ENUMERATION OF
STRENGTH 3 MIXED ORTHOGONAL ARRAYS

SCOTT H. MURRAY AND MAN V. M. NGUYEN

ABSTRACT. We introduce methods for enumerating mixed orthogonal arrays
of strength 3. We determine almost all mixed orthogonal arrays of strength 3
with run size up to 100.
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- - 1. INTRODUCTION
S:introductionpaper

This paper is devoted to constructing all strength 3 orthogonal QLAY S ()
oductionpaper
with a given parameter ggt and run s%ze The remainder of Section Il 1S a review
enulimeraten
of notation. In Section u we define isomorphisms orthogonal array, so that only

a single representative of each isomorphism class needs to be found. By encoding
orthogonal gurays as colored eraphs, we can define canonical orthogonal arrays
in Section t3. This allows us %o ¢ ue re resentatives of isomorphism classes
efficiently using the nauty program %FIWELC% enumerate all canonical orthogo gé colvelLp
arrays using backtrack search in the GAP computer algebra system[??. In Section t5
we use integer linear programming methods combined with canonical orthogonal
arrays to list isomorphism classes of extensions of a strength 3 OA. Another method
for enumerating strenggh 3 QAs that have two distinct levels by backtrack search

is discussed in Section 77 In the last section, we determine almost all (mixed??7?)
orthogonal arrays of strength 3 and run size up to 100.

1.1. Fractional factorial designs. Fix d finite sets Q1,Qs2, . .., Qq, called factors.
The (full) factorial design with respect to these d factors is the cartesian product
D =Q1 X...xQq. A fraction F of D is a subset consisting of elements of D
(possibly with multiplicity). We take r; := |Q;| to be the number of levels of
the ith factor. For our purposes, the factor sets have no internal structure, so
we can always take Q; = Z,, = {0,1,...,r; — 1}. We say that F is symmetric if
r1 =Ty = .-+ = rg; otherwise, we say F' is mixed.

Let s1 > s9 > -+ > s, be the distinct level sizes of F', and suppose that F' has
exactly a; factors with s; levels. We call the partition

Am

— __ La1 a
T*rl"'rd*‘sl .82...Sm

the design type of F. We divide {1,...,d} into sections Ji, ..., Jy, corresponding
to the distinct level sizes. So the kth section

={a1+ - +ap-1+1,...;a1+ - +ar}

consists of all j such that R; has sj levels. To avoid confusion, we always use the
index k to indicate the section and the index j to indicate the column.
For example

F=1{(0,0,0,0),(0,1,0,1),(0,0,1,1),(0,1,1,0),(1,0,0,0), (1,1,0,1),
(1,0,1,1),(1,1,1,0),(2,1,1,1),(2,0,1,0),(2,1,0,0),(2,0,0, 1),
(3,1,0,0),(3,1,0,1),(3,1,1,0),(3,1,1,1) }

is a 4 - 23 mixed fractional design. We usually consider a fractional design as a

matrix whose rows correspond to the elements of the multiset, in any order, and
whose columns correspond to the factors. So the example above becomes

00007111122 22333371"
F_l01 01T 010110101010
0011001111 00T1T10°0]"°
01 1001101001100 1

where T denotes transpose. We also refer to the rows of F' as runs, so the number
of rows is the run size.

A subfraction of F is obtained by choosing a subset of the factors (columns),
and removing all other factors. A fraction is called ¢rivial if it is a multiple of a
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full design, ie, it contains every possible row with the same multiplicity. Let ¢ be a
natural number. A fraction F' is called t-balanced if, for each choice of t factors, the
corresponding subfraction is trivial. In other words, every possible combination of
coordinate values from a set of ¢ factors occurs equally often.

Note that a fraction with strength ¢ also has strength s for 1 < s < t. The
example above has strength 3 but not strength 4. A ¢-balanced fraction F' is also
called an orthogonal array of strength t.

We denote the set of all fractions with N runs and design type T by OA(N;T).
The subset of orthogonal arrays of strength ¢ is denoted OA(N;T;t). In keeping
with the usual convetions, we write

F = OA(N; s - 552+ shm:t)

to indicate that F' is an element of OA(N;s]! - s5% -+ - s%m: ).

We say that a triple of column vectors X, Y, Z are orthogonal if each possible
value (z,y, z) appears in [ X |Y'|Z] with the same frequency. So an array has strength
three if, and only if, every triple of columns in the array is orthogonal.

1.2. Permutations. Given a set X, a permutation of X is a bijection from X to
itself. We write Sym(X) for the symmetric group on X, ie, the group of all permu-
tations of X. We write Sym instead of Sym({1,2,..., N}), for a natural number
N. We usually write elements of Symy in cycle notation, so the permutation
p=(1,2,3)(4,5) is defined by 1? =2, 2? =3, 3P =1, 4» =5, 5P = 4.

We say a group K acts on a set X if we have a group homomorphism ¢ : K —
Sym(X). We abbreviate 2% by x9. Let p € Symy. The action of p on a subset
B C {1,2,...,N} is given by BP := {zP : © € B}. The action of p on a list of
length N is given by

[yla Y2, .- 7yN]p = [y1p717y2}171 yoe e 7pr*1]'
2. ISOMORPHISMS OF ORTHOGONAL ARRAYS

It is not immediately obvious how to define isomorphisms of a factorial design.
In fact, there is more than one sensible definition that could be made. We give the
definition that is most useful for our purposes in this section.

Let N be a positive integer and let T be a design type. We define the underlying
set of OA(N;T) to be

U:={(,j,z)|i=1,....,N, j=1,....d, z€Q;}.
In other words, U consists of all possible triples of a row i, a column j, and an
entry F;; for a matrix F € OA(N;T). We can now encode F by its lookup table
tF) :={(,7,Fj)|i=1,...,N, j=1,...,d} CU.
The encoding map t from OA(N;T) to the power set of U is clearly injective. The
image of ¢ consists of all sets S C U with the following property:
(2.1) #{z| (i,4,z) € S} =1 foralli=1,...,Nand j=1,...,d.
We now define three group actions on the underlying set U:
e The row permutation group is R := Symy. It acts via ¢ : R — Sym(U)
defined by (i, j, z)®=(") = (3", j, z).
e The column permutation group is C := [[,-, Cx where Cj := Sym(Jy). It
acts via o : C — Sym(U) defined by (i, 5, 2)?°(©) = (i, ¢, z).
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e The level permutation group is L := Hd j where L; = Sym This acts

7 1
via the map ¢r, : L — Sym(U) defined by (z §,x)?r ™ = (i, J) where [;
is the projection of [ onto Lj;.

The full group G of fraction transformations of U is defined as

G = or(R)¢c(C)or(L) < Sym(T).

Using () we can prove that, for every FF € OA(N;T) and g € G, there exists a
unique F’ € OA(N;T) with t(F') = ¢(F)9. So G acts faithfully on OA(N;T) via

F9 = F™9) .= 71 (1(F)9).

Let F and F' be in OA(N;T). An isomorphism from F to F' is g € G such that
F9 = F'. The automorphism group of an orthogonal array F' € OA(N;T) is the
normalizer of F' in the group G, ie,

Aut(F):={ge G| FI=F}.

Any subgroup H < Aut(F) is called a group of automorphisms of F'.
The following result describes the structure of the full group G.

Proposition 1.

(1) ¢r(R) commutes elementwise with ¢pc(C).
(2) ¢r(R) commutes elementwise with ¢r,(L).

(3) ¢c(Ck,) commutes elementwise with ¢c(Ch,) for ki # ka.
(4) ¢c(Cr) commutes elementwise with ¢r(L;) for j & Jy.
(5) ¢r(Lj;,) commutes elementwise with ¢1,(Lj,) for j1 # ja.
(6) ¢L(H]€Jk Lj)pc(Cy) is the wreath product Sym,, 1 Cy.

So we can now identify G with R x (C' x L) where C' x L =[], Sym_ 1 C.
Corollary 2. |G| = Nlaq! - ap! (s11)* - (s,

2.1. A GAP computation. We now give an example of the computation of an

automorphism group in GAP, in order to clarify the concepts involved. Note that

such comp}égatlons can usqallél be carried out more efficiently with the techniques
ngcanonicalg

of Section B.” When applying permutatlons to a particular fraction F', we find it

convenient to apply the level permutations first, then permute the columns in each

sections independently, and finally permute the rows.

Consider the design

11 11
1 2 1 2
Fi= 11 2 2
1 2 21

with N = 4 runs and design type T' = 2*. The underlying set is
U={(1,1,1),(1,1,2),(1,2,1),(1,2,2),(1,3,1),(1, 3,2), (1 4,1), (1,
(2,1,1),(2,1,2), (221) (2,2,2),(2,3,1), (232)( ),(2
(3,1,1),(3,1,2),(3, )(322) (3,3,1),(3, )(341),(
(4,1,1),(4,1,2),(4,2,1),(4,2,2), (4,3,1), (4, 3,2), (4,4,1),(4,4,2)}.

Note that the 32 elements of this set have been placed in lexicographic order. We
use this order to identify the triples with the integers 1 to 32.

),
);
'2)

)

4,2
4,2
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We have R = Sym,, C' = Sym,, L = (Sym,)*. Using the Action command in
GAP, we can find the homomorphic images in Symg,:

or(R) = ((1,9,17,25)(2,10,18,26)(3, 11, 19, 27)(4, 12, 20, 28)

(5,13,21,29)(6, 14,22, 30)(7, 15, 23, 31)(8, 16, 24, 32),

(1,9)(2,10)(3,11)(4,12)(5, 13)(6, 14)(7, 15)(8, 16)),

b (C) = ((1,3,5,7)(2,4,6,8)(9,11,13,15)(10, 12,14, 16)(17, 19, 21, 23)

(18,20,22,24)(25,27,29, 31)(26, 28, 30, 32),
(1,3)(2,4)(9,11)(10,12)(17, 19)(18, 20)(25, 27)(26, 28)),

or(L) = ((1,2)(9,10)(17,18)(25, 26)).

[THIS IS WRONG!!!!]
Now

t(F) ={[1,1,1],[1,2,1],[1,3,1],[1,4,1], [2,1
(3,1,1],[3,2,1],(3,3,2],(3,4,2], [4,1,1],[4,2,2], [4,3,2], [4,4,1]},
which we identify with
{1,3,5,7,9,12,13,16, 17,19, 22,24, 25, 28,30, 31}.

So Aut(F') can now be computed as a setwise stabiliser. It has order 24 and
generators

=
0
i)
=

S

=(3,5)(4,6)(9,17)(10,18)(11,21)(12, 22)(13,19)(14, 20)(15, 23)
(16,24)(27,29)(28, 30),
=(3,5,7)(4,6,8)(9,25,17)(10, 26, 18)(11, 29,23)(12, 30,24)(13, 31, 19)
(14,32,20)(15,27,21)(16, 28,22),
=(1,9,17)(2,10,18)(3, 13,24)(4, 14, 23)(5, 16, 19)(6, 15, 20)(7, 12, 22)
(8,11,21)(27,29,32)(28, 30, 31).
We can convert these back to a product of level column and row permutations. For
example, last generator decomposes into the level permutations
( 17 1’ (172)’ (1’2) )7
the column permutation (2, 3,4) and the row permutation (1,2,3). The number of
orthogonal arrays isomorphic to F' is
|G|/|Aut(F)| = 9216/24 = 384

. 1perinBellBook
by the Orbit Theorem [7 .

3. ORTHOGONAL ARRAYS AND COLORED GRAPHS

It is well known that all combinatiorial objects can be encoded as colored graphs.
For this reason, a great deal of effort h s been put into efficient computation of graph
automorphisms — the program nauty ;6 1s extremely effective. In this section, we
show how to encode an array as a colored graph, and how to decode a graph back
to an array. We then show how to use nauty to compute the automorphism group
and a cononical representative of an isomphism class of arrays.

Recall that a colored graph is a triple G = (V, E,~), where

e V is a finite set;
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e [/ is a set of subsets of V' of size two;

e v is a map from V to a fixed set C.
We call the elements of V' wvertices, the elements of E edges, and the elements of
C colors. An isomorphism G — G’ = (V' E’,7') is a one-to-one and onto map
s:V — V' such that, for all v,w € V,

o {v,w} € E if, and only if, {s(v),s(w)} € E', and

o 1(v) = ~(w) if, and only if, v'(s(v)) = v'(s(w)).
We write V(z) for the neighbors of a vertex z € V.

Let F' be an orthogonal array with runsize N and design type T. A colored

graph Gp = (V, E,~) is constructed as follows:

e The vertex set V contains elements p,, for i = 1,..., N, corresponding to
the rows; v;, for j = 1,...,d, corresponding to the columns; and o, for
j=1,...,d and v € Q;, corresponding to the levels in each column.

e The edge set contains edges {p;, 0, } and {v,,0,} whenever F;; = v.
e The color set is C' = {p,7,0;}. All vertices p; have color p; all vertices v,
have color v; and all vertices o, have color o;.

