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If p: M — B is a fibration of a PD,-complex M over a PD,-complex B the
homotopy fibre of p is a PD,,_,-complex if and only if it is finitely dominated,
by a theorem of Gottlieb and Quinn. (The paper [11] gives a very nice proof
for the case when M, B and the homotopy fibre are finite complexes. The
general case follows on taking products with copies of S' to reduce to the finite
case and using the Kiinneth theorem). When B is aspherical and p, = m1(p)
is an epimorphism the homotopy fibre is the covering space corresponding to
Ker(p.). We shall show that in this case we may use duality to relax the
hypothesis that the fibre be finitely dominated, to requiring merely that it be
homotopy equivalent to a complex with finite [n/2]-skeleton. In the simplest
nontrivial case, when the base is S, we can improve this slightly, and our result
is then best possible. (Our argument shall be entirely homological, rather than
homotopy-theoretic as in [11]).

The first section introduces some notation and terminology. In §2 we use the
finiteness criterion of Brown and extend a duality argument of Barge to show
that a covering space of a PD,,-complex with covering group a PD,.-group is
a PD,,_,-complex if it is homotopy equivalent to a complex with finite [n/2]-
skeleton and has finitely presentable fundamental group (Theorem 4). In §3 we
provide some algebraic background relating to Novikov rings and the finiteness



criterion of Ranicki. (In particular, we consider explicitly the twisted case).
This is used in §4 together with the main result of [16] to show that if M’ is
an infinite cyclic covering space of a finite PD,,-complex M then M’ satisfies
Poincaré duality of formal dimension n — 1 if x(M) =0 and M’ is homotopy
equivalent to a complex with finite [(n — 1)/2]-skeleton (Theorem 7). Knot
theory provides examples with 7 = 71(M) = Z and infinite cyclic covering
space [(n — 3)/2]-connected but not finitely dominated, so this finiteness hy-
pothesis is best possible in general. (See the paragraph following Theorem 7
below). If n # 4 then M’ must in fact be a PD,,_1-complex; this is not known
when n = 4. In the aspherical case if a PD,-group 7 is a semidirect product
m = vxZ then visa PD,_i-group if and only if x(7) = 0 and v is F'Py;,_1)/9) -
We do not know whether the finiteness assumption on v is best possible in this
case.

1 Notation

If X is aspace let C(X) be its singular chain complex, X its universal covering
space, and X, the covering space associated to a subgroup v < mq(X).

Since we wish to minimize finiteness hypotheses, we shall make the following
distinctions. A PD,, -space is a connected space X with an orientation character
w:m(X) — Z* and a class [X]| € H,(X;Z") which satisfies formal Poincaré
duality of dimension n with w-twisted local coefficients. A PD,, -complex is a
PD,-space which is homotopy equivalent to a finitely dominated cell complex.
It is finite if it is homotopy equivalent to a finite cell complex. A cell complex
X is finitely dominated if and only if X x S? is finite, by Theorem 1 of [19].

Let R be aring. An R-chain complex has finite k-skeleton if it is chain homo-
topy equivalent to a projective complex P, with P; finitely generated for j < k.
If i : R — S is an inclusion of R as a subring of a ring S and C is a S-module
let i'C’ be the R-module obtained by restriction of coefficients. An S-chain
complex C, is R-finitely dominated if i'C, is chain homotopy equivalent to
a finite projective R-chain complex. If X is a PD,-space with fundamental
group 7 then C'*()Nf ) is Z[r|-finitely dominated, so 7 is F'Py, and X is finitely
dominated if and only if 7 is finitely presentable [7].

If G is a group and A is a left Z[G]-module let |A| be the Z[G]-module with the
same underlying group and trivial G-action, and let A® = Homgz(Z[G], A) be
the module of functions a : G — A with G-action given by (ga)(h) = g.a(hg)
for all g,h € G. Then |A|% is coinduced from a module over the trivial group.



The conjugate of A with respect to an orientation character w : G — Z/2Z
is the right Z[G]-module D,, A with the same underlying group and G-action
given by a.g = (—1)¥@g=1.q forall a € A and g € G. (Note that the conjugate
of a free left Z|G]-module is again free. In particular, D, (Z[G]) = Z[G]).

