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Abstract

In this article we compute equations satisfied by the theta null point of a

canonical lift in the case of residue field characteristic 2.

1 Introduction

The present article follows up [1]. Theorem 2.1, our main result, states equations
satisfied by the canonical theta null point of the canonical lift of an ordinary
abelian variety over a perfect field of characteristic 2. The canonical theta null
point is given in terms of the canonical theta structure whose existence is proven
in the first part of this article (see [1, Cor. 2.2]).

According to the theory of complex multiplication solutions of the equations
stated in Theorem 2.1 generate class fields. This is verified for some examples in
Appendix A. We expect that solving our equations gives a 2-adic CM method
similar to the one described in [2].

In Section 2 we show how our equations are related to the generalised Arith-

metic Geometric Mean (AGM) formulas that Jean-François Mestre proposed in
[6, §1.3]. Mestre derived his formulas from a transformation formula for com-
plex analytic theta functions describing their behaviour under the doubling of
the period matrix. (For the transformation formula see [3, Ch. IV, Th. 2] or
[4, Ch. 7 §1].) Our formulas are computed by purely algebraic means using the
Multiplication Formula and the Isogeny Theorem for algebraic theta functions
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stated in [8, §1-3]. The theory of algebraic theta functions was developed by
David Mumford. We give a short overview of his ideas in Section 3.

In the year 2000 Mestre came up with a point counting algorithm for ordinary
hyperelliptic curves over a finite field of characteristic 2 based on his formulas
for a generalised AGM. For an exposition of his algorithm see [14, Ch. III] and
[5]. One of the aims of this article is to broaden the understanding of Mestre’s
algorithm in order to generalise it to arbitrary residue field characteristic.

2 The main result

For general remarks about the notation see [1, §3]. Let R be a complete noethe-
rian local ring with perfect residue field k of characteristic 2. Assume that R
admits a lift σ of the 2-th power Frobenius automorphism of k. Let A be an
abelian scheme over R of relative dimension g having ordinary reduction. Let L
be an ample symmetric line bundle of degree 1 on A. Assume that j ≥ 1 and
that we are given an isomorphism

(Z/2jZ)gR
∼→ A[2j ]et (1)

where A[2j ]et denotes the maximal étale quotient of A[2j ]. Suppose that A
is a canonical lift. By [1, Cor. 2.2] there exists a canonical theta structure of

type (Z/2jZ)gR for the pair (A,L⊗2j

) depending on the isomorphism (1). Let
[xu]u∈(Z/2jZ)g

R
denote the theta null point of A with respect to the canonical

theta structure. For the definition of the theta null point see Section 3.1.

Theorem 2.1 There exists a square ω ∈ R∗ such that

x2
u = ω ·

∑

v∈(Z/2Z)g

R

σ(xv+u) · σ(xv), u ∈ (Z/2jZ)gR.

Theorem 2.1 will be proven in Section 4.1. In Appendix A we demonstrate the
use of Theorem 2.1 by computing theta null points for small values of j and g.
The formulas of Theorem 2.1 are related to Mestre’s generalised AGM formulas

in the following way. Take j = 1 and set a
(n+1)
u = x2

u and a
(n)
u = σ(xu)

2. Then
by Theorem 2.1 one has

a(n+1)
u = ω ·

∑

v∈(Z/2Z)g

R

√
a
(n)
v+u · a

(n)
v , u ∈ (Z/2Z)gR.

These are up to a scalar the formulas that Mestre proposed for a generalised
arithmetic geometric mean (see [6, §1.3]).

3 Algebraic theta functions

In this section we present the theoretical background which is necessary in order
to understand the proof of Theorem 2.1. The theory of algebraic theta functions
was developed by David Mumford in [8], [9] and [10]. For a detailed account to
theta functions we refer to [11], [12] and [13].

2



3.1 Theta null points

Assume that we are given an abelian scheme A of relative dimension g over a ring
R and an ample line bundle L on A. Let K be a finite constant commutative R-
group of rank d. Assume that we are given a theta structure Θ : G(K)

∼→ G(L).
For our notation and the definition of a theta structure see [1, §4].

Theorem 3.1 There exists a morphism

A→ P
(K)
R (2)

which is uniquely determined by the theta structure Θ. If L is very ample then

the morphism (2) is a closed immersion.

Later on in this section we will give a proof of Theorem 3.1. In the above theorem

P
(K)
R denotes the homogeneous spectrum of the polynomial ring R[{xu|u ∈ K}].

In the case that R = Z we simply write P(K). Ordering the points of K deter-
mines an isomorphism P(K) ∼→ Pd−1 where d is the rank of K.

Definition 3.2 The image of the zero section 0A of A under the morphism (2),
denoted by Θ(0A), is called the theta null point of A with respect to the theta

structure Θ.