Note that G is a tripartite graph with respect to the partition of V into row, column
and level vertices. We have
d d
VI=N+> ri+d and |[E|=dN+> r.
i i

Recall that F = Fy n is the class of all mixed orthogonal arrays of strength
t > 1, of type U = si' - 852 -+ - s%m and run size N. If the array D € F, then the
set of column-vertices C' is a disjoint union of color classes C1, ..., C,,, called the
column-color classes, and the total number of colors of G is 2 + m. Also note that
each row-vertex is adjacent to precisely d symbol-vertices, and each symbol-vertex
is adjacent to exactly one column-vertex. Remark that the partition (R,S,C) is
not a color partition, and d = >/, |C;|. Recall that ng = |S|. We write

(3.1) ﬁ—{ﬂ”qMJN+LHWN+n@

m—1
IN+ns+1,...,N+ns+al,...,[N+ns+1+ ) ai,...,|V|]]
i=1
for the color partition (determining row, symbol and column-vertices, respectively);
and denote the colored graph just obtained by Gp.

Example 1. Let D be the OA(4;23;2)

0 00
1 01
0 1 1
1 10

Then N =4, ng =6, d =3, m =1, the vertices
V:i=RUSUC={1,2,3,4tU{5,6,7,8,9,10} U {11,12,13},
and the sizes of color classes are [4, 6, 3] with the partition

f=1{{1,2,3,4},{5,6,7,8,9,10},{11,12,13} }.
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Example 2. Let D be the OA(6;3" - 22%;1)

T

— O N
S =N

3
00 1 1
01 10
1 0 0 1
Then N =6,ng=7,d=3,m=2
V=RUSUC={1,2,...,6,7,...13,14,15,16}.
The color classes have sizes 6, 7, 1, 2, with corresponding vertices
f=1{{1,2,3,4,5,6},{7,8,9,10,11,12,13}, {14}, {15, 16} }.

The symbol permutation (0,1) on column 2 of array D is performed by its cor-
responding permutation ps = (10,11) on symbol-vertices 10, 11 of the colored
graph Gp. Switching columns 2 and 3 of D has counterpart pc = (15,16) on
column-vertices. And permuting rows 1 and 2 can be done by the permutations on
row-vertices pg = (1, 2).

, and the vertices

Denoting G the set of all colored graphs, we define the map
(I):]:UJV—)Q, DH(I)(D):GD,

taking an array D to the corresponding colored graph Gp described above.

L:basicfactl| Lemma 3. ® is an injection.

Proof. Notice that the numbering of vertices of Gp does not depend on D but on
the design type U and the run size N. So if F' # D are two distinct arrays, then
they must differ at some entry [i, j], hence their adjacencies are different. O

Now we characterize more clearly the image ®(Fy n) € G. We write v(u) for
the valency of a vertex u € V. Recall that S = Q1 UQ2U...UQq, where |Q;]| = r;
fori=1,...,d;and C =Cy U...UC,,, where |Cx| = ay, for k=1,...,m.

L:propertiescoloredgraph| Lemma 4. Let D be an orthogonal array with factors Q; and with run size N.
Then -
.ver
(1) Gp is tripartite with the vertex partition (R,S,C) given by (77) and with
Bl =N, S| = Sy awse. [C] = Y0 ar.
(2) Every vertex r € R has valency d.
(3) The valency of a column-vertex ¢ in C is sy, where k is the unique element
of {1,...,m} such that ¢ € C}.
(4) The valency of a symbol-vertex: if s € S then there is a unique ¢ € Cy, such
that {s,c} € E for some k € {1,...,m}; then

N N
v(is)=——+1=—+1
v(c) Sk
[ since t > 1, there are exactly % rows in array D which have symbol s in
column ¢ |.
(5) Relationship between R and C: if r € R, and ¢ € C, there exists a unique
shortest path of length 2 from r to ¢ through a vertezx in S.

D:coloredaxiom| Definition 5.

(i) Given pargmeters gieléfc,o{@geggll«%ﬁd graphs which satisfy properties (1) — (5)

per

of Lemma [ are called the colored graphs of type U, N. They form a subset
of G, written Gy, N .
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propertlescoloredgraph

(ii) By Lemma l4(1}, vertices of R, S, C in a graph in Gy N are called the
row-vertices, the symbol- vertlces (md the column-vertices respectively.

What we want to do now is, firstly, to find the column-vertex set C' of g. It
may happen that some vertices have the same valency even if they belong to dis-
tinct colors (row and column colors, for instance). This can usually be solved by
computing the intersection of their neighbor sets. More precisely,

Lemma 6. Suppose that e N forall k € {1,...,m}, in which case % > 1 for at
least one number k. Then a subset C' of the vertex set'V of a graph g in Gy, N is the
column-vertex set if and only if the valencies of vertices in C are {s1,82,...,5m}
and their neighbor sets are mutually disjoint subsets of V.

Proof. The ‘if’ is clear by the definition of column-vertex set. Indeed, suppose
that C' is the column-vertex set of g, for any pair ¢; # ¢ € C, we need only

check that their neighbors are disjoint, ie, V(c1) NV (cg) = 0. If th(—:fge 1% yertex, dgraph

s € V(e1) NV (ea), then s € R since g is tripartite, so s € S; Lemma |4(4) 1mp11es a
contradiction.

Now consider the ‘only if’ part. Let C' be a set of vertices such that their
valencies are s1, So, ..., Sy, and their neighbors are mutually disjoint subsets. First
they can t be symbol vertices (having nonempty intersections). If there is least one
number & 5. > 1, then the neighbors of some pair of row vertices must intersect in a

nonempty set. Therefore, C' consists only of column vertices. O
Example 3. The example below is a strength 1 array F := OA(4;4%;1)
0 00 O
1 1 1 1
2 2 2 2
3 3 3 3

in which Sﬂ = 1. The row and column vertices of the colored graph G are not
distinguishable. We will see later that this kind of array requires a subtle treatment
to demerge the colored graph.

Proposition 7 (Constructing an array from a colored graph). Given parameters U =

s7t 852 - 8% and run size N, such that ﬂ €N forall k€ {1,...,m}, and such

m
that there is at least one k for whzch > 1 we have

‘b(fU,N) =GuN.
Proof. VYe ick a. col d%raggl g € Gun. Then g fulfills properties (1) — (5) of

oper iesco ore

Lemma l4 We construct an array F, € Fy,n such that ®(F;) = g. The process
of constructing F, starts from column vertices, then locates symbol-vertices, and
finally determines row-vertices.

Suppose that g = (V, E). We collect vertices in V' that have valencies s1, sa,
L .beﬂn%telgh that their neighbors are mutually disjoint subsets of V. From Lemma
%mrtices are uniquely determined and they form column vertices of g. Let
C be the set of thesech%Iumnt\{ggg% es. dFor each ¢ € C, we track its neighbors by
property 3 of Lemma A. Thaf is, if ¢ € (/k Tor some k = 1,...,m, then ¢ is adjacent
with vertices V(c) := {v1, .. ng} Whereuf)“proper\c gescolRl)e%mcehg is tripartite and

satisfies properties (3) and ( ) of Lemma ¥."So v; are symbol-vertlces
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Having obtained symbol-vertices V(¢) = {v;}, we determine the neighbors of

each v;. Only one of them is ¢, the rest must be the row—verti(‘]gs and there are

A N . A .brqpertlescoloredg;raph
precisely - such vertices, by properties (4) and (5) of Lemma #.” Fach of those
row-vertices consist of the same symbol v; on column c. In this way we can locate
all row-vertices together with their neighbors.

Obtaining all row-vertices, we can form the array F, provided that the neighbors
of column-vertices in C' have to be numbered increasingly. Hence, g = ®(Fy) is in
(I)(}—U’N)’ and gU’N < (I)(]:U’N?'. D:coloredaxiom

On the other hand, by Definition %(15, 1t 1s clear that ®(Fy n) € Gu . Hence,
O(Fu,n) =Gu,nN- O

Corollary 8. Provided that g € Z* for all k € {1,...,m}, and that there is at

L:basicfactl
least a number % > 1, with Lemma3, Eselcﬁa%}ce the mapping ® is a bijection between
the set Fy,n of orthogonal arrays of type U, N and the set Gy n of colored graphs
of type U, N.

The inverse mapping ®~! from Gy n to Fy n is called the demerging mapping
of Gy, n. Any orthogonal array D € Fy v of strength ¢ > 2 is determined uniquely
by its companion graph Gp € Gy, n. Indeed, if strength ¢ > 2 then % > 1 for all

ik=1,...,m. So X >1fork=1,...,m.

Sk

Lemma 9. Let Ggp,Gp be the two colored graphs which are formed by two orthog-

onal arrays F,D € F = Fy,n. Then F and D are isomorphic arrays if and only if
Gr and Gp are isomorphic graphs.

Proof. If F and D are isomorphic arrays then D = FP for some permutation p.
Now p is a product of a row permutation p., a symbol permutation ps; and a
column permutation p.. These permutations induce permutations pgr, ps and pc
respectively on the disjoint sets R, S and C' of vertices. Putting p* = pr ps pc, we
have G’;: = ®(FP) = (D) = Gp. It follows that G, and Gp are two isomorphic
graphs.

The ‘only if” part can be seen as follows. If Gr and Gp are isomorphic graphs,
we can find a permutation ¢ on vertice§ (of Gp) such ‘Fh.at G D= G%. IN:%% pseilr_)tcieescolore dgraph
Gr,Gp € Gy N, the graphs G, Gp satisfy all the conditions in Lemma I."So they
are tripartite and ¢ is a color-preserving permutation. This permutation therefore
can be factored as a product of three permutations ggr, ¢s, ¢c which act on row,
symbol and column vertices of G independently. Since the numbering of vertices
in Gp and Gp are the same, the triple ¢qg, gs, ¢c induce row, symbol and column
permutations ¢, ¢s, ¢ acting on F'. The composed map ¢, ¢s q. takes F' to D. [

Example é,CVé/e construct an OA(6;3 - 2%;1) from the colored graph described
by Figure h:_gF[ere m = 2,d = 3,81 = 3,52 = 2, the column vertex set C' =
{14,15,16} since their neighbor sets {7,8,9},{10,12}, and {11,13} are mutually
disjoint. Vertices 1,2,...6, for instance, also have valency 3, but they cannot
represent the first column-vertex (3-level column) since their neighbors are not
disjoint. Now the first column-vertex is 14, its neighbor V' (14) = {7, 8,9} (represent
levels 0,1,2 in column 1) lead us to row-vertices 1,2; 3,5 and 4,6 respectively. The
symbol vertices are [[7,8,9],[10,12],[11,13]]; those correspond to levels 0,1,2 in
column 1, levels 0,1 in column 2 and levels 0,1 in column 3 of F. The array
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TABLE 1. A counterexample in constructing OA from colored graph
9 13 17
2 : 6 10 14 18
3 7 11 15 19
4 8 12 16 20
5 1 21
6 2 21
7 3 21
8 4 21
9 1 22
10 2 22
11 3 22
12 4 22
13 1 23
14 2 23
15 3 23
16 4 23
17 1 24
18 2 24
19 3 24
20 4 24
21 5 6 7 8
22 9 10 11 12
23 13 14 15 16
24 17 18 19 20

obtained is
0 00
0 1 1
1 0 0
F= 2 0 0
1 1 1
2 1 1

Example 5 (counterexample, cf. Example %’}%%%tshe}‘go construct an OA (4;4%;1)
from the colored graph with adjacencies as in Table |1._N6tice that g =4/4=1,s0
we cannot distinguish between column-vertices and row-vertices. In other words,
there are two candidate sets for column-vertices, {21, 22, 23,24} and {1,2,3,4}. If
we choose the first candidate to be column vertex set, then the latter will be row
vertex set, and vice versa. Hence, the partition (R, S, C') is not determined uniquely
by the colored graph. If we take {21,22,23,24} as the column-vertices, and take
the partition

f= {{1, 2,3,4},{5,6,7,8,9,10,11,12,13,14, 15,16,17,18,19, 20}, {21,22,23,24}}
E: 0
then the result obtained is the array in Example IB. SHEBES

3.1. Finding the canonical graph. . For any colored graph G, denote by
canon(QG) the canonical labeling graph computed using nauty. It consists of a vertex
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relabeling permutation, p, say and new adjacencies. Hence, canon(G) is determined
fully by these adjacencies.
The vertex-relabeling p is of the form

P =DPR Ps PCy, PCy """ PChs

where pr, ps, pcy, PCys - - -, P, are permutations on the subsets R, S, C1, Co, ..., C,
respectively. Indeed this fact follows from the requirement of preserving m+ 2 color
classes that we input to the nauty computation.