A group G is a weak PD,-group if HY(G;Z|G]) = Z if ¢ = r and is 0 otherwise
[1]. If » <2 a group is a weak PD,-group if and only if it is virtually a PD,.-
group. This is easy for r <1 and is due to Bowditch when r =2 [6].

2 Brown’s criterion and duality

In this section we shall combine the finiteness criterion of Brown with an ex-
tension of work of Barge to establish our first main result.

Lemma 1 Let G be a group and A a left G-module. Then A® = |A|“.

Proof If o : G — A let || : G — |A| be the corresponding element of
|A|%, and let ©(a)(h) = h.a(h) for all h € G. Then O(ga) = g|6(a)]|, since
©(ga)(h) = h.(g9a)(h) = hg.a(hg) = O(a)(hg) for all g,h € G. Thus © defines
an isomorphism of left Z[G]-modules from A“ to |A|“. O

Theorem 2 Let M bea PD,-space and p : m = w1 (M) — G an epimorphism
with G a PD,-group, and let v = Ker(p). Let i : Z[v] — Z[r]| be the natural
inclusion. If i!C*(]\AJ) has finite [n/2]-skeleton then C*(]\AJ) is Z[v]-finitely
dominated and H*(M,;Z[v]) = Hp—,_s(M,;Z[v]) for all s.

Proof Let v = wi(G) and w = wi(M). It is sufficient to show that the
functors H*(M,;—) = H*(i'C.(M);—) from Z[v]-modules to abelian groups
commute with direct limit for all s < n, for then i!C*(M ) is finitely dominated,
by Brown’s finiteness criterion [8]. We may assume that s > n/2, since i'C, (M)
has finite [n/2]-skeleton . If A is a Z[v]-module and W = Homgy,(Z[r], A)
then H*(M,;A) =2 HS(M;W) = H,_s(M;D,W), by Shapiro’s Lemma and
Poincaré duality.

Let A; = Hy(M,; D (A)). As a Z[v]-module D,,(W) is the direct product of
|G| copies of Dy(A). Hence Hy(M,; Dyy(W)) = AS, for 0 < q < [n/2], since
M, has finite [n/2]-skeleton. (Note that theses are left Z|G]-modules). We
shall apply the Cartan-Leray spectral sequence

EI%q = HP(G; DU(HQ(MV; Dw(W)))) = Hp-l—q(M? Dw(W))



Poincaré duality for G and another application of Shapiro’s Lemma now give
H,(G; DU(A(?)) = HP(G, AqG) = H"P(1; A,), since Ag is coinduced from a
module over the trivial group, by Lemma 1. If s > [n/2] and p+qg=n—s
then ¢ < [n/2] and so Hp(G; AS) = Ay if p =1 and is 0 otherwise. Thus the
spectral sequence collapses to give H,,_s(M; D, (W)) = H,_,_s(M,; Dy(A)).
Since homology commutes with direct limits the result now follows easily. O

Corollary 2.1. If 7 is a PD,-group and v is a normal subgroup of type
F Py, /9 such that w/v is a PD,-group then v is a PD,,_.-group.

Proof Let M = K(r,1). Then M is a PD,-space and C,(M) is a resolution
of the augmentation module Z. As C(M) is Z[v]-finitely dominated v is F'P.
Hence it is a PD,,_,-group, by Theorem 9.11 of [2]. O

The finiteness condition in this corollary cannot be relaxed further when r = 2
and n = 4. For Kapovich has given an example of a pair v < 7 with 7 a
PDy-group, /v a PDy-group and v finitely generated but not F'Py [13].

Corollary 2.2. Under the same hypotheses on M and 7, if either r =n — 1
or r = n — 2 and v is infinite or ¥ = n — 3 and v has one end then M is
aspherical.

Proof Since Hq(M; Z) = Hy(M,;Zv]) = H"""9(M,; Z[v]), by the theorem,
H,(M;Z) =0 if ¢ >n—r, Hy_(M;Z) 2 H'(M,;Z[v]) & H°(v;Z[v]) and

H,  1(M;Z) = H'(M,; Z[v]) = H'(v;Z[v]). In all cases the hypotheses imply
that M is contractible and so M is aspherical. O

In the non-aspherical case it is not immediately obvious that there are iso-
morphisms from H*(M,; A) to Hy—r—s(M,; Dy(A)) which are induced by cap
product with a class in H,,_,(M,;Z"™). If v is finitely presentable then M,
is finitely dominated; if moreover M is a PD,-complex we could apply the
Gottlieb-Quinn Theorem to conclude that M, is a PD,,_,.-complex.

