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Abstract. An automorphism of a building is called uniclass if the Weyl distance be-
tween any chamber and its image lies in a unique (twisted) conjugacy class of the Coxeter
group. In a previous paper we characterised uniclass automorphisms of spherical build-
ings in terms of their fixed structure. In the present paper we restrict to the simply
laced case and characterise uniclass automorphisms in terms of a spectral gap property.
More precisely, we show that an automorphism of a thick irreducible spherical building
of simply laced type is uniclass if and only if no point of the long root subgroup geometry
is mapped to distance 1 or codistance 1.

Introduction

Long root subgroup geometries of spherical buildings play a central role in the theory of
group actions on buildings, following from the seminal work of Timmesfeld [20], and they
also have strong connections with graded Lie algebras, as shown by Cohen & Ivanyos
[4, 5]. In the present paper we classify, in the simply laced case, automorphisms of such
geometries that do not map any point to either a collinear one, or to a non-opposite
point that is collinear to an opposite point (in other words, no point is mapped to either
distance 1 or codistance 1). A primary motivation for this classification lies in the fact that
this provides an elegant characterisation of so called uniclass automorphisms of spherical
buildings of simply laced type. We provide some more details below.

Let (∆, δ) be a building with Coxeter system (W,S) and Coxeter graph Π. Let θ be an
automorphism of (∆, δ), and let σ ∈ Aut(Π) be the companion automorphism, defined by
δ(C,D) = s if and only if δ(Cθ, Dθ) = sσ, for s ∈ S. The displacement spectra of θ is

Disp(θ) = {δ(C,Cθ) | C ∈ ∆}.
If ∆ is thin then necessarily Disp(θ) is equal to a single σ-conjugacy class in W . For a
general building the displacement spectra Disp(θ) is contained in a union of σ-conjugacy
classes in W . We call θ uniclass if Disp(θ) is contained in a single σ-conjugacy class.

In [9] we characterised the uniclass automorphisms of thick irreducible spherical buildings,
showing that an automorphism of such a building is uniclass if and only if it is either
anisotropic (that is, maps all chambers to opposite chambers), or fixes a certain special
subgeometry (called a Weyl substructure). See Theorem 1.5 for more details.

The aim of the present paper is to provide an alternative characterisation of uniclass
automorphisms, in the simply laced case, via a condition on the points of the associated
long root subgroup geometries of the corresponding buildings. Since the diagrams are
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simply laced, all root subgroups are long root subgroups, and this ultimately makes such
a characterisation possible.

Recall that the long root subgroup geometries are point-line geometries which are non-
strong parapolar spaces (for a precise definition, see Section 1) of diameter 3. As such,
the possibilities for the mutual position between two points are as follows:

• the points are equal (called distance 0);
• the points distinct and collinear (called distance 1);
• the points are not collinear, but are contained in a convex subspace isomorphic to
a polar space of rank at least 2 (called distance 2);

• the points p, q are not collinear, but there exists a unique point collinear to both
of them (called distance 2′, or codistance 1);

• the points have mutual distance 3 in the collinearity graph.

Let D ⊆ {0, 1, 2, 2′, 3}. An automorphism θ of the long root subgroup geometry of an irre-
ducible thick spherical building with simply laced Coxeter diagram is called a D-kangaroo
if, for all points x, the mutual position between x and its image xθ is not contained in D
(less formally, the mutual positions d ∈ D are “skipped” in the displacement spectrum).

In this paper the {1, 2′}-kangaroos play a special role – these are automorphisms where
both distance 1 and codistance 1 are skipped in the displacement spectrum. Our main
result is as follows.

Theorem A. An automorphism θ of the long root subgroup geometry of an irreducible
thick spherical building with simply laced Coxeter diagram is uniclass if, and only if, it is
a {1, 2′}-kangaroo.

The proof of Theorem A requires some case-by-case analysis of types A, D, and E. In
each instance we will work with concrete geometric models for the particular type of
building, as described in Section 1. In Section 3.7 we provide examples in non-simply
laced buildings illustrating that Theorem A does not hold in this broader context.

As a byproduct of our methods we also obtain a classification of {2, 2′}-kangaroos in long
root subgroup geometries for simply laced types (see Section 4). Moreover we classify
so-called linewise {2, 2′}-kangaroos (see Section 4.3 for the definition) for all polar spaces
(buildings of Coxeter type Bn or Dn; see Proposition 4.4) and the {2, 2′}-kangaroos in
metasymplectic spaces (buildings of Coxeter type F4; see Proposition 4.5).