We set V (K) = Hom(K,OR) where the latter is defined to be the functor giving
the functions on K. Note that V (K) is a locally free OR-module of rank d. Now
consider the representation of G(K) on V (K) given by

(
(α, x, l), f

)
7→
[
y 7→ α · l(y) · f(x+ y)

]
.

We define an action G(L) × π∗L → π∗L by setting

(
(x, ψ), s

)
7→ T ∗

−x(ψ(s)).

By the existence of the theta structure Θ the line bundle L has degree d. Hence
π∗L is locally free of rank d. The group G(K) acts on π∗L by means of the theta
structure Θ.

Lemma 3.3 There exists an isomorphism of G(K)-modules

π∗L
β→ V (K)

uniquely determined by the theta structure Θ up to multiplication by a unit in

R.

Proof. Up to isomorphism there exists only one irreducible representation of
G(K) such that the subgroup Gm,R acts by scalar multiplications. Every finite
locally free G(K)-module having the latter property is a direct sum of copies
of the unique irreducible one. For a proof over a field see [8, Th. 2]. The case
of an arbitrary base ring is discussed in [7, Ch. V]. The G(K)-module V (K) is
irreducible. Hence a G(K)-module is irreducible if and only if it has rank d. We
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conclude that π∗L is an irreducible G(K)-module. This proves the existence of
the isomorphism β.

In the following we will prove the uniqueness of β. Let β1 and β2 be G(K)-
isomorphisms π∗L ∼→ V (K). Then γ = β2 ◦ β−1

1 is a G(K)-automorphism of
V (K). We claim that γ is given by a scalar multiplication. We can check this on
geometric fibres. For the following we assume that R is an algebraically closed
field. A decomposition of V (K) into eigenspaces of γ is G(K)-invariant by the
G(K)-linearity of γ. Our claim now follows from the irreducibility of V (K). This
finishes the proof of the lemma. �

Proof of Theorem 3.1: We claim that there exists a canonical basis of π∗L
which is uniquely determined up to scalars. Let β be as in Lemma 3.3. The
module V (K) has a canonical basis given by the functions

δz(x) =

{
1, x = z
0, x 6= z

where z ∈ K. The canonical basis of π∗L is given by the image of the basis
(δz)z∈K under β−1. By general theory the latter basis determines a morphism

A → P
(K)
R . By uniqueness the latter morphism does not depend on the choice

of β. This completes the proof of Theorem 3.1. �

In the following we will explain how to evaluate sections of π∗L at torsion
points contained in H(L) = Ker(ϕL) where ϕL : A → Pic0

A/R is defined by

x 7→ 〈T ∗
xL ⊗ L−1〉 (compare [1, §4.1]). Assume we are given an isomorphism β

as in Lemma 3.3 and a rigidification of L, i.e. an isomorphism ε : 0∗
AL

∼→ OR

where 0A denotes the zero section of A. We indicate the application of the
composed morphism

π∗L = 0∗Aπ
∗π∗L can−→ 0∗AL

ε→ OR

by (·)0. The latter morphism allows us to evaluate sections of π∗L at zero. Let
(x, l) ∈ K ×KD and let s be a section of π∗L. Let g = Θ(1, x, l) ∈ G(L). We
set

Θ[s](x, l) =
(
g−1s

)
0
.

Lemma 3.4 There exists a unique function qL ∈ V (K) such that

Θ[s](0, 0) =
∑

x∈K

β(s)(x) · qL(x).

Proof. Consider the morphism

κ : π∗L → Hom(K ×KD,OR), s 7→ Θ[s].

The morphism κ is injective because its kernel is a G(K)-submodule of π∗L.
The latter module is irreducible. This implies the lemma. �

We remark that the composition of the morphism κ, as defined in the proof of
Lemma 3.4, with the restriction to V (K) does not preserve the G(K)-action.
Note that by Lemma 3.4 the theta null point with respect to Θ is given by
[qL(x)]x∈K .
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3.2 The Isogeny Theorem

In the following we use the notation of Section 3.1 and [1, §4]. Let I : A → A′

be an isogeny of abelian schemes over a ring R. Assume that we are given ample
line bundles L and L′ on A and A′, respectively. Suppose we are given theta
structures ΘA : G(KA)

∼→ G(L) and ΘA′ : G(KA′)
∼→ G(L′) where KA and KA′

are finite constant groups. Let α : I∗L′ ∼→ L be an isomorphism of OA-modules.
The existence of α implies that Ker(I) is contained in H(L). By [1, Prop. 4.2]
the morphism α induces a section Ker(I) → G(L) of the natural projection

G(L) → H(L). Let K̃ denote the image of Ker(I) in G(L). Assume that

(†) the image of K̃ under Θ−1
A is of the form {1} × Z1 × Z2

with subgroups Z1 ≤ KA and Z2 ≤ KD
A .

By abuse of notation we define

Z⊥
1 = { x ∈ KA | (∀l ∈ Z2) l(x) = 1 }

and
Z⊥

2 = { l ∈ KD
A | (∀x ∈ Z1) l(x) = 1 }.