We shall give instead a purely homological argument which does not require
m or v to be finitely presentable, and so applies to PD,-spaces. If G is a
weak PD,-group and M, is a PD,,_,-complex then M, has fundamental class
[M,] = ng N [M], where ng € H"(M;Z|G]) is the image of a generator of
H"(G;Z|G]). Barge has given a simple homological argument to show that
cap product with [M,] induces isomorphisms with simple coefficients [1]. We



shall extend his argument to the case of arbitrary local coefficients. (See also
Chapter 4 of [12] for the case G = Z and n = 4).

All tensor products N ® P in the following theorem are taken over Z.

Theorem 3 Let M be a PD,-space and p : m = m1(M) — G an epimorphism
with G a weak PD, -group, and let v = Ker(p). If C, (M) is Z[v]-finitely dom-
inated then there are isomorphisms HP(M,;Z[v]) = HP*"(M;Z[r]), induced
by cup product with n¢.

Proof Let C, be a finitely generated projective Z[r|-chain complex which is
chain homotopy equivalent to Cy(M). Since C.(M) is Z[v]|-finitely dominated
there is a finitely generated projective Z[v]-chain complex F. and a pair of Z[v]-
linear chain homomorphisms 6 : E, — i'C, and o : i'C, — E, such that 0p ~
Ic, and ¢0 ~ Ig,. Let C? = Homy(Cy, Z[r]) and E = Homyy,(E,, Z[V]),
and let Z[r] = Homgy, (i'Z[x], Z[v]) be the module coinduced from Z[v]. (The
left 7-action on Z[r] is given by (ga)(h) = a(hg) for all g,h € w.) Then there
are isomorphisms ¥ : HY(E*) = H(Cy;Z[r]), determined by ¢ and Shapiro’s
Lemma.

The complex Z[G] @z C« is an augmented complex of finitely generated pro-
jective Z[G]-modules with finitely generated integral homology. Therefore G is
of type F' Py, by Theorem 3.1 of [22]. Hence the augmentation Z[G]-module
Z has a resolution A, by finitely generated projective Z[G]|-modules. Let
AY = Homgq(Ag, Z]G]) and let n € H"(A*) = H"(G;Z[G]) be a generator.
Let e¢ : Cy — A, be a chain map corresponding to the projection of p onto
G, and let ng = efn € H'(Cy; Z[G]). The augmentation A, — Z determines
a chain homotopy equivalence p: C, ® A, - C, ® Z=C,. Let 0: G — 7 be
a set-theoretic section.

We may define cup-products relating the cohomology of M, and M as follows.
Let e : Z[7]®Z[G] — Z[x] be the pairing given by e(a®g) = o(g).a(o(g) 1) for
all a: Z[r] — Z[v] and g € G. Then e is independent of the choice of section o

and is Z[r]-linear with respect to the diagonal left m-action on Z[;] ®Z[G]. Let
d:Cy — C,®C, be a m-equivariant diagonal, with respect to the diagonal left
m-action on C, ® Cy, and let j = (1®ec)d : Cy — C, @ A,. Then pj = Idc,
and so j is a chain homotopy equivalence. We define the cup-product [f]Ung in
HPFT(C*) = HPY(M; Z[r]) by [flUng = exd (¥([f]) xna) = e (([f]) xn)
for all [f] € HP(E*) = HP(M,;Z[v]).

If C is a left Z[r]-module let D = Homgy, (i'C, Z[r]) have the left G-action
determined by (g)\)(c) = a(g)A(o(g)~tc) for all c € C and g € G. If C is free



with basis {c¢;]1 < i < n} there is an isomorphism of left Z[G]-modules © :
D = (|Z[x]|)" given by ©(A)(g9) = (c(9)-Ma(g) tc1); .-, 0(g)-Ao(g) " en))
forall A€ D and g € G, and so D is coinduced from a module over the trivial
group.