Let Gp := ®(F) and Gp := ¢ gzgibeecttl}%lellcolored graphs of arrays F' and D
respectively. As a result of Lemma I, we have

Corollary 10. F' and D are isomorphic arrays <= canon(Gr) = canon(Gp).

Notice that if G € Gy n then canon(G) € Gy . Let D* be the canonical labeling
orthogonal array of an orthogonal array D. Then Gp € Gy n, and Gp- € Gy N.
Now D* can be constructed using the scheme below:

D — Gp — canon(Gp) — D,

in which the first arrow represents the mapping ®. The third arrow computing D*,
is done by the demerging map ®~!. For orthogonal arrays of strength ¢ > 2, the
canonical array D* is uniquely determined by canon(Gp).

3.2. Computing canonical orthogonal array D*. . We may build the orthog-
onal array D* from the adjacencies of the graph canon(Gp) that came from nauty.
Since the relabeling permutation p preserves color classes, we do not need to re-
arrange vertices in the canonical graph canon(Gp). We can apply the demerging
scheme (using the demerging mapping). But if we list adjacencies of vertices in Gp
in the order: rows R, symbols S, columns C, then we can also do the following:

e Locate column-vertices: Column-vertices in canon(G), denoted by Cv, oc-
cupy rows from N +ng + 1 ton:=|V| of B;

e specify row-vertices: row-vertices occupy rows from 1 to N;

e from row-vertices we are able to build up the array D* row by row by
tracking the symbol-vertices which are listed in the corresponding row.
Notice that levels of each column must be numbered in the decreasing
order, but not necessarily between columns.

Example 6. Let D be an OA(16;4" - 22;2).

00001 11122223333]"
D=0 0110 01 10 0110011
o1 0101 01O01O0T1O0101

Then N =16, ng = 8, d = 3, m = 2, the vertices

V=RUSUC = {{1, 2,...,15,16},{17,...20,21,22,23,24}, {25,26,27}}.
The color classes have sizes 16, 8, 1, 2, with the corresponding vertices
f= {{1,2,3,4,5,6,7,8,9, 10,11,12,13,14, 15,16},
{17,18,19, 20,21, 22, 23,24}, {25}, {26,27}}.
The relabeling permutation is

p=(2,3)(6,9,7,13,14,8)(10, 11, 15,12)(22, 23, 24),



ENUMERATION OF STRENGTH 3 MIXED ORTHOGONAL ARRAYS 13

the column vertices Cv = [25, 26, 27], and the symbol-vertices
Sv = [[17, 18,19, 20], [21, 22], [23, 24]].

For the row u = [17,22, 24], we refer to symbol-vertices, ie, symbols 0 in column 1,

symbol 1 in column 2, and symbol 1 in column 3. We get back its companio Lpun L oA1e
[0,1,1] € D*. The new adjacencies of the canonical graph are given in Table E

TABLE 2. Adjacency relations of a colored graph

4djaldnciXDA16

17 22 24

17 21 23

17 23 24

18 21 22

19 21 22

20 21 22

18 21 23

18 22 24

19 22 24

20 22 24

19 21 23

20 21 23

18 23 24

19 23 24

20 23 24

1 2 3 4 25

5 8 9 14 25

6 10 12 15 25

7 11 13 16 25

1 3 5 6 7 8 12 13 26
12 5 6 7 9 10 11 27
3 4 8 12 13 14 15 16 27
2 4 9 10 11 14 15 16 26
17 18 19 20

21 24

22 23

4. BACKTRACK SEARCH FOR ARRAYS WITH TWO LEVEL SIZES

In this part, we consider a specific class of designs F having two sections. That
means its design type is U = s¢- s}, and its orthogonal arrays F' have run size N for
suitable N. Recall that for 1 < j < a4 b =:d, r; is the number of symbols of the
jth column. Thatisr; = sy for1 <j <a,andr; =sy fora+1 < j <a+b. Recall
that p = (p1,p2...pj,--.,pa) is an arbitrary run in F', and that G is the full group
of fraction transformations. We fix the notation G,U, N, F¢, F, R, C, L, m, d, r; for
the remainder of this section. Here F¢ is the G-orbit of an orthogonal array F.

Definition 11 (Column lexicographically-least orthogonal arrays).
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e For two wvectors u and v of length N, we say wu is lexicographically less

than v, written u < v, if there exists an index j = 1,..., N — 1 such that
uli] = vfi] for all 1 <i < j and ulj + 1] < v[j +1].
o Let F' = [c1,...,cq]l, F' = [c},...,c})] be any pair of orthogonal arrays

where ¢;,¢; are columns. We say F is column-lexicographically less than
F', written F < F', if and only if there exists an index j € {1,...,d — 1}
such that ¢; = ¢ for all 1 <i < j and cj1 < ¢y levicographically.

o Fixz F' € F. The fraction Fy which is smallest with respect to the column-
lexicographical ordering in the orbit FH for some subgroup H of G is called
the H-lexicographically-least fraction, denoted LLF g (F).

e If H is a subset of G then LLF g (F) is defined to be the smallest fraction
(with respect to the column-lexicographical ordering) in the image set {F" :
he H}.

o We call the G-lexicographically-least fraction of F' its lexicographical-least
fraction, and denote it by NF(F).

We use a backtrack search to list all orthogonal arrays NF(F') € F. We start with
a description of the problem in graph language and we conclude with an algorithm
which is presented by a pseudo-pascal description.

artial-full-colored-leaf | Definition 12.

(1) For1<i<N,1<j<d, denote by F;; the subset of entries of a putative
fraction F consisting of 7 — 1 columns completely made, and column j built
only to row i. We call it a partial fraction up to the jth column and up to
the ith row. For convenience, let Fy o be the empty fraction.

(2) A full-partial fraction, denoted F;, of a putative fraction F, is a partial
fraction Fy ;. So the first j columns have been built, for j =1,2,...,d.

(8) In a partial fraction Fij, a hth row Fi;[h,—] = (p1,p2,....p;), for h =
1,...,1, is called a partial row, where 1 < p; <1y forl=1,...,].

Notice that Fi ; has strength min(j,t). So Fy is the fraction that we want to
make. We visualize each partial fraction F;; by a vertically colored leaf, (ie, a leaf
composed of N stripes, colored up to ith stripe) in the jth layer of a rooted tree,
denoted by T'. The depth of T' equals to the number of columns d. So the root of
T is Fuyo, and full-partial orthogonal arrays F); are leaves of 1" at the layer for which
the distance from the root is j.

For example, let U :=4'-23, N = 16; i = 5, j = 4. Then Fs4 is given below,
where the symbol = indicates symbols that have not yet been found. A partial row

in F54 is F54[3, —] = 0101.
000071111222 23333]"
g, 001 1001100110011
=101 0101010101010 1
01 1 0 0 2z 2z 2 2 2 2 = T X

The basic idea is to extend column by column from full-partial orthogonal arrays
having j — 1 columns (ie, completely colored leaves in a built (j — 1)th layer of the
search tree), for each j =t +1,...,d. Each column is built by adding symbols one
by one and counting corresponding frequencies. Whenever a symbol is added, a
(partial) row is formed. During this process, looking at a particular leaf F;; of a
jth layer (being built), two possibilities occur:
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(1) the orthogonality (strength 3 condition) is violated, because some ¢-tuples
have exceeded the allowed frequency for some i < IN; then the whole subtree
from that leaf is discarded;

(2) the number of (partial) rows ¢ reach the run size N, that is N stripes of
that leaf have been fully colored. We start to build a new column (or return
that leaf) if the current full-partial fraction is already lexicographical-least.
Otherwise, the whole subtree from that leaf is discarded.

The problem now is reduced to determining all fully colored leaves which have
distance d from the root.

Remark 1. Up to the first t columns, T has only one leaf for each layer.

Example 7. Find F = OA(16;4! - 23;3). In the first four layers, including the
root, of the tree T', there is only one leaf. Let us build F' step by step.

Layer 0: Fyo = [].

Layers 1,2,3: Columns 1,2,3 are made trivially.

Layer 4: A (4,2,2)-triple occurs once, and a (2,2,2)-triple occurs twice, so there is
only one possibility for building tEeF }gaf Fi6,4 in this layer. This gives a unique
solution for this design, given by (.

00001111222 233733]"
0011001 100171001°1
(4.1) F=1l91010101010101°01
01 1001101001710 0 1

This example reveals that there are two possibilities in making Fj;.

(i) At each layer j = ¢+ 1,...,d and at each (partial) row i, there exists a
unique symbol for entry F[i,j| (as in previous example). In this case we
get a unique solution.

(ii) There exist at least two symbols for entry F[i, j], for some j € {t+1,...,d}
and some ¢ € {2,...,N}.

Furthermore, at some layer, a leaf can be split several times.

Definition 13. Let n;; > 1 be the number of symbols that can be plugged into
position Fi,j], and let X;; = {x1,%2,...,Tn, ;} be the set of these symbols, for
1<i< N, 1< j<d. Atthe first jth layer of the tree T such that there exist a
row-index © and n; ; > 2, we create a stack

Branches(T') := |J := [(i,21);j] - w1 € Xi |-

We call (i,7) a branching point, and each J € Branches(T) a branching leaf at
layer j having symbol x; at row 1.

Branches(7') is declared globally to store branching leaves during depth-first
search. The general strategy is: if we find a branching point, then we add branch-
ing leaves to the stack, and follow one of these ramifying leaves. Then either new
branching points are found and their branching leaves are updated into Branches(T);
or rows can be formed without extending Branches(T") until the whole column has
been built. More clearly, during branching at layer j on each leaf J := [(4,2;); j],
if we detect another row-index i, such that n;, ; > 2, then we replace J in
Branches(T') by n;, ; new branching leaves of the form [(4, ), (i2,yx); j] where
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Yr € Xi,,j ... Whenever a leaf F}; in layer j is fully colored, we call that leaf in-
spected. Then we delete the corresponding branching leaf in Branches(T") (not in
tree T'), and start forming column j + 1 from F};. Hence Branches(T") can consist
of branching leaves on distinct layers. R:first—t-layers '

At the first ¢ layers (see Remark M) where branching happens at row i, we

initialize
Branches(T') := [J = [(i,);j] rer € X, j and 1 < j < t].

From then, the stack Branches(7') may be updated several times: adding new
branching leaves (simultaneously with dropping out their father-leaf), and/or delet-
ing its last entry whenever that leaf was inspected. We continue like that until
Branches(T') is empty, then all branching points in the search tree have been in-
spected already. Furthermore, if all fully colored leaves in layer d are lexicographi-
cally least in their isomorphic class, then they form the set of all solutions that we
want. Indeed, we have

Proposition 14. For j =t+1,...,d, a fully colored leaf Fi ; in the layer j is
lex-least in its isomorphic class, if we follow the two following operations during
constructing F[—, j):

(1) For any pair of adjacent partial rows, uw and v, say, of Fn ;, where the
jth column F[—,j] has not been formed yet from row v, we choose v[j] €
{vlj —1],...,r} if ulk] = v[k] for all1 < k < j —1, otherwise we choose
’U[]] S {1,...,7"j}.

(2) When column F|[—,j] is formed completely, ie, Fy ; is made, we permute
this column with each of the previous columns (with the same number of
levels) and sort rows of the resulting fraction. If the sorted fraction is
lexicographically less than Fy j then we discard Fy j, (subtree from that
leaf has no descendant on layer d); otherwise we accept Fn ;, go to Step 3.

(8) Applying each level permutations to nonbinary columns of Fix j and compare
with the full-partial orthogonal arrays found so far. If the result equals one
of them, we disrecard Fv j; otherwise accept it as an orthogonal array being
lexicographically least up to column j.

Proof. Operation 1. makes sure that column F[—,j] is lex least in all candidates
for column j up to row and level permutations. Then Operation 2. assures that
Fn,; which passed through the test of permuting columns and rows is really the
smallest in its its isomorphic class. [

If employ these operations, we have

Corollary 15.

1. A solution Fy q, e, a fully-colored leaf at layer d in T, is the lezicographi-
cally least fraction in its isomorphic class.

2. The set of all fully-colored leaves at layer d in the search tree T' gives us all
non-isomorphic orthogonal arrays.

. . P:sol_for_findingLLF . .
Proof. Using Proposition T4 with 7 = d tells us that Assertion 1. is correct. Now

suppose that there are two distinct fully-colored leaves at layer d in T, say F, K,
which are isomorphic, and F' < K. It implies that there is a non-trivial permutation
p such that KP = F. By Assertion 1., K < KP, so F < KP?, contradiction.
Assertion 2. follows. O
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To formulate the backtrack algorithm computing all non-isomorphic orthogonal
arrays we use the procedure EXTEND-COLUMN below that extends a column from
a fully determined fraction.