Structure of the paper—In Section 1 we provide background on long root geometries
(projective spaces, polar spaces and parapolar spaces), and we outline the theory of oppo-
sition and fix diagrams for automorphisms that will be required in our proofs. In Section 2
we prove Theorem A for the classical buildings (types A and D). We also improve on an
alternative characterisation of {1, 2′}-kangaroos in hyperbolic polar spaces (type D build-
ings) given in [8]. In Section 3, we prove Theorem A for the exceptional buildings (type
En, n = 6, 7, 8). The basic strategy here is to first show that {1, 2′}-kangaroos in type E6

are domestic (in the case of dualities), and in type E7 and E8 they are domestic and do not
fix any chamber (see Theorem 3.2). This observation allows us to make use of the detailed
classification of domestic automorphisms given in [8, 16, 23]. Finally, in Section 4 we give
a classification of {2, 2′}-kangaroos in the simply laced cases and metasymplectic spaces,
and also for linewise {2, 2′}-kangaroos for all polar spaces (see Section 4 for definitions).
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1. Preliminaries

1.1. Geometries from buildings. Let ∆ be a thick building of spherical type Xn. We
shall adopt Bourbaki labelling [1] for Dynkin diagrams. Associated to ∆ there are various
point-line geometries (called Lie incidence geometries). Let J be a subset of the type set,
and take the set of flags of type J as the point set of a point-line geometry, with the line
set determined by the panels of cotype i with i ∈ J . Such a geometry is said to be a Lie
incidence geometry of type Xn,J (if J = {j} we write Xn,J = Xn,j). When the diagram of
Xn is simply laced, the building ∆ is uniquely determined by the diagram and a (possibly
skew) field K, in which case we denote the Lie incidence geometry of type Xn,J by Xn,J(K).
Each vertex of ∆ has an interpretation in the Lie incidence geometry, usually as a singular
subspace, or a symplecton, or another convex subspace. We introduce these notions below
(they are based on the fact that Lie incidence geometries we consider are either projective
spaces, polar spaces or parapolar spaces). We provide a brief introduction, but refer the
reader to the literature for more background (e.g. [17]).

All point-line geometries that we will encounter are partial linear spaces, that is, two
distinct points are contained in at most one common line—and points that are contained
in a common line are called collinear ; a point on a line is sometimes also called incident
with that line. If two points p, q are collinear (denoted as p ⊥ q), then we write pq for the
unique line containing them. We will also always assume that each line has at least three
points.

In a general point-line geometry Γ = (X,L ), where X is the point set, and L is the set
of lines (which we consider here as a subset of the power set of X), one defines a subspace
as a set of points with the property that it contains all points of each line having at least
two points with it in common. A subspace is called (a) singular if each pair of points of
it is collinear, (b) a hyperplane if every line intersects it in at least one point (and then
the line is either contained in it, or intersects it in exactly one point), and (c) convex if
all points of every shortest path between two members of the subspace are contained in
the subspace. In (c), the shortest paths are taken in the collinearity graph (the graph
with vertices the points, with vertices adjacent if the corresponding points are collinear
and distinct).

1.2. Projective spaces (buildings of type A). For a skew field K, the projective space
An,1(K) is the point-line geometry with point set the 1-spaces of an (n + 1)-dimensional
vector space over K (the underlying vector space), and a typical line is the set of 1-spaces
contained in a 2-space. The family of singular subspaces is in one-to-one correspondence
with the vertices of the building An(K). An automorphism of a building of type An is
either a collineation of the corresponding projective space, that is, a permutation of the
point set preserving the line set, or a duality, that is, a bijection from the point set to
the set of hyperplanes such that three collinear points are mapped onto three hyperplanes
with pairwise the same intersection. Collineations and dualities induce a permutation of
all subspaces. A duality acting on the set of subspaces as an order 2 permutation is called
a polarity.

1.3. Polar spaces (buildings of type B or D). A polar space, for our purposes, is just
a Lie incidence geometry of type Bn,1 or Dn,1. There is an axiomatic approach in which
the main axiom is the so-called one-or-all axiom due to Buekenhout & Shult [2]:
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(BS) For every point p and every line L, either each point on L or exactly one point on
L is collinear to p.