Let DY = Homgy, (i'Cy, Z[7]) and let p : E* @ Z[G] — D* be the Z-linear
cochain homomorphism defined by p(f®g)(c) = a(g)fé(a(g) te) forall ¢ € Cy,
Ae DY fe Fl ge G and all q. Then the G-action on D? and p are
independent of the choice of section o, and p is Z[G]-linear if E? ® Z[G] has
the left G-action given by ¢g(f ® ¢') = f ® g¢’ for all g,¢' € G and f € E1.

If A € DY then \9,(E,) is a finitely generated Z[v]-submodule of Z[r]. Hence
there is a family of homomorphisms {f, € Eg € F}, where F is a finite
subset of G, such that A\,(e) = Xscrfq(e)o(g) for all e € E,;. Let A\j(e) =
a(9) " fy(da(g)b(e))o(g) for all e € B, and g € F. Let ®(\) = SgepAy ® g €
E1®Z|G]. Then @ is a Z-linear cochain homomorphism. Moreover [p®(\)] =
] for all [\] € H9(D*) and [@p(f@g)] = [feg) forall [fog] € HI(E*Z[G]),
and so p is a chain homotopy equivalence. (It is not clear that ® is Z[G]-linear
on the cochain level, but we shall not need to know this).

We now compare the hypercohomology of G with coefficients in the cochain
complexes E* ® Z[G] and D*. On one side we have H"(G; E* ® Z|G]) =
Hi (Homg g (As, E* @ Z[G])), which may be identified with Hj,(E* ® A*)
since A, is finitely generated for all ¢ > 0. This is in turn isomorphic to
H" " (E*) ® H"(G;Z|G]) = H" " (E*), since G acts trivially on E* and is a
weak PD,-group.

On the other side we have H"(G; D*) = H{,(Homgzg)(Ax, D*)). The cochain
homomorphism p induces a morphism of double complexes from E* ® A* to
Homgg)(Ax, D¥) by pP(f @ a)(a) = p(f ® a(a)) € DP for all f € EP, a € A
and a € A, and all p,q > 0. Let pP([f]) = [p""(f x n)] € HP*"(G; D*) for
all [f] € HP(E*). Then p? : HP(E*) — HPY"(G; D*) is an isomorphism, since
[f] — [f x n] is an isomorphism and p is a chain homotopy equivalence. Since
C) is a finitely generated projective Z[r|-module DP is a direct summand of a
coinduced module. Therefore H*(G; DP) = 0 for all i > 0, while H°(G; DP) =
Homg(Cp, Z[x]), for all p > 0. Hence H"(G; D*) = H"(C*) for all n.

Let f € EP, a € A, and ¢ € (), and suppose that n(a) = Xngg. Since
PN (@) = p(f 2 1(@))(c) = Sngo(9) Fo(a(9) 1 e) = (] Un)(c,a) it follows
that the homomorphisms from HP(E*) to HP™"(C*) given by cup-product with
ng are isomorphisms for all p. O

Theorems 2 and 3 together give the following version of the Gottlieb-Quinn
Theorem for covering spaces.



Theorem 4 Let M be a PD,-space and p : m = m1(M) — G an epimorphism
with G a PD,-group, and let v = Ker(p). Then M, is a PD,,_,-space if and
only if i*'C(M) has finite [n/2]-skeleton.

Proof The conditions are clearly necessary. Conversely, if M), has finite [n/2]-
skeleton then C., is Z[v]-finitely dominated, by Theorem 2, and so cup product
with ng induces isomorphisms HP(M,,; Z[v]) & HP™"(M;Z[r]), by Theorem 3.
Let [M] € H,(M;Z") be a fundamental class for M, and let [M, ] = naN[M] €
H, (M;Z" ® Z|G]) = H,,_.(M,;Z*!¥). Then cap product with [M,] induces
isomorphisms HP(M,;Z[v]) = Hyp_,_p(M,;Z[v]) for all p, since ¢cN[M,] =
(cUng)N[M] in Hn_r_p(M;Z[E]v) = Hyp v p(My; Z[v]) = Hp—r—p(M;Z) for
¢ € HP(M,;Z[v]). Since i'C,(M) is finitely dominated it follows that cap
product with [M,] induces isomorphisms HP(M,;F) = Hy_p_p(My; Dy (F)),
for any free Z[v]-module F, and hence for arbitrary coefficient modules, by an
easy 5-Lemma argument. O

Corollary 4.1. Under the same hypotheses on M and 7, the covering space
M, is a PD,,_,-complex if and only if it is homotopy equivalent to a complex
with finite [n/2]-skeleton and v is finitely presentable. m|

Corollary 4.2. If M is a PD;-space and 7 is a PD,-group then M is a
PD,,_,-complex if and only if H,(M;Z) is finitely generated for all ¢ < [n/2].