Note that Z⊥
1 ×Z⊥

2 is the subgroup of points of KA ×KD
A being orthogonal to

Z1 × Z2. Assume that we are given a surjective morphism of groups σ : Z⊥
1 →

KA′ having kernel Z1.

Proposition 3.5 The theta structure ΘA induces a theta structure ΘA(σ) of

type KA′ for the pair (A′,L′) depending on the morphism σ.

Proof. Let G(L)∗ denote the centraliser of K̃ in G(L). By [8] Proposition 2
there exists a natural isomorphism of groups

G(L)∗/K̃
∼→ G(L′). (3)

It is easily checked that the image of G(L)∗ under Θ−1
A equals Gm,R×Z⊥

1 ×Z⊥
2 .

The isomorphism (3) composed with the isomorphism

Gm,R × Z⊥
1 /Z1 × Z⊥

2 /Z2
∼→ G(L)∗/K̃

induced by ΘA establishes an isomorphism

Gm,R × Z⊥
1 /Z1 × Z⊥

2 /Z2
∼→ G(L′). (4)

We claim that there exists a natural isomorphism

Z⊥
2 /Z2

∼→ (Z⊥
1 /Z1)

D . (5)

To see this one has to apply the Snake Lemma to the following commutative
diagram of exact sequences

0 // Z1
//

��

KA

id

��

// (Z⊥
2 )D

��

// 0

0 // Z⊥
1

// KA
e // ZD2

// 0.
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Here the upper exact sequence is obtained by dualising the exact sequence

0 → Z⊥
2 → KD

A
res−→ KD

1 → 0

and e denotes the map x 7→ e(KA)
(
(x, 1), (0, ·)

)
defined in terms of the commu-

tator pairing e. The left hand vertical morphism is the natural inclusion. The
morphism σ induces an isomorphism σ1 : KA′

∼→ Z⊥
1 /Z1. Let σ2 : KD

A′

∼→ Z⊥
2 /Z2

denote the inverse of the isomorphism that one gets by composing σD1 with (5).
Composing the isomorphism (4) with the isomorphism id × σ1 × σ2 we get a
theta structure Θ(σ) : G(KA′)

∼→ G(L′). This proves the proposition. �

Note that ΘA(σ) does not depend on the choice of α.

Definition 3.6 We say that ΘA and ΘA′ are I-compatible if there exists α as

above, assumption (†) holds and there exists a morphism σ as above such that

ΘA′ = ΘA(σ).

Let πA and πA′ denote the structure maps of A and A′, respectively. Since I is
faithfully flat the natural morphism L′ τ→ I∗I

∗L′ is injective. As a consequence
there exists an injective morphism ι : π′

∗L′ → π∗L of OR-modules given by the
composition

π′
∗L′ π

′
∗τ−→ π′

∗I∗I
∗L′ = π∗I

∗L′ π∗α−→ π∗L.
The morphism ι identifies the sections of π′

∗L′ with those sections of π∗L which
are invariant under the translations with points in the kernel of I . By Lemma 3.3
we can choose G(KA)- and G(KA′)-isomorphisms βA : π∗L ∼→ V (KA) and βA′ :
π′
∗L′ ∼→ V (KA′). We define VI : V (KA′) → V (KA) by setting VI = βA ◦ ι ◦β−1

A′ .

Theorem 3.7 (Isogeny Theorem) Suppose ΘA and ΘA′ are I-compatible. In

particular we are given a morphism σ as above such that ΘA′ = ΘA(σ). There

exists a λ ∈ R∗ such that for all f ∈ V (KA′) we have

VI(f)(x) =

{
0 , x 6∈ Z⊥

1

λ · f
(
σ(x)

)
, x ∈ Z⊥

1

where x ∈ KA.

For a proof of Theorem 3.7 in the case where R is a field see [8, §1, Th.4].

3.3 The Multiplication Formula

Let A
π→ Spec(R) be an abelian scheme and L an ample symmetric line bundle

on A. Suppose n ≥ 2. We set Ln = L⊗n. Assume we are given theta structures
Θ : G(K)

∼→ G(L) and Θn : G(Kn)
∼→ G(Ln). We define a morphism of groups

εn : G(L) → G(Ln) by setting

(x, ψ) 7→ (x, ψ⊗n).

Note that there is a natural inclusion H(L) ↪→ H(Ln) (notation as in [1, §4])
and the multiplication-by-n on H(Ln) induces an epimorphism H(Ln) → H(L).
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On Gm,R the morphism εn equals the n-th powering morphism.
Next we will define a morphism of groups ηn : G(Ln) → G(L) using the

symmetry of L. Assume we are given (x, ψ) ∈ G(Ln). Since L is symmetric there

exists an isomorphism γ : L⊗n2 ∼→ [n]∗L. Consider the composed isomorphism

[n]∗L γ−1

→ L⊗n2

= L⊗n
n

ψ⊗n

−→ T ∗
xL⊗n

n = T ∗
xL⊗n2 T∗

x γ−→ T ∗
x [n]∗L = [n]∗T ∗

nxL. (6)

Since nx is a point of H(L) there exists an isomorphism ρ : L ∼→ T ∗
nxL inducing

the isomorphism (6). Since [n] is faithfully flat the morphism ρ is uniquely
determined. We set ηn(x, ψ) = (nx, ρ). One can check that this is independent
of the choice of γ. The map ηn restricted to Gm,R equals the n-th powering
morphism.