Backtrack algorithm extends a column

Input: F;_; a fully-colored leaf in layer j — 1 and
Branches(T'), the global stack of branching points.
Output: A fully-colored leaf F} in layer j.

2] Extend-columnF}_;, Branches(T)) Compute n;;, # symbols which can be
K . . :howto-compute-nij * . K .
plugged into F[i, j], Definition I3 37 : n;; > 2 detect feasible branching points
split the leaf F;_; into n;; branches where the newly-formed leaves are different
only at entry Fi,j] add to Branches(T') leaves J = [(¢,2;); 7] in which 2; € X ;
form a unique leaf F'[i, j] at layer j depth-first form column j build up (rows of)
each of leaves in layer j from the row i + 1 update Branches(7) during the process
IB ::deé\if 2 ggll]b\{—acigpllﬁ(_lcloelaéfr Fy ju the layer j has been made Return Fj see Deﬁnitiop
I2(2) Using this procedure we extend the tree 7" from a fully-colored leaf, until
the number of columns j meets d. We record that solution, go back to the nearest
branching point of that solution (ie, its parent), and try its next sibling. These
tasks are described in the following algorithm LEX-LEAST-FRACTIONs. Backtrack

algorithm computes all non-isomorphic orthogonal arrays

Input: Design type U, run size N, and strength ¢.
Output: All non-isomorphic orthogonal arrays NF(F') € F.

[2] Lex-Least-FractionsU, N, t Initialize a rooted tree T having t + 1 layers, each
layer has only one leaf Let F; denote the leaf at layer (¢ + 1) it has ¢ columns Let
j :=t+ 1;Branches(T) := [] (global variable); K := F}; Branches(T') # [] or j < d
Compute K := EXTEND-COLUMN(K, Branches(T')) K is at distance d to root of T
record K as a solution on T'; Return all leaves at layer d of the tree T.  Note that
this algorithm could pe generalized to more than two section orthogonal arrays.
However, our C code ?5 presently deals with two section orthogonal arrays only.

5. USE OF INTEGER LINEAR PROGRAMMING AND SYMMETRY

In this section, we formulate necessary algebraic conditions for the existence of
a new factor X in the extension problem of orthogonal arrays.

5.1. An algebraic formulation of the problem. Let F' = OA(N;ry-rg---7r4;3)
be a known array having columns 51, ..., Sg, in which S; has r; levels (i = 1,...,d).
An s-level factor X is orthogonal to a known factor S;, denoted as X L S;, if the
frequency of every symbol pair (a,x) € [S;, X| in OA(N;ry---rq-s;3) is N/(r;5).
We say X is orthogonal to a pair of known factors S;, S;, written X L [S;,5;], if
the frequency of all tuples (a,b,z) € [S;,S;, X] is N/(rir;s). Extending F' by X
means constructing an OA(N;rq - r4-s;3), denoted by [F|X]. By the definition of
orthogonal arrays, [F|X] exists if and only if X is orthogonal to any pair of columns
of F.

Observation 1 (Transformation rules). We can find a set of necessary constraints
P for the existence of [F|X] in terms of polynomials in the coordinate indetermi-
nates of X by: a) calculating frequencies of 3-tuples, locating positions of symbol
pairs of (S;, 5;); and b) equating the sums of coordinate indeterminates of X (cor-
responding to these positions) to the product of those frequencies with the constant

O+1424... +s—1=20-0
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The number of equations of the system P then is Z;j 2 Tirj, since each pair of
factors (S;, ;) can be coded by a new factor having r;r; levels. When s = 2, the
constraints P are in fact the sufficient conditions for the existence of X.

Example 8. Let F' = OA(16;4 - 22;3) = [S1|52]S3]:

0000111122 2 2
F=|{00110O0T11O0O0T11
010101010101

1

1
We form a set of constraints P for the extension of ' to D = [F|X] = OA(16;4 -
23:3), where X := [x1,m2,...,716] is a binary factor (x; = 0,1). First of all, the
system P of linear equations for computing X has Ef# rir; =2(4-2)+2-2=
16 + 4 = 20 equations. The frequency of each tuple (a,b,z) in S; x Sy x X and
S1 x S5 x X is A = 1; that of each tuple (b,c,x) € Sy x S5 x X is u = 2. The
pair [S1,S2] is coded by an 8-level factor, Y, say; and the pair [S2,S3] by a 4-

level factor, Z, say. The positions of the pair [0,0] € Sy x Sy are 1,2; ..., of
[3,1] € Sy x Sy are 15,1@. 1e positions of the pair [1,1] € S2 x S5 are 4,8,12,16
... Step a) of Observation [T is applied. In Step b), the sums of coordinates of

X corresponding to the Y symbols and the Z symbols must equal a multiple of
the appropriate frequencies. That means: X L [S1,S55] iff X LY iff &1 + x0 =

x3+x4=...=a:15—|—a?16:)\-(O—l-l):l,...andXL[Sg,Sg]ifleZiff
X1+ 5+ 29+ T3 =...=x4+28+ 12+ 216 = - (0+1) = 2. One solution of P
is given in the last row of the matrix below:
000011 1122223333
0011001 1O0O0T1T1O0O0T1T1
0101 01O01TO0T1O0T1O0T1TO0T1
0123012301 23¢0123

Remark 2. Although the constancy of frequencies is a necessary and sufficient con-

dition (by definition) for the existenge of X we gbserve that the linear constraints
P found using rules of Observation [T forms a sef of necessary conditions.
For instance, appending a blocking factor X (see Definition 57, page 96 in %ﬂgw
with 4 levels to an array OA(16;4-23; 3) means constructing an OA(16;4 - 23 - 4;2).
We have s = 4, X is orthogonal to S; if and only if each pair (a,z) € [S1, X] occurs
once (ﬁ = 1). This implies that x; + 22 + 23 +24 = 1-(0+ 1+ 2+ 3) = 6,
x; € {0,1,2,3}. Of the two possibilities [0,1,2,3] and [0, 3,0, 3] only the first is
valid, the second is discarded since the frequencies of 0 and 3 are 2 in OA(16;4-4; 2),
which is prohibited.

5.2. Generic approach solves the extension problem using canonical or-
thogonal arrays. . We now consider extending strength 3 OAs. Let mp :=
Zf 2 Tl be the number of equations in P. Then the system P of linear equations
with integer coefficients can be described by the matrix equation

AX =,
in which A € Mat,,, n(N), b € N and

(5.1) X =(z1,...,zx) €{0,1,...,s — 1}V C NV

is a variable vector. The vector b is formed by counting frequencies of triples
involving two known columns in F' and the unknown column X as in Observation
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0:transformrules L. . .
[. Since each orthogonal array is isomorphic to an array having the first row zero,
we let 1 = 0 throughout. By Gaussian elimination, we get the reduced system

E:reducedmatform | (5.2) MX =c,

in which M € Mat,, y(Z), c € Z™, and X = (0,z2,...,zy) € ZV.
Our general approach to solving the extension problem consists of iterations of
the following 3 steps:

E:reducedmatform 0:transformrules

(1) build the system (Efmrvation h,—

(2) find all solution vectors X = (x1,...,2x) in {0,1,2,...,5 — 1},

(3) collect non-isomorphic, canonical orthogonal arrays of the set of all arrays
[F|X] into a set L; if L is empty, conclude F' has no extension; otherwise
go back to Step 1 for each array in L until the number of factors meets the
number of columns required.

The first s%g)_ is alread dlone. The method to solve the last step was given in
. tusingcanonicalgraphs K . .
Subsection B.” What we need to find in Step 2, in fact, are the non-isomorphic vectors
X (under row-index permutations) in the whole solution set. We show how to find
them in the next sections. We then discuss how to combine the automorphism group
Aut(F) of F in finding non-isomorphic vectors X. Notice that, when extending

OAs, the group size tends to grow proportionally with the number of solutions.

E:reducedmatform

5.3. Another backtrack approach. . The system P described by (5.2) can be
solved over N>( by depth-first branching at the variables z; (i = 2,...,N). If P
has no solution, then F' is not extendable; we try another array having the same
parameters as I’ but not isomorphic to F. We identify P with its polynomials, ie,
P={f1,f2,-.., [m}, in which the f; are linear polynomials in the indeterminates
To,...,xn. In particular, when the x;s are binary, we can use the following fact.

Lemma 16 (Finding binary solutions of an integral polynomial). Let f be an ar-
bitrary polynomial in P, and put the polynomial p = fmod2. Denote by Vy,V,

the sets of indeterminates occurring in f and p, respectively. Put C = V; \ 'V,
ny = |V, np = V|, nc = |C|. We denote the set of solutions of the equation
f=00by Sy, and the set of solutions of the equation p =0 mod 2 by S,. Let Szi, be
the solution set of the equation p =i for i =0,...,n,. Then Sy C Sy, and S, is

a disjoint union of n—; sets S;;, for odd (even) integers i =0,...,n, if the constant
coefficient of f is odd (even). Moreover, the maximum number of solutions of f =0
is 2L,

Proof. The first statement is clear. The last follows from the fact that each set Sf,
is precisely the vectors having weight ¢ in the Hamming space H(n,, 2). O

With this approach, the problem of enumeration of strength 3 OAs can be solved
if there are few arrays having one column less. But if NV is large, and the system P
is symmetric, the branching approach is not strong enough, since there are many
isomorphic vector solutions X in each extension. The next subsection deals with
these difficulties.

5.4. Using the automorphism group to prune the solution set. . Suppose
that there exists D := [F|X] = OA(N;ry---74 - s;t), an extension of a known
array F' = OA(N;ry---rg;t) by a column X having s levels, where ¢ > 2. Let
g € Aut(F). Then g induces a permutation g; in the full group Gp of D. Let
gr be the row permutation component of g, then gp is also the row permutation
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[E:fullgroupG D:aut
component of g;. [Recall from Formula (77) and Definition [77 that any permutation
g acting on F has the decomposition g = gr gc gs where gc and gg are the column
and symbol permutations acting on F, respectively].

Lemma 17. For g € Aut(F), g induces g1 € Gp and generates the image D9
which is isomorphic to D.

Proof. We have

ideauserowperm| (5.3) D9 = [F|X )9 = [F9|X9%] = [F|X9~7]
since ¢ fixes F', and since only the component gg really acts on the column X by
moving its coordinates. O

Fix In :=[1,2,..., N] the row-index list of F', and recall that r; > ry > ... > r4.
We explicitly distinguish Iy with {1,2,..., N} for this section.

5.5. Localizing the formation of vector solutions X. . Let G := Row(Aut(F))
be the group of all row permutations gr extracted from the group Aut(F'). We call
G the row permutation group of F. Then G acts naturally on indices of the vector
X = [z1,29,...,zN]. By convention, we say a row permutation gr € G acts fized-
point free, or globally on X if it moves every indices. Otherwise, we say that gr
acts locally.

The first step is to localize the formation of a vector X of the form (Eﬁ%ﬁ}%ng
the derived designs of strength ¢ — 1. We get the ry derived designs Fi,..., Fy,,
each of which is an OA(rle; ro---rq;t—1). Clearly, if a solution vector X exists,
then it is formed by r; sub-vectors u; of length %:

E:list-form-vector-X | (5.4) X = [ui;ug;. ..Uy, where u; = (xu LN g5 ,x%>

Denote by V; the set of all sub-vectors u; which can be added to the ith derived
design F; to form an OA(rl_lN;r2~~7"d csit—1). Let V.=V x Vo x ... x V,
(the Cartesian product) and let 7 := Sym, be the group of symbol permutations
acting on the coordinates of X. A simple way to find all non-isomorphic solution
vectors X € V is: find all candidate sub-vectors u; € V;, ¢ = 1,...,ry; discard
(prune) them as many as possible by using subgroups of G; plug those u;s together,
then find the representatives of the G x 7-orbits in V. By recursion, the process
of building X can be brought back to strength 1 derived designs. We can prune
the solution set, denoted Z(P), from those smallest sub-designs by finding some
subgroups of G acting on strength 1 derived designs. Those subgroups must have
the property that they act separately on the row-index sets corresponding to the
derived designs.