We also require that no point is collinear to all other points, and, to ensure finite rank,
that each nested sequence of singular subspaces is finite. Then there exists a natural
number r such that each maximal singular subspace is a projective space of dimension
r− 1. Singular subspaces of dimension r− 2 are called submaximal. We call r the rank of
Γ. We allow rank 1, in which case we just have a geometry without lines (and we assume
at least three points).

We will only work with some special type of polar spaces: a hyperbolic polar space, which
is related to a building of type Dn, n ≥ 4, and arises from a nondegenerate quadric
of maximal Witt index in odd dimensional projective space. It has the characterising
property that every submaximal singular subspace is contained in precisely two maximal
singular subspaces.

1.4. Parapolar spaces. A parapolar space is a point-line geometry with connected inci-
dence graph such that

(1) each pair of noncollinear points are either (a) collinear with no common point, (b)
collinear with exactly one common point, or (c) are contained in a convex subspace
isomorphic to a polar space (called a symplecton), and

(2) each line is contained in a symplecton.

We also require that there are at least two symplecta, and hence, the geometry is not a
polar space. A pair of noncollinear points collinear to a unique common point is called
a special pair; a pair of noncollinear points contained in a common symplecton is called
a symplectic pair. Almost all Lie incidence geometries which are not projective or polar
spaces turn out to be parapolar spaces.

A special type of parapolar space occurs when we take the vertices of so-called polar type
of an irreducible spherical building as points. The polar type is the set of simple roots
not perpendicular to the highest root (the polar type is a singleton set if the Dynkin
diagram is not of type An). Such a Lie incidence geometry is often called a long root
subgroup geometry. We will only need those of type An,{1,n}, n ≥ 2, Dn,2, n ≥ 4, E6,2, E7,1

and E8,8. In such parapolar spaces, point pairs are either identical, collinear, symplectic,
special or opposite (the latter in the building theoretic sense – such points have distance
3 in the collinearity graph of the point-line geometry). In such geometries, we have the
notion of an equator of two opposite points p, q, which is the set of points symplectic
to both p and q. This set is turned into a geometry by letting the lines be defined by
the symplecta through p containing a given maximal singular subspace (maximal in both
the symplecta and the whole geometry), and it is called the equator geometry, denoted
by E(p, q). The equator geometry is isomorphic to the disjoint union of the long root
subgroup geometry of the direct factors of the residue of a point (in the building theoretic
sense). It is also a fully embedded subgeometry, that is, the point set forms a subspace.
It is also an isometric embedding, that is, each pair of points is collinear, symplectic and
special in the embedded geometry if, and only if, it is collinear, symplectic and special,
respectively, in the ambient geometry. The points p and q are called poles of E(p, q) (they
are not unique).

Let Γ = (X,L ) be a Lie incidence geometry and let U be a non-maximal singular
subspace. Then U corresponds to a certain flag of the corresponding spherical building
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and we have a building theoretic notion of residue at U . This is usually a reducible
building. However, in the geometry Γ we distinguish the components of that residue and
we define the upper residue at U as the point-line geometry with point set the set of
singular subspaces of dimension dimU + 1 containing U , where a typical line is formed
by those singular subspaces containing U that are contained in a given singular subspace
of dimension dimU + 2 containing U . It is again a Lie incidence geometry (possibly
corresponding to a reducible spherical building).

1.5. Properties. We now list some well-known properties of long root subgroup geome-
tries. These can be found in [4] and [17].

Lemma 1.1. If in a long root subgroup geometry a point p is collinear to at least one
point of a symp ξ, and ξ contains a point special to p, then p is collinear precisely to a
line L of ξ. All points of ξ collinear to a unique point of L are special to p.

Lemma 1.2. Let p, u, w, q be four points of a long root subgroup geometry such that
p ⊥ u ⊥ w ⊥ q. Then p is opposite q if, and only if, both pairs {p, w} and {q, u} are
special.

Lemma 1.3. If, in a long root subgroup geometry, a symp ξ contains a point q opposite
a given point p, then ξ contains a unique point x symplectic to p. All points of ξ collinear
to but distinct from x are special to p, and all points of ξ not collinear to x are opposite
p.

