
An Introduction to Volatility Models with Indices

S. Peiris and A. Thavaneswaran1

School of Mathematics and Statistics

The University of Sydney, N.S.W. 2006, Australia

Abstract

This paper considers a class of volatility models generated by autoregressive (AR)

type models with indices. Some results associated with the autocorrelation function

(acf) of this class are given and the spectral density is obtained in terms of the kurtosis

of the error distribution and the model parameters.
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1 Introduction

It is well known that time series have their own frequency behaviour. This is a very

common phenomenon in practice, especially in financial time series data (see, for

instance, Priestley (1981), Peiris (2003) and Peiris et al (2005) for details) and the

series cannot be identified using the existing standard time series techniques. In other

words the acf, the pacf, and the spectrum are similar for many series and one may

propose the same classical model for all of these cases. Obviously, this may lead to

poor forecast values leading to serious consequences in managerial decisions. One way

of handling this problem in practice is to introduce a new class of time series models

with an additional parameter (or an index) δ(> 0). Therefore, this paper considers

a class of time series models satisfying

(I − αB)δXt = et; −1 < α < 1; δ > 0 , (1.1)

1Visiting from the Department of Statistics, The University of Manitoba, Winnipeg, Manitoba,

Canada R3T2N2.
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where et is a white noise sequence and B is the backshift operator such that BjXt =

Xt−j; j ≥ 0 with B0Xt = Xt.

This class of models covers the traditional AR(1) family when δ = 1. Peiris (2003)

and Peiris et. al. (2005) have discussed some useful properties of (1.1). It is clear that

when α = 1 and 0 < δ < 1
2

, (1.1) reduces to the well-known class of fractionally

integrated white noise processes (see, for example, Hosking (1981), Beran (1994) and

Chen et al (1994) for details). Therefore, (1.1) constitutes a new family of AR(1)

type models and can be applied many standard time series in practice. This class

of time series models generated by (1.1) is called ‘Power Integrated AR(1)’ or

‘PIAR(1)’.

This paper attempts to generalise the class in (1.1) to incorporate ARCH and

GARCH type models. With that view in mind Section 2 reviews the class of of

GARCH process and give some examples of calculating the kurtosis.

2 GARCH(p, q) Process

Consider the general class of GARCH (p, q) models for the time series yt satisfying

yt =
√

htZt, (2.1)

ht = ω +

p
∑

i=1

αiy
2
t−i +

q
∑

j=1

βjht−j, (2.2)

where ω > 0;αi ≥ 0; βj ≥ 0 and Zt is a sequence of independent and identically

distributed (iid) random variables with zero mean and unit variance.

It is well known that ut = y2
t − ht is a martingale difference and let σ2

u = var(ut).

Now (2.1) and (2.2) can be written as

φ(B)y2
t = ω + β(B)ut, (2.3)

where φ(B) = 1−
r

∑

i=1

φiB
i , φi = (αi + βi) , β(B) = 1−

q
∑

j=1

βjB
j, r = max(p, q) and

µ′ = E(y2
t ) = ω

1−φ1−/phi2−···−phir
.

Suppose that the following assumptions are hold:

(A.1). all the zeroes of the polynomial φ(B) lie outside of the unit circle.
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(A.2).
∑

∞

i=0 ψ
2
i < ∞, where the ψ′

is are obtained from the relation ψ(B) φ(B) =

β(B) satisfying ψ(B) = 1+
∑

∞

i=1 ψiB
i.

Let K(X) be the kurtosis of any random variable X given by

K(X) =
E[(X − µ)4]

[V ar(X)]2
,

where µ = E(X).

Below we give two examples of calculating the kurtosis based on two specific cases:

Example 2.1

For the GARCH (1,1) model (1 − φ1B)y2
t = ω + (1 − β1B)ut, (φ1 = α1 + β1)

and ψ1 = α1, ψ2 = α1(α1 + β1), ψ3 = α1(α1 + β1)
2, . . . ψj = α1(α1 + β1)

j−1. Clearly,
∞
∑

j=1

ψ2
j = α2

1 + α2
1(α1 + β1)

2 + . . . =
α2

1

1 − (α1 + β1)2
. The kurtosis K(y) of {yt} is

K(y) =
3

1 − 2
∞
∑

j=1

ψ2
j

=
3

1 − 2α2
1

1 − (α1 + β1)2

=
3[1 − (α1 + β1)

2]

1 − (α1 + β1)2 − 2α2
1

,

and it turns out to be the same as the one given in Bollerslev (1986). Moreover,

σ2
u =

µ2(K(y) − 1)

1 +
α2

1

1−(α1+β1)2

.