We denote the Lagrangian structures induced by Θ and Θn by δ and δn,
respectively. Suppose that K ≤ Kn and K = {nx|x ∈ Kn}. Also we assume
that δn restricted to K×KD equals δ. As a consequence the multiplication-by-
n morphism on Kn×KD

n induces an epimorphism Kn×KD
n → K×KD, (x, l) 7→

(nx, ln). We define morphisms En : G(K) → G(Kn) and Hn : G(Kn) → G(K)
by setting (α, x, l) 7→ (αn, x, l) and (α, x, l) 7→ (αn, nx, ln), respectively. Here we
consider points of K ×KD as points of Kn ×KD

n via the natural inclusion.

Definition 3.8 We say that the theta structures Θn and Θ are n-compatible if

1. K ≤ Kn and K = {nx|x ∈ Kn},

2. δn restricted to K ×KD equals δ,

3. Θn ◦En = εn ◦ Θ and Θ ◦Hn = ηn ◦ Θn.

Now assume that n = 2. Choose β : π∗L ∼→ V (K) and β2 : π∗L2
∼→ V (K2) as

in Lemma 3.3.

Definition 3.9 Let s and s′ be sections of π∗L. Set f = β(s) and f ′ = β(s′).
We define

f ? f ′ = β2(s⊗ s′).

Theorem 3.10 (Multiplication Formula) Suppose Θ and Θ2 are 2-compatible

theta structures. Then for all f, f ′ ∈ V (K) we have

(f ? f ′)(x) =
∑

y∈x+K

f(x+ y) · f ′(x− y) · qL2(y)

where x ∈ K2.

Note that in order to obtain the formulas of Theorem 3.10 one has to normalise
β and β2 in a suitable way. For a proof of Theorem 3.10 over a field see [8, §3].
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4 The proofs

In this section we will prove Theorem 2.1. Let R denote a complete noetherian
local ring with perfect residue field k of characteristic p > 0. Assume that R
admits a lift of the p-th power Frobenius automorphism of k. Let A

π→ Spec(R)
be an abelian scheme of relative dimension g having ordinary reduction and let
L be an ample symmetric line bundle of degree 1 on A. Let F : A→ A(p) denote
the unique lift of the relative p-Frobenius. We denote the structure map of A(p)

by π(p). By [1, Th. 5.1] there exists an ample symmetric line bundle L(p) of
degree 1 on A(p) and an isomorphism F ∗L(p) ∼→ L⊗p. For i ≥ 0 we set

Li = L⊗pi

, Mi =
(
L(p)

)⊗pi

and Ki = (Z/piZ)gR.

Let r ≥ 1 and assume that we are given an isomorphism

Kr
∼→ A[pr]et. (7)

The lift of the relative p-Frobenius F : A → A(p) induces an isomorphism
F [pr]et : A[pr]et

∼→ A(p)[pr]et. Composing F [pr]et with the isomorphism (7) we
get an isomorphism

Kr
∼→ A(p)[pr]et. (8)

Now assume that A is a canonical lift. As a consequence A(p) is a canonical
lift. By [1, Cor. 2.2] there exist for all 0 ≤ j ≤ r canonical theta structures
Θj : G(Kj)

∼→ G(Lj) and Σj : G(Kj)
∼→ G(Mj) depending on the isomorphisms

(7) and (8).

Lemma 4.1 For 0 ≤ j < r the theta structures Θj+1 and Σj+1 are p-compatible

to Θj and Σj , respectively.

For the notion of p-compatibility see Definition 3.8.

Proof. We use the notation of Section 3.3. We prove the claim for the theta
structures Θj where 0 ≤ j ≤ r. For trivial reasons the theta structure Θ1 is
compatible with the theta structure Θ0. Now let j ≥ 1. Obviously the theta
structures Θj+1 and Θj satisfy the conditions 1. and 2. of Definition 3.8. We
claim that

Θj+1 ◦Ep = εp ◦Θj (9)