1.6. Automorphisms, opposition, and domesticity. The longest element w0 of a
spherical Coxeter group W induces an automorphism σ0 of the Coxeter graph (or Dynkin
diagram) Π called the opposition relation on the type set. If W is of type An with n ≥ 2,
of Dn with n ≥ 3 odd, or E6 then σ0 is the unique order 2 automorphism of Π, and in all
other irreducible cases σ0 is trivial. Chambers A,B of a spherical building (∆, δ) of type
W are opposite if δ(A,B) = w0. Simplices α and β in a spherical building are opposite if
they have “opposite types” (that is, type(β) = (type(α))σ0) and there exists a chamber A
containing α and a chamber B containing β such that A and B are opposite. Two objects
in a Lie incidence geometry are opposite if the corresponding simplices of the building are
opposite.

It is convenient to call an automorphism (of a building, or Lie incidence geometry) an
oppomorphism if it maps each object to an object of the opposite type (that is, the
companion automorphism is the opposition relation on the type set). For example, oppo-
morphisms of a Dn building are type preserving if n is even, and interchange types n− 1
and n if n is odd (using standard Bourbaki labelling).

An automorphism of a spherical building is called anisotropic if it maps all chambers to
opposite chambers, and is called domestic if it does not map any chamber to an opposite
chamber. There exists an almost complete classification of domestic automorphisms of
spherical buildings (see [7, 8, 13, 14, 15, 16]), and we will use parts of this classification
in the proof of our main theorem (Theorem A).

If an automorphism of a spherical building does not map any simplex of type J to an
opposite (with J stable under the opposition relation), then we say that the automorphism
is J-domestic. If J is the type of points, lines or symps (of a polar space or a long root
subgroup geometry), then we also sometimes call the automorphism point-domestic, line-
domestic, or symp-domestic, respectively. In the case of polar spaces, we call a collineation
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ℓ-domestic if no subspace of projective dimension ℓ is mapped onto an opposite (so point-
domestic is the same thing as 0-domestic; note that there is a shift in indexing of types
here, with 0-domestic being the same as {1}-domestic).

An automorphism of a spherical building is called capped if, whenever there exist simplices
of types J and J ′ mapped to respective opposite simplices, then there exists a simplex
of type J ∪ J ′ mapped onto an opposite. In case the rank of the spherical building is at
least 3, automorphisms that are not capped only exist when the building has rank 2 Fano
plane residues (the unique projective plane with 3 points per line), see [12]. We record
the following special case of [12, Theorem 1].

Proposition 1.4. Let θ be a domestic automorphism of a building of type E6,E7 or E8

which is not capped. Let i be the type of the polar node of the corresponding Dynkin
diagram. Then there exists a simplex of cotype {i} which is mapped onto an opposite.

Recall that an automorphism θ of a building is uniclass if its displacement spectrum is
contained in a single σ-conjugacy class in the Coxeter group (where σ is the compan-
ion automorphism of θ). By [9, Theorem 3.4] every uniclass automorphism of a thick
irreducible spherical building is capped.

We now recall opposition and fix diagrams of automorphisms, from [11]. Let Π be the
Coxeter diagram of an irreducible thick spherical building ∆ and let σ0 be the opposition
relation on types. Let θ be an automorphism of ∆, let σ be the automorphism induced
on Π by θ, let φ be another automorphism of Π and let J be a set of distinguished orbits
of vertices of Π under the action of ⟨φ⟩. Then we say that (Π, J, φ) is

(1) the fix diagram for θ if σ = φ and J consists precisely of the types of the minimal
simplices of ∆ fixed by θ;

(2) the opposition diagram for θ if σ = φσ0 and J consists precisely of the types of
the minimal simplices of ∆ sent to opposites b θ.

We visualise fix and opposition diagrams by encircling the members of J on the diagram Π,
making the action of φ apparent by bending edges originating from a common vertex and
belonging to the same orbit of φ. This visualisation is strongly inspired by the indices
introduced by Jacques Tits in [21] and has since become standard.

In [13, 15] we introduced symbols to denote opposition diagrams (inspired by the indices
from [21]), and we use the same symbols for fix diagrams. We list the symbols that are
relevant for the present paper in Table 1. For example, if θ is an automorphism of an A7

building with fix diagram A2
7;3 then θ is type preserving, and fixes vertices of types 2, 4, 6

(and only these types), while if θ has opposition diagram A2
7;3 then θ induces the order 2

automorphism on the type set, and maps vertices of types 2, 4, 6 (and only these types)
to opposites.