5.6. Permutation subgroups associated with the derived designs. . Recall
that we view F' € F as an N x d-matrix with the [[, j]-entry is written as F'[l, j].
For each derived design F; with respect to the first column of F', the row-index set
of F;, denoted by RowInd(F, ) for 1 <i < ry, is defined as

RowInd(F;) := {l € {1,2,...,N}: F[l,1] = i}.
Define the stabilizer in G of Fi by
N¢(F;) := Normalizer (G, RowInd(F;))
= {h € G : RowInd(F;)" = RowInd(F})}.

izers-of-derived-designs ‘ (5.5)




E:Rowperms-deriveddesign ‘

t—minus—m—derived—design‘

index—set—derived—design‘

s-associated-derived-des

P:usingLj
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In this way, we find r; subgroups of G corresponding to the derived designs Fj.
But it can happen that RowInd(F})" # RowlInd(F}) for some h € Ng(F;) and
0 <l#i<r;—1. To make sure that the row permutations act independently on
the F;, we define the group of row permutations acting locally on each Fj as:

(5.6) L(F;) := Centralizer (Na(F;), J(F})),

where J(F;) := Iy \ RowInd(F;) is the sublist of Iy consisting of elements not in
RowInd(F;). The group L(F;) acts on the row-indices of F; and fixes pointwise
any row-index outside F;. We call these subgroups L; (of G) the row permutation
subgroups associated with strength 2 derived designs . These subgroups can be
determined further as follows.

For an integer m = 1,...,t — 1 and for j = 1,2,...m, denote by

(5.7) Fi, . i, =0A (7’17"2 - 'rm;rm+1 Syt — m)
the derived designs of F' taken with respect to symbols 41, ..., %y, where symbol i;
in column j and ¢; = 1,...,7;. Define the row-index set of F; ;. by
(5.8) RowInd(F}, .., ) = ﬂ {te{1,2,....N}: F[l,j] =i;}.
j=1
Let J(Fi ... i,.) = In\ Rowlnd(F;,, ;.. ). We define,

Ne(F,,,...i,,) := Normalizer (G, RowInd(F;, .. _;,.)),
L(F; ) := Centralizer (NG(Fil,...,im)a J(E)), for 1 <i; <rj.

Vi

Definition 18. L(F;, . ;) is called the subgroup associated with the derived design
Fiioips for 1 <i; <wr;, j=1,2,...m. We say L(F;, ;) acts locally on the
derived design Fj, . and write L;, = L(F;, . 4,,) if no ambiguity occurs.

cslm clm

For t = 3, we compute these subgroups for m = 1 and m = 2. For m = 1,
we have s1 subgroups L(F;) acting locally on strength 2 derived designs; and for
m = 2, we have s1s2 subgroups L(F; ;) acting locally on strength 1 derived designs.

5.7. Usinﬁ,ghe sub%roups Li, ... - Recall that Z(P) is the set of all solutions
ldeausero erm o m

X. From (b.3), the vector X9 can be pruned from Z(P), for any solution X and
any permutation g € Aut(F'). This follows from the fact that DY is an isomorphic
array of D = [F|X]. For a fixed m-tuple of symbols i1, ...,%y, let Vi, i be the

set of solutions of F;,  ;  (being an OA((ryrg-- 'rm)TEI:Jr\giztE’hﬁéjééiJﬁi beam ), for o
1 <m <t —1. For any sub-vector u € V;, ;. , from (5.8) and (b.4), let

I(u) := RowInd(F, ... i, ); J(u):=In\I(u); and
Z(u) := {(z;) : j € J(u) and IX € Z(P) such that X[I(u)] = u},
here X[I(u)] := (z; : ¢ € I(u)). For instance, if m =1 and u € V; then
Z(u) = {[uzs...sur]: X =[usug;...;up] € Z(P) }.

Proposition 19. For any pair of sub-vectors u,v € V;,
gr € Liy .. i, , we have Z(u) = Z(v).

ifv = u9R for some

colm

. s . IL:strength2deriveddesign
We prove this proposition in the next two lemmas. In Lemma 20, without loss

of generality, it suffices to give the proof forLt.laeezrgli"st strength 2 derived array. The
induction step will be presented in Lemma 22.




L:strengttheriveddesign‘
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Lemma 20 (Case m = 1). Let uy and vy be two arbitrary sub-solutions in Vi, ie,
they form strength 2 OAs [Fi|u1] and [Fi|vi] of the form OA(r7 ' N;ry---1q - 5;2).
Let

Zx (u1) = {[uz;...;up]: X = [ur;us;...;upn] € Z(P) },

Zy (v1) = {[va;.. 500 ] 1 Y = [vi5005. .30, ] € Z(P) }.

Suppose that there exists a nontrivial subgroup, say L(Fy), and if v = u?* for some
h € L1, we have Zx (u1) = Zy (v1).

Proof. Pick up a nontrivial permutation h in L(Fy). Then it acts locally on
RowInd(F}). By symmetry, we only check that Zx(uy) C Zy(v1). We choose
any sub-vector u* := [ug;...;ur,] € Zx(u1), then X = [ug;ug;...;uy, ] is in Z(P).
We view h € Aut(F), so

D" = [FIX]" = [FM" X"] = [F| X"] = [F|[ur;us; . . .5 ur, "]

= [F| [u?;ug; . ;um]] = [F| [v1;ug;. .. ;umﬂ.
This implies that [vi;ug;...;ur] is a solution, hence u* € Zy (vy). O
Corollary 21. We can wipe out all solutions Y = [v1;va;...;0,,] € Z(P) if v1 €

ul , the Li- orbit of uy in Vi. In other words, if V1 # 0, then it suffices to find the
first sub-vector of vector X by selecting |V1|/|L1| representatives uy from the L-
orbits in Vi.

Furthermore, the above proof is independent of the original choice of derived
design. Hence it can be done simultaneously at all solution sets Vi,Va,... V. ,
using the subgroups Ly, ..., Ly,.

We call this procedure the local pruning process using strength 2 derived designs.
Notice that we can use the row orbits of G when G is very large. These subgroups
can be defined similarly, just replace the derived designs by the G-row orbits in the
set of rows of F.

P:usinglj
Next, if t > 3 we extend the proof of Proposition TY for v <m<t-—1.

Lemma 22 (Case m > 1). For any pair of sub-vectors u,v € Vi, 4,, if v = u9r
for some gr € L, i,, we have Z(u) = Z(v).

Proof. We prove this result for ¢t = 3 and m = 2 only. For arbitrary ¢t > 3,
and m 3 2 tel}l% t]%gof is c?dstralghtforward generalization. Similar to the proof of
Lemma 20, without Toss of generahty, we consider the first derived design F} =
OA(n;ry -+ -rq;2) where n = N/ry. Taking derived designs of Fy with respect to

the second column (having ro levels), we get o strength 1 arrays, denoted by
fi=Fia, foi=Fio, ., fry = F1,

each is an OA(rz_ln; rs3---rq;1). Any element u; in V; can be written as

Uy = [ul,l;ul,Q; cee ;ul,r2]7

a concatenation of rp sub-vectors u; ; of length %, where

uyj; = (xw Hn +1,...,x%> forj=1,...,79.
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E:row-index-set-derivdd=idspimmups-associated-derived-des

From (58] and Definition I8, we know L{(J,;) = Centralzer (Ng(f;),J(f;))
consists of row permutations acting locally on

RowInd(f;) = {M + 1,...,‘E}, for eachj =1,...,rs.
T2 T2
That means the subgroup L(f;) fixes J(f;) = [1,...,N]\ RowInd(f;) pointwise.
Because Vi is the Cartesian product of the subsets Vi ; := {u1 ; }, we prune Vi ;
by using L(f;), for j =1,..., 9.
We start with j = 1. Let uy,; and v1 1 be two arbitrary sub-vectors in V; ; (ie,
they can be used to make strength 1 arrays [fi|u 1] and [f1|v1,1] being of the form

OA(ry*n;rg---1q - 5;1). Let

Zx(ui,q1) = { [[ULQ;...;U;LTQ];UQ;...;'U/T-l} : X = [ugsug;. .. up] € Z(P) },

Zy(v1,1) == { [[’01,2;--.;U1,r2];’l)2;--.;’0r1] 2 Y =[visv9;. .50, ] € Z(P) },

where vy = [v1,1;01,2;...;01,,] € V1. We prove that if v;; = ufl for some
h € L(f1), then we have Zx(u1,1) = Zy(vi1). In fact, we only need to have
Zx(u1,1) C Zy(vi1). Let any sub-vector

u* = [ [ULQ;...;u17r2];u2;...;url] € Zx(u1,1),
and h € L(f1). Then we have X = [ug;us;...;u,,| € Z(P), and
D' =[F|X|" = FM" X" = F| X" = F|[u};u2;...;ur, |
= F| [[U}ILJ;’U/LQ;...;’U/er];UQ;...;url]
= F| [[vi,15u1,25 5015025 ]

Hence, Y = [ [V1,15U1,2; - -3 ULy |3 U2 - o5 Uy ] is a solution vector and u* € Zy (v1,1).
In Fi, the choice of f; does not affect to the proof, so the pruning process can be
applied at the same time for all f;, 7 =1,...,72. O

[E:strength-t-minus-m-derived-design

5.8. Operations on derived designs. . Recall from (5.7) that the symbols

i1,...,4m (where 1 < i; < r;) indicate the derived design having symbol i; in
column j, for j =1,...,m. Let
E:definesigmagroup ‘ (5.9) c:=GXxXT

be the direct product of G and 7, where 7 := Sym(s) is the group acting on the
symbols of column X.

We consider each derived design as an agent that receives data from its lower
strength derived designs, make some appropriate operations, then pass the result
to its parent design. Notice that stﬁsepsgggrgugs‘r}_(;sss‘uoﬁ%%‘ggl_ge(rile‘%iagpgegequire special
operations. Recall from Definition I8 that L;,, . ;, are the subgroups associated
with the derived designs Fj, .. ;. having strength ¢ —m. When m =t —1, we write
Li,....i,_, for the subgroup associated with the strength 1 derived design Fj, . ;,_,.

ted with derived designs | The agents of derived designs can be described as follows.

(1) At designs F;, 4, ,
Input: F; ;.
Operation: form V;, . ;,_,, the set of all strength 1 vectors of length

(riry---ri—1)"'N) being appended to Fj, . ;, ,, compute L, 4, .,
and find the representatives of L;, . ;,_, - orbits in the set V;, .

(Initial step when m =¢ — 1):

1 st



E:multstepl
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Output: these representatives, ie, solutions of Fj, ;.
(2) At strength k derived designs (1 < k <t —1): let m :=t¢ — k, we have
Input: the vector solutions (of length (r17g -« 7 rmi1) "L IN) of strength
k — 1 sub-designs; and L;, .. i,.;
Operation: form sub-vector solutions (of length (ri7g---7r,) 1 N) of
Fi. ..., prune these solutions by L;, . ;. ;
Output: representatives of the L;, . ; - orbits in the set Vi, ;. .
(3) At the (global) design F:
Input: the sub-vectors from strength ¢t — 1 derived designs;
Operation: find the representatives of o-orbits in the Cartesian product
V =Vi x Vo x...xV,, where V; had been already pruned by the
subgroup L; (i =1,2,...,m);

Output: sol Ei%rel f‘{ggggrsa)g o\ﬁ/hich are non-isomorphic up to o = G x 1,
defined in (%.9}.

We propose the following three-step procedure: [0] Pruning-uses-symmetry F,

Input: F' is a strength ¢ design; d is the number of columns required
Output: All non-isomorphic extensions of F

o Step 1: Local pruning at strength k derived designs.
la) Find sub-vectors of F;, . ;. ,form:=t—Fk,and k=1,...,t—1,
1b) prune these sub-vectors locally and simultaneously by using L;, .
1lc) concatenate these sub-vectors to get sub-vectors in V;,
For strength ¢t = 3, in Step 1), we form subvectors
u; ; € Vi ; simultaneously at the ry7r2 sets V; ;, then
concatenate u; j (1 <i<r,1<j<r) toget u; € V;.
o Step 2: Pruning at strength t design F'. 2a) Select the representative vectors
X from the o-orbits of V', V consists of vectors of length N, being formed by
sub-vectors found from Step 1
2b) append vectors X to F' to get strength ¢ orthogonal arrays [F|X], 2¢) com-
pute and store their canonical arrays into a list Lf, return Lf.
o Step 3: Repeating step. # current columns < d Call PRUNING-USES-SYMMETRY( f,d )
for each f € Lf Return Lf

ctm )

R

Example 9. Let U := [[3, 1], [2,3]}, F = 0A(24;3.2%;3),

B
Il
[e]elele]
[e]elele]
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==OO
=HO~O
=HO~O
orRrOo
oo
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(=l el
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OO
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]
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N
N

Aut(F') has order 12288. Compute G = Row(Aut(F')), and update it by G =
Stabilizer(G, [1]), which is a permutation group of size 768. The three strength
2 derived designs give 8, 8, and 16 candidates respectively, so we have to check
8.8.16 = |V| = 1024 possibilities.
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The row permutation subgroups of the three strength 2 derived designs are
Lo =10,(7,8),(5,6),(5,6)(7,8),(3,4), (3,4)(7,8), (3,4)(5,6), (3,4)(5,6) (7, 8)],

=[0], and
=1(),(23,24),(21,22), (21, 22)(23, 24), (19, 20), (19, 20)(23, 24),
(19,20)(21,22), (19,20)(21,22)(23,24), (17,18), (17, 18)(23,24), (17, 18)(21, 22),
(17,18)(21,22)(23,24), (17, 18)(19, 20), (17, 18)(19, 20)(23, 24),

(17,18)(19,20)(21,22), (17,18)(19,20)(21, 22)(23, 24)]

with corresponding orders 8,1,16. And the subspaces are pruned to 1,8, and 1
vectors respectively. That is we need to check 8 cases now.