(notation as in Section 3.3). We verify equation (9) for points lying over Kj .
Since the proof for points lying over KD

j is analogous we do not present it
here. By Vj : A → Aj we denote the j-fold application of the lift of the p-
Verschiebung. Let V = V1. Note that we have Aj = A/Kj where we consider
Kj as a subgroup of A via the Lagrangian level structure induced by Θj . Let
vj+1 : Kj+1 → G(Lj+1) and vj : Kj → G(Lj) be the sections of theta exact
sequences over Kj+1 and Kj induced by the canonical theta structure. By [1,
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Prop. 4.2] the sections vj+1 and vj correspond to line bundles L(j+1) and L(j)

on Aj+1 and Aj together with isomorphisms βj+1 : V ∗
j+1L(j+1) ∼→ Lj+1 and

βj : V ∗
j L(j) ∼→ Lj . Let x be a point of Kj . We have vj+1(x) = (x, T ∗

xβj+1 ◦β−1
j+1)

and vj(x) = (x, T ∗
xβj ◦ β−1

j ). By the definition of the canonical theta structure

there exists an isomorphism β : V ∗L(j+1) ∼→ (L(j))⊗p. Consider the isomorphism
κ given by the composition

V ∗
j+1L(j+1) = V ∗

j V
∗L(j+1)

V ∗
j β−→ V ∗

j (L(j))⊗p
β⊗p

j−→ L⊗p
j = Lj+1.

Since x lies in the kernel of Vj we have Vj ◦ Tx = Vj and hence T ∗
xV

∗
j β = V ∗

j β.
It follows that

εp(vj(x)) =
(
x, (T ∗

xβj ◦ β−1
j )⊗p

)
=
(
x, T ∗

xβ
⊗p
j ◦ β⊗−p

j

)

=
(
x, T ∗

xκ ◦ κ−1
)

=
(
x, T ∗

xβj+1 ◦ β−1
j+1

)
= vj+1(x).

The latter equality follows from the fact that βj+1 and κ differ by a unit. Next
we will verify that

Θj ◦Hp = ηp ◦ Θj+1

for points of G(Kj+1) lying over Kj+1. The proof for points lying over KD
j+1

is analogous. Consider a point (1, x, 1) in G(Kj+1). We have Θj(Hp(1, x, 1)) =
vj(px) = (px, τj) and Θj+1(1, x, 1) = vj+1(x) = (x, τj+1) where τj+1 = T ∗

xβj+1◦
β−1
j+1 and τj = T ∗

pxβj ◦β−1
j . Choose an isomorphism γ : L⊗p2

j
∼→ [p]∗Lj . Consider

the composed isomorphism

[p]∗Lj
γ−1

−→ L⊗p2

j = L⊗p
j+1

τ⊗p

j+1−→ (T ∗
xLj+1)

⊗p = T ∗
xL⊗p2

j

T∗
x γ−→ T ∗

x [p]∗Lj = [p]∗T ∗
pxLj .

We claim that the latter isomorphism is induced by τj . By the definition of the

canonical theta structure there exists an isomorphism ξ : F ∗L(j) ∼→ (L(j+1))⊗p

where F denotes the lift of the relative p-Frobenius. The composed isomorphism

V ∗
j+1(L(j+1))⊗p

V ∗
j+1ξ

−1

−→ V ∗
j+1F

∗L(j) = V ∗
j [p]∗L(j) = [p]∗V ∗

j L(j) [p]∗βj−→ [p]∗Lj .

differs from γ ◦ β⊗p
j+1 by a unit. We conclude that

T ∗
xγ ◦ τ⊗pj+1 ◦ γ−1 = T ∗

x (γ ◦ β⊗p
j+1) ◦ (γ ◦ β⊗p

j+1)
−1

= T ∗
x

(
[p]∗βj ◦ V ∗

j+1ξ
−1
)
◦
(
[p]∗βj ◦ V ∗

j+1ξ
−1
)−1

= T ∗
x [p]∗βj ◦ [p]∗β−1

j

= [p]∗T ∗
pxβj ◦ [p]∗β−1

j = [p]∗(T ∗
pxβj ◦ β−1

j ) = [p]∗τj .

Note that T ∗
xV

∗
j+1ξ

−1 = V ∗
j+1ξ

−1 since x is in the kernel of Vj+1. This completes
the proof of the lemma. �

Lemma 4.2 For all 0 ≤ j < r the theta structures Θj+1 and Σj are F -

compatible.
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For the meaning of F -compatibility see Definition 3.6.

Proof. For the notation see Section 3.2. By [1, Th. 5.1] there exists an iso-
morphism γj+1 : F ∗Mj

∼→ Lj+1. Obviously assumption (†) holds with Z1 = 0
and Z2 = KD

1 . It follows that Z⊥
2 = KD

j+1. By duality we conclude that Z⊥
1

coincides with the image of Kj in Kj+1. Take σ to be the identity. We claim
that Σj = Θj+1(σ). Checking the claim amounts to prove the commutativity of
the diagram

