let C2 be the hyperelliptic curve

z2 = b2(λ),

and observe that

π2 : Y → C2

(λ, µ) 7→
(
λ, µ

(
µ− b1

2

))
exhibits Y as a three-to-one cover of C2.

Y
π1

}}||
||

||
|| π2

!!B
BB

BB
BB

B

C1

  B
BB

BB
BB

B C2

~~||
||

||
||

P 1

The Prym variety of the cover πi : Y → Ci is defined to be the kernel of the norm map

Nmi : Jac(Y )→ Jac(Ci)[∑
cjpj

]
7→
[∑

cjπi(pj)
]
.

Hence in particular

P (Y,C1) = {degree 0 line bundles on Y satisfying σ∗L ∼= L∗}
where σ is the involution of the 2–sheeted cover Y → C1. The intersection

Tur := P (Y,C1) ∩ P (Y,C2)

is connected.

Theorem 5. [14]
(1) Let R denote the ramification divisor of λ : Y → P1. The constant translate
E∗z ⊗ O(− 1

2R)of the eigenline bundles lies in the intersection Tur of the two
Prym varieties, in fact in the real slice TurR(Y,P1) given by ρ∗Ez ' Ez.
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(2) The map

T 2 → TurR(Y,P1)

z 7→ E∗z ⊗O(−1
2
R)

defines a linear flow.
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