Observe that Aut(F') decomposes the rows of F into row-orbits Oq,...,0;. If
Aut(F') acts intransitively on the rows of F', then | > 1. For each of the orbits Oy,

let RowInd(O;) C {1,...,N} be the row 1n(ﬂa1cl§()srrr(l>a 0 1 g@}g[gl@&le%l‘%}%e
normalizers and the centrahzers of O; as in (b.5) and 1 *Biit the subgroups

found in this way help reducing 1som0rphlc Vectors only When the group G has very
large size. This is not the case when arrays have many columns.

5.9. A mixed approach using linear algebra and symmetries. Recall that
the extension o.f an o.rthogonal array F W1th run size N to a £gévdm%1£1%a¥ [F]X] is
reduced to solving a linear system P having matrix form

M.X =c.
Recall that G = Row(Aut(F)) is the group of all row permutations induced:by . .
(E:Zi

the automorphism group Aut(F'), and that Z(P) is the set of solutions of

over the set {0,1,...,5 — 1} as a subset of N. Denote by QY the vector space of
dimension N over the r%tloréglsc fo For any solution X, we view X € S, where S is
the solution set of (% 2) over Q. The set S in fact is an affine space in QV; and
7Z(P) = SNn{0,1,...,s — 1 }V. Moreover, Z(P) is a subset of Nyec S?- Indeed,
since Z(P)9 = Z(P) for all g € G, we have Z(P) C 59, for all g € G. We call the
intersection (¢ S7 the G-invariant core of Z(P), (by definition it is the maximal
G-invariant subset of S). The G-invariant core [ .5 59 of Z(P) is still an affine
space since the image SY9 of S is an affine space, and intersecting two affine spaces

results in again an affine space. The idea is that even though S has large dimension,
it is likely that the G-invariant core of Z(P) could have smaller dimension.

Example 10. Consider extending array OA(72;6 -3 -22%;3) to OA(72;6-3 - 23;3).
The solution space has dimension 36, using G' we can reduce it to dimension 20.

5.10. Computing the G-invariant core of the solution set Z(P). . First we
compute the intersection of two affine spaces. We identify S with the pair [v, B],

where v is a specific vector in S and B is a basis of S (over Q). Let n := N—
rank(M) be the dimension of S, then |B| = n, and

E:formrationalsolutionsS | (5.10) S=v+(B)y=v+ Z b; B;, where indeterminates b; € Q.

i=1..n

Observation 2. Let p € G, the affine image SP can be determined by the vector
vP and the basis BP := {u? : u € B}. In other words,

:formrationalsolutionsSp ‘ (5.11) SP =P + (BP) =P + Z ¢;BY, where ¢; € Q.

1=1..n




A:find—invariantcore|

:formrationalsolutionsSZ|

:LinearAlgebra-and-group

E:extra—inequalities‘
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Moreover, S N SP # () if and only the system

P —v = Z biBi— Z ClBiD

i=1..n i=1l..n
= [Bl|Bg|...|Bn| — BY| —B‘g|...|—Bﬂ[bl,...,bn,cl,...,cn]t
has solution by,...,bn,c1,...,Cn.

Hence, if S N S? lié Iﬂ’rlg'sa tble(\nsllsl SEeCéﬁ% erc%(%g Gan be u%lnd lgg substituting
b1, ...,b, back into (5.10), (or ¢, . - cn into (5.1T1)). We prune the integral solution
set Z(P) by computing its G- 1nvarlant core. Let H be a set of generators of G. We

compute () e S9 using the following procedure.  Computing G-invariant core

. E:reducedmatform
Input: the affine solution space S of (5.2), and the generators H;
Output: the affine space ﬂgec S

[2] Find-G-invariant-core S, H Set Y := S; W :=Y; update Y := ﬂgeH YIiny;
Y =W; return Y.

Proof. Let Yy be the output of the procedure, we show that Yy = seG S9. The
space Yy has property Yy = ﬂgeH Yy NYy. Therefore, Yy = Y for all p € H. Since
any permutation g € G is a product of p € H, Yy = Y. (]

Having obtained the G-invariant core Yy =: [u, C] of Z(P), we update S := Y,
and update the dimension n to a possibly smaller dimension n := ng = dim(Yp).
The integral vector solution X (viewed as column vector) now is computed by:

(5.12) XT =(0,29,23,...,a8)  =u+ Z y;C

where pivotal variables y; € Z. Hence, solving P in terms of indeterminates
(z;) € {0,1,...,5—1 }N (j=1,...,N) is reduced to finding all integral (pivotal)
tuples (y;) € Z" (z =1,...,n) such that each coordinate z; isin {0,1,...,s —1}.

Although very often n < N, this approach is useful if a few more 1nequalities
would be found and used to delete out some (not all) isomorphic vectors in each
isomorphic class retaining the non-isomorphic vectors. From that point, the search
for non-isomorphic vectors becomes feasible.

5.11. Imposing extra constraints on the system. . For each generator p of
G such that at least one of its cycles has even length, we extract those even length
cycles into a set K. We do not use odd length cycles of p. Then, for each h € K,
we form an extra inequality whose left hand side is the sum of X’s coordinates with
odd indices, and the right hand side is the sum of X’s coordinates with even indices
of the cycles in h. In more details, we have

Lemma 23. If K # [|, for each h € K having the form

h = H“’ZQ Hj17,727.73,j4)

J
where 1 < iy # ig # j1 # Jo # j3 # ja, ... < N, we can add the following inequality

(5.13) Tiy Ty F Ty o <Xy F Ty F T,

into the original system P without missing any non-isomorphic vector solution X .
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Proof. Suppose h = [[;(i1,i2) [[;(j1,72,73.Ja) ... € K, and
Z = |z1,%2,23,...,2N] is a solution so that

Zip tzj t zjy o 2 Zip 2y T2
We prove that Z is isomorphic with a solution X = [x1, 29, x3, ..., zx]| which fulfills

Tiy + @jy + Tjg + 0 S Tip + TG, H TG+
. . . [E:extra-inequalities
The vector X := Z" indeed satisfies Condition (5.13). g
For example, let h = (1,2)(7,8,9,10)(13,16) be a permutation in K, (h~! =
(1,2)(7,10,9,8)(13,16)), we can impose the following inequality

1+ a7+ 9 + 213 < T2 + Tg + 10 + T16
on the original system P. Indeed, suppose that Z = [z1, 22, 23, . . . , 216] 18 a solution,
and
(*)...21+Z7+29+Zl3 > 2o+ 28 + z10 + Z16-
The image
h .
X = (xz) =7"= (Zih*1 ) = (22; 214923y R4y 25, 265 Z105 275 285 295 2115 R125 Z165 2145 £15, 213)7

A . [E:extra-inequalities
satisfies the constraint (5.13), since () means

To + T8 + X190 + T16 > T1 + X9 + X7 + T13.

. . . . ) _ N .
5.12. Finding p1v%t:?g varlabl‘fssoyﬁt§yncs]§2that X e{0,1,...,s—1}".. lHiLYIIIIelg_ ALgebra-and-group

rmrationa

obtained Formula (5.12) of X, and found extra inequalities (using Lemma 23), we
now find integral (pivotal) tuples (y;) € Z™ by a recursive procedure. Let ExtraS
be the set of these extra inequalities, and let Y be the set of coordinates of X in
terms of (;)i=1,...n. We split Y into 3 subsets:

Y7 := { monomials},
(5.14) Y5 := { monomials with constant, and be grouped with respect to y;},
Y3 := { polynomials with at least two indeterminates y;}.

For t = 3 we cut vector X into riry sub-vectors

LX = |:((E1,,$N ),...,(x(r1r2_1)N,...,ICN):|;
T17T2 T2

for t = 2 we cut vector X into r; sub-vectors

LX = {(xl,...,m%),...,(l‘(rl1)N,...,J,‘N):|.
T1

We use FxtraS and Lx as certificates to prune vector solutions during the search.
That is, whenever we find a sub-vector (or partial vector) by using Y, we substitute
it into FxtraS to check whether ExztraS < 0 (ie, each polynomial p in ExtraS
must be less than or equal 0), and to Lx to see whether all of its components have
strength 1. Note that components in Lx are still considered valid when they depend
on variables y;; the same reasoning is applied for non-positiveness of polynomials
in ExtraS. If all conditions are all right, we enlarge the sub-vector (in all feasible
possibilities) u%i:lfg%lmerell%glgca}ls%g vectors equals to n. Then the column vector X is
found back by (5.12). A combination of depth-first and breath-first schemes to find

A:find-pivotalvars| all solutions (y;) € Z" is presented in the following algorithm.

Recursive computing of (y;) € Z"
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Input: Y; ExtraS and Ly
Output: All vectors (yi)i=1,....n € Z"
E:split-rule

[2] Compute-pivotalsY, FxtraS, Lx split Y = YUY, U Y3 by (%T[ﬁ'),_mall
partial vectors by making the hypercube from variables of Y7, prune them using
ExtraS < 0, and Ly; substitute each valid partial vector back to Y, Y1 = 0); only
keep intermediate valid nodes in the search tree; ¢ Since Y = Y5 U Y3, extend the
valid partial vectors made above by all possible vectors of Y5 collect the full vector
solutions whose lengths equal n ¢ always certificate newly extend : dgg){ies usin

nesigmagroup

ExtraS and Lx return the representatives in the o := G x 7-orbits (5.9) of Z(P).

Example 11. Extending F = OA(16;2%3) to [F X] = OA(16;2% - 4;3). Here
N = 16, the group of row permutations G has size 768, generated by the following
permutations:

[(15,16), (13,14), (11,12), (9, 10), (7,8), (5,6), (3,4), (3,6)(4,5)

(9,10)(11,14)(12,13), (3,10, 5,4,9,6)(7, 11,14)(8,12,13)],

from which we find 169 extra inequalities . After reducing the affine solution space
by these symmetries, we get an 8-dimensional G-core S, and the solution vector
X €{0,1,2,3}16 in terms of (y;) € Z® (n = 8) is

X = (z;) =(0,51 + 6,52+ 6, —y1 — y2 — 6,43, —y1 — Y3, Y1, Y1 — Ya + 6,
Ys, —Y1 — Ys, Y6 + 6,y1 — Y6, y7 + 6,41 — Y7, Y8, —Y1 — Ys)
We want to find all (yi,...,ys) € Z8 such that X € {0,1,2,3 }'6 by splitting

Y ={y1 +2,02+2,—y1 — Y2 — 2,Y3, — Y1 — Y3, Y4, Y1 — Y4 + 2, Y5, —y1 — Y5, Y6 + 2,
Y1 — Y6, Y7 + 2,91 — Y7, Y3, —Y1 — Ys}

into Y1 = {y3,y4,y5,ys}; Yo = {[y1 + 6], [y6 + 6,y2 + 6], [yr + 6] }; and
Ys={—vy1 —ys, —y1 — U5, —Y1 — Y3, —y1 — Y2 — 6,91 — y7, Y1 — Y6, Y1 — Ya + 6}.

We form all partial solutions from Y7, pruning at each those sub-vectors (having
length 4) by using 169 inequalities of FztraS, and by employing the fact that each
of the four vectors (0,y1 + 6,92 +6,—y1 —y2 —6), (Y3, —y1 — Y3, Ya, Y1 — ya + 6),
(Y5, —v1 — Y5, Y6 + 6,91 —ys), and (y7 +6,y1 — yr,ys, —y1 — ys) has strength 1.
At each iteration, when ever Y7 = (), we generate all valid partial solutions from
Y5, concatenate them with partial solutions of s, y4, y5, ys, and prune again. This
results in 35 vectors; of these only one vector forms an OA(16;23 - 4; 3).

6. A COLLECTION OF STRENGTH 3 ORTHOGONAL ARRAYS

. . . . . . SS:parameters0As
6.1. Introduction. This section is organized as follows. Subsection %.2 recalls
known results and present@spgrameters r(l)fl\rgtér‘length 3 orthogonal arrays (OAs) with

onstructio

8 < N < 100. Subsection 6.3 presents “ﬂs%fgu%%trg‘%cti%tggQAS with 72 < N < 100.