G(Lj+1)/K̃ oo

can

��

Gm,R × Z⊥
1 /Z1 × Z⊥

2 /Z2OO

id×σ1×σ2

G(Mj) oo Σj

Gm,R ×Kj ×KD
j

where the upper horizontal arrow is induced by Θj+1 and the morphisms σ1 and
σ2 are as in the proof of Proposition 3.5. In the following we verify the commuta-
tivity of the above diagram for points of the form (1, x, 1) ∈ Gm,R×Kj×KD

j . An
analogous proof exists for points of the form (1, 0, l). Via the morphisms σ1 and
σ2 we can consider (1, x, 1) as a point of G(Kj+1). By definition its image under
Θj+1 is given by v(x) where v : Kj+1 → G(Lj+1) is the section of the theta ex-

act sequence over Kj+1 induced by the isomorphism αj+1 : V ∗
j+1L(j+1) ∼→ Lj+1

(notation as in the proof of Lemma 4.1). We have v(x) = (y, T ∗
yαj+1 ◦ α−1

j+1)
where y ∈ H(Lj+1) is uniquely determined by the condition F (y) = x. On the
other hand we have Σj(1, x, 1) = w(x) where w : Kj → G(Mj) is the section
of the theta exact sequence over Kj induced by the canonical theta structure.
The section w corresponds to a line bundle L(j−1) on A(j−1) and an isomor-
phism βj : V ∗

j L(j−1) ∼→ Mj where we set A(0) = A and A(j) = A/Kj for j ≥ 1

(compare proof of Lemma 4.1). We have w(x) = (x, T ∗
xβj ◦ β−1

j ). There exist
isomorphisms

ξ1 : F ∗L(j−1) ∼→ (L(j))⊗p and ξ2 : V ∗L(j+1) ∼→ (L(j))⊗p.

Let ξ = ξ−1
1 ◦ ξ2. The isomorphism V ∗

j ξ induces an isomorphism

Vj+1L(j+1) = V ∗
j V

∗L(j+1)
V ∗

j ξ−→ V ∗
j F

∗L(j−1) = F ∗V ∗
j L(j−1).

The composed isomorphism γj+1◦F ∗βj ◦V ∗
j ξ differs from αj+1 by a unit. By the

definition of the canonical isomorphism G(Lj+1)/K̃
∼→ G(Mj) (see [8, Prop. 2])

the element in G(Lj+1)/K̃ corresponding to w(x) is given by
(
y, T ∗

y γj+1 ◦ F ∗(T ∗
xβj ◦ β−1

j ) ◦ γ−1
j+1

)

=
(
y, T ∗

y γj+1 ◦ F ∗T ∗
xβj ◦ F ∗β−1

j ◦ γ−1
j+1

)

=
(
y, T ∗

y γj+1 ◦ T ∗
yF

∗βj ◦ F ∗β−1
j ◦ γ−1

j+1

)

=
(
y, T ∗

y (γj+1 ◦ F ∗βj ◦ V ∗
j ξ) ◦ (γj+1 ◦ F ∗βj ◦ V ∗

j ξ)
−1
)

= (y, T ∗
yαj+1 ◦ α−1

j+1) = v(x).

This completes the proof of the lemma. �
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4.1 Proof of Theorem 2.1

We use the notation introduced above. For the rest of Section 4 we assume that
p = 2. Let 0A and 0A(2) denote the zero sections of A and A(2).

Theorem 4.3 Let 0 ≤ j < r. There exists a square ω ∈ R∗ such that the theta

null points

Θj(0A) = [xu]u∈Kj
and Σj(0A(2) ) = [yu]u∈Kj

are related by the equations

x2
u = ω ·

∑

v∈K1

yv+u · yv , u ∈ Kj .

Proof. We choose rigidifications εL0 and εM0 of the line bundle L0 and M0.
The latter induce rigidifications of Li and Mi for all i ≥ 0. Assume that we have

chosen G(Ki)-isomorphisms βi : π∗Li ∼→ V (Ki) and β
(2)
i : π

(2)
∗ Mi

∼→ V (Ki) for
all 0 ≤ i ≤ r (compare Lemma 3.3). By Lemma 3.4 there exist for every 0 ≤ i ≤ r
functions qLi

and qMi
defined on Ki with values in R giving the coordinates of

the theta null point with respect to Θi and Σi. By Lemma 4.1 and Lemma 4.2
the theta structures Θi and Σi satisfy the compatibility assumptions of Theorem
3.10 and Theorem 3.7. The key ingredient in the proof of Theorem 4.3 is the
following lemma.

Lemma 4.4 Let 1 ≤ j < r. There exists an ω ∈ R∗ such that for all x ∈ Kj

we have

qLj+1(x) = ω · qMj
(x).