Example 2.2

For the ARCH (1) model of the form yt =
√
htZt, ht = ω+αy2

t−1 can be obtained

by setting β1 = 0 in Example 2.1. The corresponding K (y) turns out to be
3(1 − α2

1)

1 − 3α2
1

and σ2
u = µ2(K(y) − 1)(1 − α2

1).

Although ARCH and GARCH type models are very popular in volatility mod-

elling in finance, we still have room to accomodate additional components in order to

understand the volatility process without violating the priciple of parsimony. With

that view in mind, Section 3 introduces a class of volatility models with indices.
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3 AR Type Volatility Models with Indices

Suppose that {y2
t } is an AR(p) process as in (2.3) with ht = ω +

∑p
i=1 αiy

2
t−i, where

p is a large positive integer. In this case {y2
t } follows a model of the form

y2
t = ω +

p
∑

i=1

αiy
2
t−i + ut, (3.1)

where ut is as defined before.

Since the model (3.1) involves p number of parameters α1, α2, · · · , αp, we consider

the corresponding analog of (1.1) for {y2
t } is given by

(I − αB)δy2
t = ω + ut , (3.2)

where |α| < 1, δ > 0 and ut is a suitable martingale difference sequence.

Clearly when δ = 1, (3.2) reduces to (3.1) with p = 1. However, when δ > 0

equation (3.2) can be approximated by a pth order polynomial.

Let

I − αB)δ =

∞
∑

j=0

πjα
jBj , (3.3)

where B0 = I, π0 = 1 and

πj = (−1)j

(

δ

j

)

=
(−δ)(−δ + 1) · · · (−δ + j − 1)

j!
; j ≥ 1.

Notes:

1. If δ is a positive integer, then πj = 0 for j ≥ δ + 1 . For any non-integer

δ > 0, it is known that,

πj =
Γ(j − δ)

Γ(j + 1)Γ(−δ) , (3.4)

where Γ(·) is the gamma function.

2. The model in (3.2) can be thought of as a model incorporating all the past

volatilities in a parsimonius way using only one additional parameter δ. This

model can be used to forecast future volatilities using most of the available
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information than any other ARCH model. In practice we may use the approxi-

mation

(I − αB)δ ≈
m

∑

j=0

πjα
jBj

where m is a suitably chosen large integer.

It is easy to see that the series
∑

∞

j=0 πjα
j converges for all δ since |α| < 1.

Thus y2
t in (3.2) has a valid AR representation of the form

∞
∑

j=0

πjα
jy2

t−j = ω + ut (3.5)

with
∑

|πjα
j|2 <∞ . Now we state and prove the following theorem for a stationary

solution of (3.2).

Theorem 3.1: For all δ > 0 and |α| < 1, the infinite series.

y2
t − µ′ =

∞
∑

j=0

Ψjα
jut−j (3.6)

converges absolutely with probability one provided E(u2
t ) < C, C > 0, where ψj =

Γ(j + δ)

Γ(j + 1) Γ(δ)
and µ′ = E(y2

t ).

Proof: Let (I − αB)−δ =
∑

∞

j=0 Ψjα
jBj , where

ψj = (−1)j

(−δ
j

)

=
Γ(j + δ)

Γ(j + 1) Γ(δ)
; j ≥ 0.

Now E
(

∑

∞

j=0 |Ψjα
jut−j|

)2

=
∑

∞

j=0 |Ψjα
j|2 E{|ut−j|2} .

Since
∑

∞

j=0 |Ψjα
j|2 <∞ , the result follows. Thus (3.6) gives a stationary solution

for the process in (3.2). For α = 1, (3.6) converges for all 0 < δ < 1/2.

Let γk = Cov(y2
t , y

2
t−k) be the autocovariance function at lag k of {y2

t } satisfying

the conditions of Theorem 3.1. It is clear from (3.5) that {γk} satisfy a Yule-Walker

type recursion

∞
∑

j=0

πj α
j γk−j = 0 ; k > 0 (3.7)
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and the corresponding autocorrelation function (acf), ρk , at lag k is given by

∞
∑

j=0

πj α
jρk−j = 0 ; k > 0 . (3.8)

It is interesting to note that ρk = αk is a solution of (3.8), since
∑

∞

j=0 πj = 0 for

any δ > 0 . However, the general solution for ρk may be expressed as

ρk = g(k, α, δ)αk,

where g(.) is a suitably chosen function of k, α, and δ. To find this function g, we use

the following approach:

The spectrum of {y2
t } in (3.2) is

fy2
t
(ω) = |1 − α e−iω|−2δ σ

2
u

2π
; −π ≤ ω ≤ π

= (1 − 2αCos ω + α2)−δ σ
2
u

2π
. (3.9)

In a neighbourhood of ω = 0, f g

y2

t
∼ σ2

u

2π
(1 − α)−2δ, where g stands for generalized

process in (3.2). Now the exact form of γk (or ρk) can be obtained from

γk =

∫ π

−π

eikω fy2

t
(ω)dω

=
σ2

u

π

∫ π

0

Cos(kω)

(1 − 2αCos ω + α2)δ
dω . (3.10)

In order to obtain the variance of the volatility process y2
t , we evaluate the integral

in (3.10) for k = 0. Section 4 reports this result.

4 Main Results

This section is devoted to report some results associated with AR type process given

in (3.2). Since the variance plays a significant role in financial modelling, the following

theorem gives an expression for γk.

Theorem 4.1: For the process given in (3.2),

(a) the variance,

γ0 = V ar(y2
t ) = σ2

uF (δ, δ; 1; α2), (4.1)
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(b) the autocovariance function of y2
t is

γk =
σ2

u α
kΓ(k + δ)F (δ, k + δ; k + 1; α2)

Γ(δ) Γ(k + 1)
; k ≥ 0 , (4.2)

where F (θ1, θ2; θ3; θ) =
∑

∞

j=0
Γ(θ1+j) Γ(θ2+j)Γ(θ3)θj

Γ(θ1)Γ(θ2)Γ(θ3+j)Γ(j+1)
is the hypogeometric function

(see, Gradsteyn and Ryzhik (1980) (GR), p. 1039) for details).

Proof: We first evaluate (3.10) at k = 0 and then for any k. From GR p.384, we

have

γ0 =
σ2

u

π

∫ π

0

dω

(1 − 2αCosω + α2)δ
= B(

1

2
,
1

2
)F (δ, δ; 1; α2), (4.3)

where B(x, y) = Γ(x) Γ(y)
Γ(x+y)

is the Beta function and B( 1
2
, 1

2
) = π, and hence (a) follows.

(b) follows by writing y2
t − µ′ =

∑

∞

j=0 ψj α
j ut−j and using

γk = σ2
u α

k

∞
∑

j=0

ψj ψj+k α
2j = σ2

uα
k

∞
∑

j=0

Γ(j + δ) Γ(j + k + δ)(α2)j

Γ2(δ)Γ(j + 1)Γ(j + k + 1)
,

where µ′ = E(y2
t ) = ω

(1−α)δ .

From p.556 of Abramovitz & Stegun (1965), we have

∞
∑

j=0

Γ(δ + j) Γ(k + δ + j)(α2)j

Γ(k + 1 + j) Γ(j + 1)
=

Γ(δ) Γ(k + δ)F (δ, k + δ; k + 1; α2)

Γ(k + 1)

and hence (4.2) follows.

Note: Using the properties of F (), it is easy to see that for δ = 1 one has

F (1, 1; 1; α2) = (1 − α2)−1 ( Compare with GR, p.1040). That is (4.1) turns out to

be the variance of an ARCH(1) process:

γ0 = V ar(y2
t ) =

σ2
u

1 − α2
for |α| < 1.

It is known that for θ3 − θ1 − θ2 > 0, F (θ1, θ2; θ3; 1) = Γ(θ3) Γ(θ3−θ1−θ2)
Γ(θ3−θ1) Γ(θ3−θ2)

and hence

part (a) of the Theorem 4.1 reduces to the V ar(y2
t ) for a fractionally differenced

(long memory) volatility process satisfying (I − B)δy2
t = ut when 0 < δ < 1

2
. That

is, when α = 1 and 0 < δ < 1
2

, (4.1) gives γ0 = σ2
uΓ(1−2δ1)
Γ2(1−δ)

.
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5 Conclusions

We have introduced a new class of models for modelling volatility and obtained the

autocorrelation function of the underlying process. It is shown that the proposed class

of models provides a noval approach to incorporate additional components in volatility

modelling. The new result in (4.1) and (4.2) are particularly useful in theoretical

developments of power integrated ARMA (PIARMA) and power integrated GARCH

(PIGARCH) processes with indices and thse will be discussed in a future paper.

Moreover the forecasting with this type of volatility models will be discussed in a

forthcoming paper following Thavaneswaran et al (2005).
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