Proof The condition is clearly necessary. If it holds then M has finite [n/2]-
skeleton [25], and so M is a PD,,_,-complex by Corollary 4.1. O

Stark used Theorem 3.1 of [22] with the Gottlieb-Quinn Theorem to deduce
that if M is a PD,-complex and v.c.d.w/v < oo then 7/v is of type vFP,
and therefore is virtually a PD-group. Is there a purely algebraic argument to
show that if M is a PD,-space, v is a normal subgroup of 7= and C,(M) is
Z[v]-finitely dominated then 7/v must be a weak PD-group?

3 Novikov rings and Ranicki’s criterion

The results of the above section apply in particular when G = Z. In this
case however we may use an alternative finiteness criterion of Ranicki to get a
slightly stronger result, which we can show to be best possible. Here we shall
outline the algebra relevant to our use of Ranicki’s criterion in the next section.



Let R be a ring with an automorphism «, and let S = Rq[z,27!], §+ =
Ra((2)) and S_ = Ra((z71)) be the rings of twisted Laurent polynomials and
series ij(lrjzij with coefficients r; € R and multiplication determined by
zr = «(r)z for all r € R.

An «a-twisted endomorphism of an R-module F is an additive function h : £ —
E such that h(re) = a(r)h(e) for all e € E and r € R, and h is an a-twisted
automorphism if it is bijective. Such an endomorphism h extends to a-twisted
endomorphisms of the modules S Qg F, E+ = §+ ®r F and E =8_ Rpr FE
by h(s®@e) = 2s2 ' @ h(e) for all e € E and s € S, S, or S_, respectively.
In particular, left multiplication by z determines a-twisted automorphisms of
SerE, E+ and E_ which commute with .

If E is finitely generated then 1 — z~!h is an automorphism of E_, with in-
verse given by a geometric series: (1 — z7'h)™! = %502 %Rk, (If E is not
finitely generated this series may not give a function with values in E_, and
2z —h = z(1 — 27'h) may not be surjective). Similarly, if k is an a~!-twisted
endomorphism of E then 1 — zk is an automorphism of E+.

If P, is a chain complex with an endomorphism 3 : P, — P, let P,[1] be the
suspension and C(8). be the mapping cone. Thus C(8), = P,—1 & P,, and
Jq(p,p") = (—0p, B(p) + Jp'), and there is a short exact sequence

0— P, — C(B)s — Pi[l] — 0.

The connecting homomorphisms in the associated long exact sequence of ho-
mology are induced by (. The algebraic mapping torus of an a-twisted self
chain homotopy equivalence h of an R-chain complex F, is the mapping cone
C(1 — z71h) of the endomorphism 1 — 2~ 'h of the S-chain complex S ®pg Ei.

Lemma 5 Let E, be a projective chain complex over R which is finitely
generated in degrees < d and let h: E, — E, be an a-twisted chain homotopy
equivalence. Then Hy(S- ®sC(1 —z7th),) =0 for ¢ < d.

Proof There is a short exact sequence
0—S®rE, —C(1—2z"'h), - SagkE][l] —D0.
Since F, is a complex of projective R-modules the sequence
0—E, -8 ®sC(1—2"h), — E,_[1] -0

obtained by extending coefficients is exact. The endomorphism 1—z~1h of E,_
induces isomorphisms in degrees < d and so induces isomorphisms on homol-
ogy in degrees < d and an epimorphism on homology in degree d. Therefore



Hq(g, ®sC(1 —2z71h),) =0 for ¢ < d, by the long exact sequence for homol-
ogy. 0

Theorem 6 Let C, be a finitely generated projective S-chain complex. Then
i'C, is chain homotopy equivalent (over R) to a projective complex E, which
is finitely generated in degrees < d if and only if H,(S+ ®s Cy) =0 for ¢ < d.