Proof. Let
� ∈ V (Kj−1) be defined to be the constant function on Kj−1 with

value 1. Let δ0 ∈ V (Kj−1) be defined by

δ0(x) =

{
1, x = 0
0, x 6= 0

where x ∈ Kj−1. We can assume that

VF (
�
? δ0) = VF (

�
) ? VF (δ0) (10)

where VF is defined as in Section 3.2. First we compute the right hand side of
(10). It follows by Theorem 3.7 that there exists a β ∈ R∗ such that for all
x ∈ Kj we have

VF (
�
)(x) =

{
β if x ∈ Kj−1

0 if x 6∈ Kj−1
and VF (δ0)(x) =

{
β if x = 0
0 if x 6= 0

Now using Theorem 3.10 one computes

(
VF (

�
) ? VF (δ0)

)
(x) =

∑

y∈x+Kj

VF (
�
)(x + y) · VF (δ0)(x− y) · qLj+1 (y)

11



=

{
β2 · qLj+1(x) if x ∈ Kj

0 if x 6∈ Kj .

for x ∈ Kj+1. The latter equality follows from the fact that VF (
�
)(x + y) ·

VF (δ0)(x− y) 6= 0 is equivalent to x = y and 2x ∈ Kj−1. Next we compute the
left hand side of equation (10). By Theorem 3.10 we have

(
�
? δ0)(x) =

∑

y∈x+Kj−1

�
(x + y) · δ0(x− y) · qMj

(y) = qMj
(x)

for all x ∈ Kj . We conclude by Theorem 3.7 that there exists a γ ∈ R∗ such
that

VF (
�
? δ0)(x) =

{
γ · qMj

(x) if x ∈ Kj

0 if x 6∈ Kj .

for all x ∈ Kj+1. Set ω = β−2 · γ. This implies the lemma. �

Using the above lemma we can finish the proof of Theorem 4.3. The canonical
basis of V (Kj) is given by the functions

δz(x) =

{
1, x = z
0, x 6= z

where z ∈ Kj . By Theorem 3.10 one has

(δz ? δz)(x) =
∑

y∈x+Kj

δz(x+ y) · δz(x− y) · qLj+1(y)

=

{
ω · qMj

(x− z) , 2(x− z) = 0
0 , 2(x− z) 6= 0

for all z ∈ Kj and x ∈ Kj+1. The latter equality follows from Lemma 4.4 and
the fact that δz(x+y) ·δz(x−y) 6= 0 is equivalent to y = x−z and 2(x−z) = 0.
Let {su}u∈Kj

denote the canonical R-basis of Lj . By Lemma 3.4 we have

qLj
(u)2 = Θj [su](0, 0)2 = Θj+1[su ⊗ su](0, 0)

=
∑

x∈Kj+1

(δu ? δu)(x) · qLj+1 (x) = ω2 ·
∑

v∈K1

qMj
(v) · qMj

(u+ v).

The latter equality follows by the above discussion and Lemma 4.4. This finishes
the proof of Theorem 4.3. �

We claim that Theorem 4.3 implies Theorem 2.1. We remark that one may have
to work over a finite local étale extension of R in order to trivialise the 2-torsion
of A up to the right level. However, the resulting formulas are defined over R.

Let σ denote a lift of the 2-th power Frobenius automorphism of k. Note
that the pull back of A(2) by the morphism Spec(σ−1) is the canonical lift of
Ak and hence canonically isomorphic to A. Via this canonical isomorphism the
pull back of the line bundle Mj is isomorphic to Lj and the theta structure Θj

coincides with the pull back of Σj . We conclude that there exists a ω′ ∈ R∗ such
that

σ−1
(
qMj

(x)
)

= ω′ · qLj
(x)

for all x ∈ Kj . This proves our claim and completes the proof of Theorem 2.1.
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A Fields generated by theta null points

Our expectation is that the solutions of the equations of Theorem 2.1 generate
Hilbert class fields of certain CM-fields. In the following we will justify our
expectation by giving some examples.

A.1 Example: g = 1, j = 1

Let E be an elliptic curve over Zq where Zq denotes the 2-Witt vectors with
values in a finite field Fq with q = 2d. We denote the unique lift of the absolute
2-Frobenius of Fq to Zq by σ. Assume that E has ordinary reduction EFq

and
E is a canonical lift. Let L denote the ample line bundle O(0E). There exists a
unique isomorphism (Z/2Z)Zq

∼→ E[2]et. By [1, Cor. 2.2] there exists a canonical
theta structure Θ of type (Z/2Z)Zq

for the pair (E,L⊗2). By Theorem 2.1
there exists a square ω ∈ Z∗

q such that the coordinates of the theta null point
Θ(0E) = [x0, x1] satisfy the equations

x2
0 = ω ·

(
σ(x0)

2 + σ(x1)
2
)

and x2
1 = 2ω · σ(x0) · σ(x1). (11)

The equations (11) imply that x1 ≡ 0 mod 2. Hence x0 must be a unit in Zq .
We set µ = x1/x0. Let Qq denote the field of fractions of Zq .

Lemma A.1 The curve EQq
can be given by the equation

y2 = x(x − 1)(x− λ) where λ =

(
µ2 − 1

µ2 + 1

)2

.

Proof. We use a method described in [8, §5]. The morphism τ : E → P1
Zq

induced by Θ is finite locally free of rank 2 and surjective. This can be verified
on fibers. The group G(L⊗2)/Gm,Zq

∼= H(L) acts on E by translation. The
action of H(L) on E extends to P1

Zq
. The theta structure Θ establishes an

isomorphism (Z/2Z)Zq
× µ2,Zq

∼→ H(L).