. . 1on! . .
Finally, we use the methods of Section 77 to obtain a taple of many isgmorphism

:Enumer —1S0 asses
classes of OAs with run size at most 100 in Subsection 6.4. For convenience, we
abbreviate methods used for const;tralégging and enumerating orthogonal arrays. The
abbreviations are listed in Table |3_[t' is also convenience to use abbreviations for
specific IE\ggg5bounds and for particular nonexistence proofs. These too are listed

in Table 3.

‘ S:Expl #1 8%tinhsdbrhapiend
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| Notation Name Reference y
emphis-paper
(A) Arithmetic o
b :lexleastifrac
(B) Backtrack search for s{s3 OAs . . .
SS:usingcanpnicalgraphs
(©) Colored graphs .
; anNguyen-Memphis—-paper
(Con) Concatenation .
K Nguyen-Memphis-paper
(La) Latin squares . .
) guyen-Memphis-paper
(H) Hadamard construction i
. . 55': solveILP|
Q8] Integel'r linear programming (ILP) Ro -
(IS) ILP with symmetry anliguyen-Memphi s-paper
(J) and (L) Juxtaposition and Linear code
(M) and (O) Multiplication and Even sum
; ouwerWebpage
(() ),(IBI) Nguyen-Memphis-paper
(Q) Quasi-multiplication ]
(S) and (T) Split and Trivial design

Erouwer04
)()a ()(6)

X3), (X4), (X5) explicit constructions "
X1), (X7), (***) mixed additive codes

Rao) the generalized Rao bound

Del) the Delsarte bound

(Div) the divisibility condition o4
(5.1) AOA(24;3- 2% 3), Sec. 5.1 £
(5.9) AOA(64;4° - 23;3), Sec. 5.9 "

5.10) BOA(64;43 - 2% 3), Sec. 5.10 .

TABLE 3.  An overview of constructions, lower bounds on run sizes

6.2. Parameter sets of OAs with run size 8 < N < 100. The divisibility
condition for the run size of an orthogonal array F' gives a necessary condition for
the existence of F' in terms of its parameters.

Lemma 24. In an OA(N;ry -1y 1a;t), the run size N must be divisible by the
least common multiple (lem) of all numbers [[;c; i where |I| = t.

Proof. This says that the ¢ times derived design has an integral run size. O

For example, in an OA(N;35-2;3), N must be a multiple of lem(3-3-3,2-3-3) = 54.
By thj rg{%‘g%g)n, there is no strength 3 OA with N greater 64 and less than 72.

In El'],wﬁonstructed all orthogonal arrays of strength 3 with run sizes N at
most 64. We extend that to the cases 72 < N < 100 in this paper.
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L:allparameters | Lemma 25. The following are the only nontrivial parameter sets for mized orthog-

onal arrays of strength 3 and run size at most 100 allowed by (Div), (Rao), and

OA(4m;2%;3) 4 <a<2m,meven, 2<m < 24,
OA(4m;m - 23;3) m even, 2 < m < 24,
OA(8m;m - 2%;3) 3<a<7,3<m<12,
OABm;m-4-2%3) 2<a<4,meven, 4 <m<12
OA(9m;m - 3% 3) 3<b<4,m=3,6,09,
OA(36;3%-29;3) 1<a<2,
OA(48;3-2%;3) 3<a <15,
OA(48;4-3-2%3) 2<a<9,
OA(48;4 - 2% 3) 3<a<1l,
OA(54;3°- 2% 3) a=0,1,b>1,a+b>4,a+2b<19,
0OA(60;5-3-2%3) a=2,
OA(64;4°-2%;3) a>0,c>1,a+c>4,a+3c<18,
OA(72;6%-2%;3) 1<a<6,

(Del). OA(72;6-3v-2%:3) 0<b<1,1<a<ll,
OA(72;4-3%-2%3) a=1,
OA(72;3°-2%3) 1<b<2,1<a<23,
OA(80;5-4%-2%:3) 0<b<1,1<a<]15,
OA(80;4 - 2%, 3) 2<a<19,
OA(81;9-3%3) b <A,
OA(81;3%3) 3<b< 14,
OA(84;7-3-2%3) a<2,
OA(90;5-32-2%3) a=1,
OA(96;8-6°-2%3) 0<b<la+b>3 a<ll,
0A(96;8-3"-2%3) 0<b<la+b>3,a<ll,
OA(96;6-4"-2%:3) 1<b<2 a+b>3,3b+a<15,
OA(96;4°-3°-2%3) 0<b<1,0<c<2 a+b+c>4,3(c—1)+2b+a<23,

OA(100; 52 - 29; 3) 1<a<2.

. . X rouwer04 .
Proof. The cases with N at most 64 were given in ;ZI . The first five cases depending
on parameters m were also determined there. We consider now cases with 72 <
N < 100.

(i) Applying (Rao) to OA(12,6 - 2% 2) of OA(72;62-29;3) gives 1 < a < 6.
OA(72;6-3%-2%3) with 0 < b <1,1<a < 11: When b = 1, we use the derived
designs OA(12,3-2%;2), and find a < 9. When b = 0, we use the derived designs
0A(12,2%2), which leads to a < 11.

Applying (Div) to OA(18,32%-2%;2) of OA(72;4-3%-2%;3) we find a = 1.
OA(72;3%-2%;3) with 1 < b < 2: Applying (Rao) to OA(24, 371 . 2% 2)s, we have
24 >1+2(b—1) + a. In other words:

1<b<2, a+b>4(toavoid trivial designs) and a + 2b < 25.

Hence 3 < g <23 forb=1,and 2 < a <21 for b =2. If b = 2 then a < 20 by
edayat99

(Del) 9, Section 9.2].

(i) OA(80;5-4%-2%; 3) with @ > 8: Applying (Rao) to the derived designs OA(16;4°-
29:2) of OA(80;5 - 4° - 2%;3), the parameters must satisfy:

0<b<1, a+b>3and 3b+a<15.
Ifb=0,a <15;and if b =1 then a < 12.
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(iii) OA(81;9- 3% 3): b < 4 by applying (Rao) to OA(9,3%;2).

OA(81;3%;3): the derived designs OA(27;3°~1; 2) must satisfy that 27 > 1+2(b—1),
e, b < 14.

(iv) OA(84;7-3-2%3): we have a < 2 by applying (Div).

(v) OA(90;5-32-2%3): we have a < 1 by applying (Div).

(vi) OA(96;8-6°-2%3) with 0 < b < 1a+b>3 a< 11: applying (Rao) to
OA(12;6°-2%:2), we get a+b>2,12>1+5b+a,ora+5b < 11. If b= 0, a < 11,
andif b=1, a <6.

OA(96;8-3"-2%3) with0 < b<1a+b>3,a<1l. Indeed, the derived designs
OA(12;3%-2%2) shows that a < 11if b=0; and a < 4 if b= 1.

OA(96;6 - 4° - 2%:3) and b > 0. Use (Rao) for OA(16;4% - 29;2) to see that the
parameters must satisfy

1<b<2, a+b>3, and 3b+a < 15.

When b=2,a <9; and when b =1, a < 12.
OA(96;4°-3%.2%: 3) with b+c > 0. When ¢ > 0, use Rao for OA(16;4°71.3%.2¢;2);
when ¢ = 0, use Rao for OA(32;3%~1.29;2). The parameters must satisfy

0<b<1, 0<c¢c<2 a+b+c>4, and 3(c—1)+2b+a <23

That is, when ¢ = 2, if b =1, a < 18;if b =0, a < 20. When ¢ =1, if b = 1,
a<21;if b=0, a < 20.

(vii) By (Div), a < 3 in OA(100;52 - 2%; 3). O

SS:construction_N>64|

6.3. Constructing OAs with run size 72 < N < 100. Since there is no OA
of' strength 3 with run size larg I;bfjé} and less than 72, we list para neters for OAs
with 72 < N < 100 in Table ¥. In the fourth column of Table [ZE we show the
constru EiO]ilf for QAS with 72 < N < 100 whose parameters were indicated in
s a. arameters .

Lemma EB. Y%e skip all cases found by Construction (M). When the gap between
the total number of known columns with the upper bound is positive, we mentio
the next open cases. The question marks ? written in the last column of Table
indicate that we have not proved yet the nonexistence of OAs with corresponding
values.

ab-7

Basic constructions. We consider case by case with respect to the run sizes.

(i) N = 72: OA(72;9-2%3) with 2 < a < 6: this has the form OA(8m;m - 2%;3)
where 3 < a < 7,3 <m < 12. Since m = 9 is an odd number, using Construction
(X) we get a = 6.

OA(72;62 - 2% 3) exists for a < 2 by (IS) and (O).

OA(72;6 - 3-2% 3) exists for a < 4 by (IS) and (O”).

OA(72;4 - 32 - 2% 3) exists for a < 1 by (T), but not for a = 2 by iy iebpage
OA(72;32% - 2%;3): See a construction of the case a = 12, b = 2 at %._WWEEL: 1,

a < 20; an OA(72;3-2%;3) exists obviously. The open cases are 13 < a < 20.

(i) N = 80: OA(80;5-4%-2%3) with a > 1: For b= 1, a < 12, we get a = 5 by
&}1&1{@ osi%g%xgo arrays OA(40;2-5-2%3); and a = 6 by the arithmetic method in
3],

yen-— 1s-pap
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| N Levels Existence Construction  Upper bound Nonexistence |
72 18-2° a<3 (M) 3
72 9.2° a<6 (IS) 7 a="1,(X)
72 6%.20 a<2 (1S) 3 a=3,(0)
72 6-3-29 a<4 (IS) 5 a=5,(0)
72 6-2° a<l1l (M) 11
72 4-3%2.2¢ o<1 (T) 13 a =2, (Div)
72 32.2¢ <12  (B)and (IS) 20 a=137
72 3.20 a<12  (B)and (IS) 23 a=137
80 20-2° a<3 (M) 3
80 10-4-29 @ <2 (0) 4 a=3,(0)
80 10-2¢  a<7 (M) 7
80 5-4-2° a<6 (A), (La), (IS) 8 a="77
80 5-2° a<9 (B) 15 a=107
80 4.2¢ a<19 (M) 19
81 9-3° b<4 (FF%) 4
81 3 b<10 (L) 14 b=11,
84 7.3.20 a<2 (M) 4 = 3, (Div)
88 22:2°  a<3 (M) 3
88 11-2¢  a<6 (IS) 7 a=71,(X)
90 5-32.2¢ q=1 (T) 6 a =2, (Div)
96 24-2°  a<3 (M) 3
96 12-4.209 a<4 (IS) and (L) 4
96 12-2°  a<7 (M) 7
9% 8:6-2* a<2 (IS) or (O) 3 a=3, (0)
96 8-3-2¢ a<A4 (IS) or (J) 5 a=5,(0)
96 8-2° a<l1l (M) 11
96 6-42-2¢ a<6 (La), (IS) 9 a="7"7?
9% 6-4-2* a<8 (S) 12 a=97
9% 6-2° a <15 (M) 15
96 42.3.2¢ o <7 () 18 a=87
96 4%.29 a <20 Q) 20
96 4-3-29 a<9 () 21 a=107
96 3-2° a <16 (J) 31 a=177
100 52.2¢  a<?2 (T) 15 a =3, (Div)

-

OA(N; s§ - 55 - 5% 3)s with 72 < N < 100

TABLE 4. Parameters o

uzZhangWan;
If we take the derived designs at the 4-factor, then a < 8 [7]. Tor b= 0, a <15,
we obtain a = 9 by juxtaposing an array OA(32;216; 3) and OA(48;3-2% 3). Hence,
the open cases are 7 < a < 8 for b = 1; and are 10 < a < 15 for b = 0.

(ii) N = 81: OA(8139-3%3), b < 4: by (B) and (***).
OA(81;3%3): 3<b<10: by (L); see [9, Section 5.9] for nonexistence of b = 11.

(iv) N = 88: OA(88;11-2%3) with 2 < a < 6: a = 6 is obtained similarly as in
the case OA(72;9-25;3)).
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(v) N = 96: OA(96;6-4%-2%3): For b =2, a < 9. We get a = 3 by juxtaposing an

OA(32;2-47-2°%;3) and an OA(64;4-4% ;2°). Furthermore, an OA(96;6 - 4% - 2%;3)
en—llemphls—paper
was constructed by Construction (Q) in [3].
We make an OA(96;6-42-25;3) by (La). An OA(96;6-42-25;3) is found by (IS).