Proof We may assume without loss of generality that C, is a finitely generated
free S-module for all ¢ < d+ 1, with basis X; = {cgi}icr(q)- We may also
assume that 0 ¢ 0;(X;) for i < d+ 1, where 9; : C; — C;_; is the differential
of the complex. Let hy be the a*!-twisted automorphisms of i'C, induced by
multiplication by z*! in C.. Let fy(zFre,:) = (0,2% @ regi) € (S @p Cyg1) ®
(S®r Cy). Then f, defines S-chain homotopy equivalences from C, to each
of C(1 —27'hy) and C(1 — zh_).

Suppose first that &, : i'C, — E, and g+ - By — i'C, are chain homotopy equiv-
alences, where F, is a projective R-chain complex which is finitely generated
in degrees < d. Then 64+ = k,hig, are a®!-twisted self homotopy equiva-
lences of E,, and C(1—2z"'hy) and C(1 — zh_) are chain homotopy equivalent
to C(1 — 27%09,) and C(1 — 26_), respectively. Therefore Hq(g_ ®s Cy) =
Hy(S_ ®5C(1—2710,)) =0 and Hy(S; ®5 C,) = Hy(S; ©5C(1 —20_)) =0
for ¢ < d, by Lemma 5, applied twice.

Conversely, suppose that Hz(gi ®sCy) =0 for all i < k. We can proceed as in
[4] where the case of a partial free deleted resolution of a module over a group
ring is considered (using a support function with values in the group). We shall
define inductively a support function suppx for the elements A of U;<q41C;
with values finite subsets of {z7};cz so that

(1) suppx(0) =0

(2) if z € Xy then suppx(z/z) = 27;

(3) ifx € X; for 1 <i<d+1 then suppx(2/z) = 27.suppx (0;(z));
(4) ifs=3; rjz € S, where r; € R, suppx(sz) = Urﬁéosuppx(zjx)
(5) f0<i<d+land A=} g cx, Sz= then

suppx (A) = Us,20.0ex, SUppx (52)
Then suppx (0;(A\)) C suppx () forall A€ C; and all 1 <i<d+1.

Define two subcomplexes C* and C~ of C which are 0 in degrees i > d + 2
as follows. Since X = U;<q4+1X; is finite there is a positive integer b such that
Uzex, i<d+15uppx (x) C {27} _p<j<sp.



(1) if i < d+1 an element A € C; is in CT if and only if suppx(\) C
{27}>_p; and

(2) ifi <d+1anelement A € C; isin C~ if and only if suppx(\) € {27} ;<.

Then Uj<gy1X; C (CHFU N (C)H and so (OH)ld+H1 Y (0 )ld+1] = Cld+1],
where the upper index # denotes the x-skeleton. Moreover (CH)4+1 s a
complex of free finitely generated Ra|z]-modules, (C7)l*1 is a complex of
free finitely generated Ry[z~!]-modules, (C1)l1 N (C)l+1 is a complex of
free finitely generated R-modules and

C[d-H} =S ®Ra[z} (C+)[d+1} =5 ®Ra[z_1} (C_)[d+1]'
Furthermore there is a Mayer-Vietoris exact sequence
0 — (O A (e)ld+1) (o)1) g (o)), gla+] g,

Thus the (d+ 1)-skeletons of C', C* and C~ satisfy “algebraic transversality”
in the sense of [21, Prop. 1].

Then to prove the theorem it suffices to show that O and C~ are each chain
homotopy equivalent over R to a complex of projective R-modules which is
finitely generated in degrees < d. As in [21, p. 628] there is an exact sequence
of R,[271]-module chain complexes

0— (C‘)[d+1] — cldt @ Ra[[z_ 1l ® B[ 1] (C—)[d-i-l} N R cld+] .