Remark A.2 The group elements (1, 0) and (0, 1) act on P1
Zq

via the matrices

(
0 1
1 0

)
and

(
1 0
0 −1

)
.

Proof. We set

δz(x) =

{
1, x = z
0, x 6= z

for x, z ∈ K. Using the definition of the action of G(K) on V (K) (compare
Section 3.1) one computes (1, x, 1) ◦ δz = δz−x and (1, 0, l) ◦ δz = l(z) · δz. This
proves the claim. �

By construction the point Θ(0E) = [1, µ] induces a ramification point of the
morphism τQq

: EQq
→ P1

Qq
. The orbit of Θ(0E) under the group H(L) is
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given by [1, µ], [1,−µ], [µ, 1] and [−µ, 1]. Note that µ 6∈ {0,±1,±i}. Clearly the
points in the orbit of [1, µ] give rise to ramification points of τQq

. By Hurwitz’s
theorem there are exactly 4 ramification points of τQq

. We map [1, µ] 7→ [0, 1],
[1,−µ] 7→ [1, 0] and [µ, 1] 7→ [1, 1] by the linear transformation

(
µ2+1
µ2−1 − µ2+1

µ(µ2−1)

1 1
µ

)
.

The latter transformation maps the point [−µ, 1] to [1, λ]. This completes the
proof of Lemma A.1. �

Rewriting the equations (11) in terms of µ we get

µ2 ·
(
σ(µ)2 + 1

)
= 2σ(µ). (12)

We set L = EndZq
(E)⊗Q. First we consider the case d = 1. In this special case

equation (12) implies that

0 = µ3 + µ− 2 = (µ− 1) · (µ2 + µ+ 2).

There exist exactly two ordinary elliptic curves over F2 which are twists of each
other. A short calculation shows that L = Q(

√
−7) which has class number 1.

The polynomial x2 + x + 2 is reducible over L. The roots 1
2 (−1 ±

√
−7) both

give rise to the j-invariant −153. The correct value for µ is uniquely determined
by the condition that it reduces to zero. We remark that µ = 2ω.

Now let d = 2. Equation (12) implies that

0 = (µ2 + µ+ 2) · (µ4 + 4µ3 + 5µ2 + 2µ+ 4).

Assume that the j-invariant of EF4 is not equal to 1. Then L = Q(
√
−15) which

has class number 2. Over L the polynomial x4 + 4x3 + 5x2 + 2x+ 4 is reducible
with irreducible factors x2 + 2x + 1

2 (1 ±
√
−15). The latter become reducible

over the Hilbert class field of L.

A.2 Example: g = 1, j = 2

Let R be a complete discrete valuation ring with finite residue field Fq where
q = 2d. We denote the field of fractions of R by K. We assume that i ∈ R with
i2 = −1. This implies that R is a ramified over Z2. Further we assume that R
admits a lift σ of the 2-th power Frobenius of Fq . Let E be an elliptic curve
over R having ordinary reduction. Suppose E is a canonical lift. Let L denote
the ample line bundle O(0E). Assume we are given an isomorphism

(Z/4Z)Zq

∼→ E[4]et. (13)

By [1, Cor. 2.2] there exists a canonical theta structure Θ of type (Z/4Z)Zq
for

the pair (A,L⊗4) depending on the trivialisation (13). The theta structure Θ
induces a closed immersion τ : EK → P3

K . Let Θ(0E) = [x0, x1, x2, x3] denote
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the theta null point of E with respect to Θ. According to Mumford the image
of τ in P3

K is the intersection of the quadratic hypersurfaces

y2
1 + y2

3 = 2λ · y0 · y2 and y2
0 + y2

2 = 2λ · y1 · y3 (14)

where λ =
x2
1

x0x2
. By symmetry the theta null point lies in the plane y1 = y3. For

more details see [8, §5]. By Theorem 2.1 there exists an ω ∈ R such that

x2
0 = ω ·

(
σ(x0)

2 + σ(x2)
2
)

(15)

x2
1 = ω ·

(
σ(x1) · σ(x0) + σ(x3) · σ(x2)

)
(16)

x2
2 = 2ω · σ(x2) · σ(x0) (17)

x2
3 = ω ·

(
σ(x3) · σ(x0) + σ(x1) · σ(x2)

)
. (18)

Now assume that d = 1. By the equations (15) and (17) we conclude that
4ω3 + ω − 1 = 0. Hence

ω ∈
{

1

2
,
1

4
(−1±

√
−7)

}
.

Note that ω 6= 1
2 . Using equation (15)-(18) one computes λ = ω

2 ·(1+2ω)2 where
λ is as in (14). The theta null point of E is given by [1, ω(1+2ω), 2ω, ω(1+2ω)].
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