Forb=1,a < 12. We get a = 8 from splitting a 4-level factor in OA(96;6-42-25; 3).
Hence, for b = 2, the open cases are 7 < a < 9; and for b = 1, a < 12, the open
case is OA(96;6 -4 -2%;3).
OA(96;4¢ - 3b . 29;3):
The case b = 0. We use Construction (Q).
The case b = 1. For ¢ = 2, we consider OA(96;4% - 3 -2%;3), a is bounded
above by 13 15 . We employ Construction (A) below for the case a = 5,
and we split the 6-level factor in OA(96;6-4%-25:3) to get a = 7. Forc = 1,
then a < 20 (by Del) in OA(96;4 - 3 -2%;3). Splitting the 6-level factor in
OA(96;6 - 4 - 28;3) gives OA(96;4 - 3 -2%;3). For ¢ = 0, then a < 31 in
OA(96;3 - 29;3). Juxtaposing three OA(32;216; 3) gives OA(96; 3 - 216; 3).
So the open cases are OA(96;42-3-2%;3), OA(96;4-3-2'0:3), and OA(96;3-217;3).

Enumerate-all-isoclasses |

6.4. Enumerating isomorphis%l. é:lassegio%géclil%«asthat the methods of ILP and

numera
automorphism groups in Section 77 now are implemented for extension of binary

columns only. We have

Theorem 26. The numbers of isomorphism classes of gtg@ngth 3 orthogonal arrays
with run size 8 < N < 100 are as indicated in Table )5

In the table, we use multiplicity notation for automorphism group orders. We
abbreviate n' to n, where n is a group size. In the third column of the table,
number 0 indicates that there is no array. This conclusion is based on the Rao
bound, the Delsarte bound, the divisibility condition (on the run size) or by explicit
nonexistence proofs. In these cases, a particular name of lower bound or an explicit
nonexistence proof is indicated. Open cases are indicated by ‘> 07, ie, we do not
know whether an array exists or not with the parameters given in the first and
second column. That means exhaustive computing (Constructions (B) and (IS))
fails to construct those arrays, or no proof of nonexistence has been found yet for
the time being. For series having more than 5000 non-isomorphic arrays, we only
list the numbe&%@g, not giving the automorphism group size. The actual OAs
will be put at [T].

Table 5:  Non-isomorphic OAs of strength 3 with 8 < N' < 100

N Type #  Size of the automorphism group Methods
8 27 1 192 (T

16 4-23 1 192 (1)

16 4-2% 0 (Rao)
24 6-23 1 1728 (1IS)
24 6-2* 0 (Rao)
24 3.23 2 2881, 122882 (IS)
24 3.24 3 48, 384, 1152 (IS)
24 3.25 0 (5.1)
27 34 1 1296 (IS)
27 35 0 (Rao)
32 8.2 1 27648 (1IS)
32 42.22 2 128, 512 (IS)

continued on next page
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Table %ﬁ(%ltinued)
N Type #  Size of the automorphism groups Methods
32 42.23 2 128, 384 (1S)
32 42.24 2 512, 1536 (IS)
32 42.2° 0 (Rao)
32 4.2 3 1152, 24576, 12582912 (IS)
32 4.2% 7 64, 962, 384, 1152, 1536, 4608 (1IS)
32 4.2° 7 16, 32, 64, 1282, 256, 512 (IS)
32 4.26 11 242, 64%, 128, 2562, 768, 1536 (1S)
32 4.27 8 84, 962, 128, 384, 7682, 10752 (18)
32 4.28 0 (Rao)
36 32.22 3 576, 8192, 196608 (18)
36 32.23 0 (Div)
40 10-23 1 691200 (18)
40 1024 0 (Rao)
40 5-28 9 5760, 737284, 125829124 (B)
40 5.2 28 324, 968, 1924, 2884, 23044, 46083, 23040 (B)
40 5.2 2 12 (18)
40 5.26 1 60 (18)
40 5-27 0 (X)
48 12.23 1 24883200 (1IS)
48 1224 0 (Rao)
48 6-4-22 3128, 192, 2304 (1IS)
48 6-4-23 0 (0)
48 6-23 24 345601, 2949127, 2516582412, 289910292483 (B)
48 6-24 122 6424 964, 12812, 28819, 38436 11527, 34564,  (B)
92167, 138244, 23040, 138240
48 6-2° 578 8204 1666 92420 39117 4810 6445 19812, (B)
25624, 3844, 51212, 46084
48 626 1879 21207 46067 8192, 12567 16177, 24287 32354’ (B)
4837 64126 7214 9620 128105 3844 51224,
153612, 138244
48 6 - 97 1525 2120’ 4120’ 6192, 81507 12170’ 16174, 2430’ (B)
32240 6463 9610, 12830 16821, 19242, 25621,
2881438482 76821 153621, 967684
48 6-28 0 (Rao)
48 4-3.22 5 1152, 8192, 98304, 1048576, 4194304 (IS)
48 4-3-23 35 43,87, 167, 24, 322, 48%, 64, 963, 144, 192, (19)
288, 384, 1152
48 4-3.24 19 48,810 16 (1S)
48 4-3.2° 0 (0"
48 4-28 6 12582912, 764411904, 206391214082, (B)
541653102231552
48 4-2* 4 256, 384, 512, 3072 (B)
48 425 290 46, 8% 169, 324, 1603, 768, 1536, 15360 (B)
48 4.26 130 240,440 818 1617 202, 24, 324, 402, 48, 802, (B)
96, 160, 960
48 4.27 619 2434 4119 62 833 199 166, 245 326, 964, (B)
192
48 4.28 2356 21872 4390 862 196 163, 2414 32 48% 643, (B)
384
72 18-23 1 6320730931200 (1IS)
72 18.24 0 (Rao)
72 9.23 534 17418240, 6193152022, 1509949440141 (B)
173946175488255 | 118747255799808115
72 9.24 12857 .
72 9-27 0 (X)

continued on next page
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[tab-8
Table 15 (continued)

STRENGTH 3 MIXED ORTHOGONAL ARRAYS

N

Type

#

Size of the automorphism groups

Methods

72
72
72

72

72
72
72

72
72
72
72

72
72

72

72
72

62'22
62 .23
6-3-22

6-3.23
6-3.2%

.3.25
6-2°%

=]

.94
.95
. 212

-32.2

2l I

4.32.22
32.22

32.923

32 .13
3.23

2394

0
9

231

289

82

156
64296

17

465

(o2 en]

6493096720 192320 384183 519231 4147210

98304, 589824, 2097152, 8388608, 16777216,
536870912, 805306368, 3221225472,
9663676416

15, 228 447 6, 868 122 1647, 242, 3214, 489
645, 96, 576

12157 233’ 337 4227 89, 121’ 164, 482

289910292484, 7827577896963,
2113446032179221 256783692909772819 |
13866319417127731221
8187922952619753996288*

25636, 51272, 307232, 409612, 1105924

8192, 49152, 65536, 196608, 5242884,
41943044, 8388608, 9437184, 268435456,
402653184, 1610612736

3693514644397228032, 657366253849018368,
21540577406124633882624,
36520347436056576, 19967499960663932928,
5135673858195456, 56358560858112
427972821516288, 39582418599936

3456, 4096, 81922, 163847, 245762, 32768°
49152, 6553611, 98304,1310722, 19660811,
26214427, 3932163, 52428823, 7864325,
104857623 1179648, 15728649, 209715216
23592963, 314572823 419430459 ,47185925,
6291456, 838860820 943718410, 125829122,
14155776, 16777216°, 1887436813, 251658243
28311552, 335544322, 377487368, 42467328
50331648, 67108864%% 75497472%, 849346562,
113246208, 13421772826, 509949444,
169869312 226492416, 268435456,
3019898883, 3397386244, 4026531849,
536870912 6794772483, 8053063688,
107374182410 1358954496, 1610612736
2038431744, 2147483648, 2293235712
3057647616, 4076863488, 45864714242,
48318382082, 54358179842, 9663676416
10871635968, 12230590464, 17179869184,
24461180928, 34359738368, 43486543872,
489223618563, 687194767362, 97844723712
1030792151042, 110075314176
137438953472,146767085568, 2061584302084,
2935341711362, 990677827584,
1761205026816, 3710851743744,
7421703487488, 160489808068608
213986410758144, 29249267520503808

24, 48*, 288

(B)
(0)

”

(Rao)
(Is)

(B)

continued on next page
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[tab-8
Table 15 (continued)

N  Type

#

Size of the automorphism groups

Methods

72

80
80
80
80
80

80

80

80
80

80
80

3.2%

3.213

20 -
.94

422
428
10 -

20
10
10

10 -

10 -
10 -

23

23

25

26
28

5.4.22

89

Y

A%
SO, ORO

635

33071

25

50

805306368, 1207959552, 2717908992,
6442450944, 10871635968, 16307453952,
19327352832, 217432719362, 24461180928,
326149079042, 48922361856°, 65229815808
73383542784, 86973087744, 110075314176
2201506283522, 4403012567043,
521838526464, 8806025134083,
10436770529282, 1981355655168
2348273369088, 26418075402244,
39627113103363, 5283615080448°
70448201072642, 74217034874882,
79254226206723, 21134460321792
356644017930242, 422689206435842
713288035860482, 75144747810816,
106993205379072, 1426576071720962,
213986410758144*, 320979616137216,
4279728215162882, 5777633090469888
17332899271409664*, 346657985428193285
486937965814087682, 138663194171277312
2773263883425546242
227442304239437611008
1819538433915500888064,
5458615301746502664192

632073093120000
921600

174182400, 495452160, 9059696640
695784701952, 237494511599616
759982437118771200

14, 2287 4977 81557 16122, 246’ 32887 48107
6431, 9610, 12817 1444, 1922, 2567, 28816,
3842, 5124, 5767, 7682, 10243, 11523, 23049,
46083, 92163, 184321, 368642, 737281,
1843200!

49152, 196608, 1048576, 20971522, 4194304,
83886083, 16777216, 25165824, 1342177282,
2684354563, 5368709122, 21474836482,

687194767362, 137438953472, 274877906944,

1099511627776

”

”

(Rao)
(Is)

continued on next page
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[tab-8
Table 15 (continued)

STRENGTH 3 MIXED ORTHOGONAL ARRAYS

N

Type #

Size of the automorphism groups

Methods

80

80
80
80

80
81
81
81
81

84
84
88
88
88

88
90

5. 2% 2174

5.210 >0
4.28 17
4.924 303

4.220
9.33
9.3%
9.35
34 32

oON WO

7.3.22
7.3.23
22.23
22 .24
1123 4428

Y

(=R

11-27 0
5.32.22 0

46080, 491527, 6553616, 73728%, 983047,
13107220, 52428858 1048576%°, 11796483
2097152140 314572826 4194304180
6291456°3 | 8388608126, 125829128,
1677721676, 3355443250 37748736%,
6710886477, 134217728250 1509949448,
268435456103 | 40265318420 | 53687091257,
805306368144 1073741824160 161061273632,
214748364856 24159191044, 322122547220
429496729616 | 128849018888, 3435973836839,
386547056644, 6871947673656
10307921510420, 1374389534726
20615843020859 | 2748779069444,
4123168604165%, 6184752906247 ,
1236950581248% , 1649267441664,
49478023249927 | 6597069766656%,
197912092999682 , 35184372088832%,
105553116266496% , 2111062325329924,
316659348799488% | 2533274790395904%
5066549580791808% , 25332747903959040"

16777216, 251658245, 33554432, 503316483,
754974726, 1006632962, 1509949443,
201326592, 30198988819, 60397977621
905969664%, 12079595526, 181193932835
24159191042, 362387865651, 72477573128,
1087163596820, 14495514624°
2174327193615, 4348654387231,
8697308774425 130459631616,
1739461754880, 2609192632329,
347892350976, 521838526464%, 695784701952
1043677052928, 4174708211712

324, 864, 69984
324, 3888

31104, 49152, 1966082, 786432, 10485762,
1572864, 3145728, 4718592, 62914562,
8388608, 251658242, 28311552, 377487362,
100663296, 3019898882, 603979776
1207959552, 1358954496, 1811939328,
5435817984, 8153726976, 86973087744,
3522410053632, 285315214344192,
380420285792256
1326443518324400147398656

241920

76480844267520000
1916006400, 445906944037 6341787648042

34789235097601554 | 7124835347988481855
759982437118771200539

”

(B)
(B)

continued on next page
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Table %%tinued)

N Type #  Size of the automorphism groups Methods
96 24 .27 0 (Rao)
96 12-4-2° 0 (Rao)
96 12.23 12812 (B)

96 1228 0 (Rao)
96 8-3.2° 0 (0”)

96 8-212 0 (Rao)
100 52.22 8198 (B)

100 52.23 0 (Div)
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