Let 7 denote the inclusion of (C~)*1 into the central term. Inclusions on
each component define a chain homomorphism

(e n e - () g Ral71] @g, ey (7)1

such that the mapping cones of ¢ and j are chain equivalent R-module chain
complexes. The map induced by 7 in homology is an epimorphism in degree d
and an isomorphism in degree < d, since H;(S_ ®g Cl4t1) =0 for i < d. In
particular all homologies in degrees < d of the mapping cone of i are 0. Hence
all homologies of the mapping cone of j are 0 in degrees < d. Then (C*)[d“]
is homotopy equivalent over R to a chain complex of projectives over R whose
d-skeleton is a summand of (C)¥ N (C)4. This completes the proof. O

If 7 is a group, p: ™ — Z is an epimorphism with kernel v and p(z) =1 then
conjugation by z (g — zgz~!) determines an automorphism « of R = Z[v].
The corresponding tw1sted extensmns S, S+ and S_ are the group ring Z[r]

and the Novikov rings Z[ 7], and Z[ m]_,. In [16] it is shown that if 7 is finitely

generated the matrix rings M, (Z[r] p) are von Neumann finite: i.e., if A, B €
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Mn(Z[\ﬂ ,) and AB = I then BA = I. Hence finitely generated stably free

Z/[\W] ,-modules have well defined ranks, and the rank is strictly positive if the
module is nonzero. (In [12] rings satisfying the latter conditions are said to be
weakly finite).

4 Infinite cyclic coverings

One approach to duality when G = 7w/v = Z might proceed as follows. Let
U : H1(M,;Z[v]) — H1(M;Z[r]) be the isomorphism determined by Shapiro’s

Lemma. The module Z[\ﬂ may be identified with the left Z[r]-module of doubly
infinite series X,,czr, 2" with coefficients in Z[v], and there is an exact sequence

—_

§: 0—Zn]—- AL @A — Z[r] — 0.

If C*(M ) is Z[v]-finitely dominated the Bockstein operation for & induces

—

isomorphisms 6¢ : HI(M;Z[x]) — HIY(M;Z[r]). If we could show that
55U (c) = +VU(c) Uny for all ¢ € HI(M,;Z[v]) then we could conclude that
M, is a PD,,_1-space, with fundamental class nz N [M]. However we have not
managed to carry this through, and so we shall use Theorem 3 instead.

Theorem 7 Let M be a PD,-space with fundamental group m and let p :
m — Z be an epimorphism with kernel v. Then M, is a PD;_1-space if and
only if x(M) =0 and C,(M,) = i'C.(M) has finite [(n — 1)/2]-skeleton.

Proof If M, is a PD,,_;-space then C,(M,) is Z[v]-finitely dominated [7]. In
particular, H,(M;Z[Z]) = H.(M,;Z) is finitely generated. Let A = Z[Z]. The
augmentation A-module Z has a short free resolution 0 - A - A — Z — 0,
and it follows easily from the exact sequence of homology for this coefficient
sequence that y(M) =0 [20]. Thus the conditions are necessary.

Suppose that they hold. Let AL be the two Novikov rings corresponding to
the two epimorphisms +p : # — Z with kernel v. Then H;(A+ ®zr Cx) = 0
for j < [(n —1)/2], by Theorem 6. Hence H;(A+ ®z[; Cx) = 0 for j >
n — [(n —1)/2], by duality. If n is even there is one possible nonzero module,
in degree m = n/2. But then H,,(A+ ®z(; C;) is stably free, by Lemma 3.1 of
[12]. Since x(A+ @77 Cx) = x(Cx) = x(M) = 0 and the rings A4 are weakly
finite [16] these modules are 0. Thus H;(A+ ®z(- Cx) = 0 for all j, and so i'C,
is chain homotopy equivalent to a finite projective Z[v]-complex, by Theorem
6. Thus the result follows from Theorem 3, as in Theorem 4. |
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When n is odd [n/2] = [(n — 1)/2], so the finiteness condition on M, agrees
with that of Theorem 4 (for G = Z), but it is slightly weaker if n is even.

The infinite cyclic cover of the closed n-manifold M (K') obtained by surgery on
a simple (n —2)-knot K is [(n — 3)/2]-connected. However there are examples
for which 7((;,_1y/2] (M (K)) is not finitely generated as an abelian group [14, 17].
Thus the F'P,_1)/9 condition is best possible, in general.

Corollary 7.1. Let m bea PD,-group and p : @ — Z an epimorphism. Then
v = Ker(p) is a PD,,_1-group if and only if x(m) = 0 and v is FPj,_1)/9. O

The finiteness condition F'P(,_1)/9) is probably best possible, but we have no
examples with n > 4 to confirm this. (This condition cannot be relaxed if
n < 4. For let D be the closed 3-manifold obtained by doubling the exterior
of a nontrivial knot with Alexander polynomial 1, and let 7 = 7w1(D). Then =
is a PD3-group with x(7) =0, /7’ =2 Z and v = 7’ is not finitely generated.
The products ™ x Z and v = 7’ x Z give a similar example for n = 4).

Corollary 7.2. Under the same hypotheses on M and 7, if n # 4 then M,
is a PD,,_1-complex if and only if it is homotopy equivalent to a complex with
finite [(n — 1)/2]-skeleton.

Proof If n <3 every PD,,_q-space is a PD,,_1-complex, while if n > 5 then
[(n—1)/2] > 2 and so v is finitely presentable. O

If n < 3 we need only assume that M is a PD,-space and v is finitely generated.
It remains an open question whether every P Dg-space is finitely dominated.
The arguments of [24] and [9] on the factorization of PDjg-complexes into con-
nected sums are essentially homological, and so every P D3-space is a connected
sum of aspherical PDs-spaces and a PDs-complex with virtually free funda-
mental group. (In particular, v is F'Py and v.c.d.v = 0, 1 or 3). Thus this
question reduces to whether every P Dgs-group is finitely presentable. There are
PDy-groups which are not finitely presentable [10].

The case n = 4 was in fact the origin of this paper, and gives the following
improvements to Theorems 4.1 and 5.18 of [12].

Corollary 7.3. Let M be a PDy-space with x(M) =0 and © = m(M) =
v X Z, where v is finitely generated. Then M is aspherical if and only if v has
one end. In that case v is a PDj-group.

12



Proof The space M, is a PDs-space and v is F Py, by Theorem 7. If M
is aspherical then so is M, . Hence v is a PDjs-group, and so has one end.
Conversely, if v has one end H*(m;Z[r]) = 0 for s < 2, by an LHS spectral

sequence argument. Since v is finitely generated ﬁf (m) = 0 [18]. Therefore
M is aspherical, by Corollary 3.5.2 of [12]. O

If m 2 vxZ isa PD4-group with v finitely generated then y(7) = 0 if and only
if v is F'Py, by Corollary 2.1 and Theorem 7. However the latter conditions
need not hold. Let F' be the orientable surface of genus 2. Then G = 7 (F)
has a presentation (ai,as,b1,bs | [a1,b1] = [ag,bs]). The group 7 =G X G is a
PDy-group, and the subgroup v < 7 generated by the images of (a1,a1) and
the six elements (z,1) and (1,z), for © = ag, by or by, is normal in 7, with
quotient w/v = Z. However x(m) =4 # 0 and so v cannot be F'Ps.

Corollary 7.4. Let M be a PDy-space with x(M) = 0 and such that 7 =
m1(M) is an extension of Z" by a finitely generated infinite normal subgroup
v, for some r > 1. Then M is aspherical and v is a PD4_,-group. O

Proof Let ¢ : m — Z be an epimorphism which factors through 7/v. Then
v is a finitely generated infinite normal subgroup of Ker(¢), and Ker(¢)/v =
Z™=1. Hence Ker(¢) is finitely generated and has one end, and so the result

follows from Corollaries 7.3 and 2.1. O

A simple induction based on Theorem 7 shows that if M,, is the covering space of
a PD,,-complex M corresponding to an epimorphism p : 71(M) — G and G is
virtually poly-Z of Hirsch length r then M, is a PD,,_,-complex if x(M) =0,
Ker(71(p)) is finitely presentable and M), is homotopy equivalent to a complex
with finite [(n — 1)/2]-skeleton.

However the methods and results described in this section break down for more
general covering groups. Let S be an aspherical closed surface and let G =
m1(S). Surface groups are left orderable, and a left order P on G determines
a Novikov-like completion R = Z[(?] p of Z|G] in an obvious way. Since S is
contractible the most straightforward extension of the Ranicki criterion would

require that H.(R ®z(q) C«(5)) = 0. If R were weakly finite this would imply

that x(G) = x(R ®zq C.(S)) = 0. (A more geometric notion of Novikov
completion is used in [3] to give criteria for the kernel v of an epimorphism
f:m— G to have a finitely dominated K (v,1)-complex when there is a finite
K(m,1) and G is a CAT(0)-group, such as a surface group).
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