It is shown in [9, §1.2] that there is a duality between the opposition and fix diagrams
of uniclass automorphisms in the sense that any two uniclass automorphisms with the
same fixed (respectively opposition) diagram X will necessarily have the same opposition
(respectively fix) diagram Y, and this correspondence is involutory. We list this corre-
spondence in Table 2 for the diagrams that are relevant for this paper.

Recall the definition of a D-kangaroo of a long root subgroup geometry from the intro-
duction (where D ⊆ {0, 1, 2, 2′, 3}). If D = {d} is a singleton we write d-kangaroo in
place of {d}-kangaroo.
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Type Symbol Diagram

A2n+1

2A
1
2n+1;n+1

•
•

•
•

•
•

•
•• n ≥ 1

A2
2n+1;n • • • • • • • • • • n ≥ 1

D1
n;n−2i • • • • • • •

•n−2i
n ≥ 3, 2 ≤ 2i ≤ n− 1

Dn D1
n;n−2i+1 • • • • • • •

•n−2i+1
n ≥ 4, 4 ≤ 2i ≤ n

D1
n;n−1 • • • • • • • •

• n ≥ 3

D2n D2
2n;n • • • • • • • • • •

• n ≥ 2

E6

2E6;4 • • •
•

•
•

E6;2 • • • • •
•

E7

E7;3 • • • • • •
•

E7;4 • • • • • •
•

E8 E8;4 • • • • • • •
•

Table 1. Some fix and opposition diagrams and their symbols

2A
1
2n+1;n+1 ↔ A2

2n+1;n D1
n;i ↔ D1

n;n−i

D2
2n;n ↔ D2

2n;n
2E6;4 ↔ E6;2

E7;3 ↔ E7;4 E8;4 ↔ E8;4

Table 2. Fix and opposition diagram duality for uniclass automorphisms

On occasion it will be more convenient to argue in a Lie incidence geometry other than the
long root subgroup geometry. In such a case, an automorphism of the long root subgroup
geometry with spectral gaps (for example, a {1, 2′}-kangaroo) may not have a spectral
gap property when viewed as an automorphism of another Lie incidence geometry. It
is convenient in such an instance to call a D-kangaroo (with D ⊆ {0, 1, 2, 2′, 3}) of the
long root geometry, when viewed as an automorphism of another Lie incidence geometry
associated with the same building, a polar D-kangaroo (the word “polar” is used here to
indicate the the kangaroo property is only with respect to the polar node geometry – that
is, the long root subgroup geometry).

An example of the phenomenon noted above is that in type E7, where the long root
geometry is Γ = E7,1(K), it is sometimes more convenient to work in the geometry Γ′ =
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E7,7(K). The points of Γ are then the symps of Γ′. Collinear points of Γ correspond to
symps of Γ′ intersecting in a maximal singular subspace (and, in general, we will call such
symps adjacent); a special pair of points corresponds to a pair of disjoint symps for which
there exists a unique symp intersecting both in respective maximal singular subspaces.

1.7. Characterisation of uniclass automorphisms from [9]. In [9] we characterised
uniclass automorphisms of thick irreducible spherical buildings in terms of their fixed
structure. The following theorem is a consequence of this characterisation for the simply
laced case.

Theorem 1.5 ([9]). Let θ be a non-trivial automorphism of a thick irreducible spherical
building ∆ of rank at least 2 and with simply laced Coxeter diagram. Then θ is uniclass
if and only if θ is either anisotropic, or:

(1) ∆ has type A2n+1 (n ≥ 1) and in the associated projective space
− θ is a fix point free collineation fixing a line spread elementwise, or
− θ is a symplectic polarity (a polarity fixing a symplectic polar space of rank n).

(2) ∆ has type Dn (n ≥ 4) and in the associated polar space
− θ is a collineation whose fixed points form an ideal subspace, or
− θ is a fix point free collineation fixing a line spread elementwise.

(3) ∆ = E6(K) (with K a field) and
− θ is a symplectic polarity (a polarity fixing a standard split metasymplectic

space), or
− θ is a collineation fixing an ideal Veronesian pointwise in E6,1(K).

(4) ∆ = E7(K) (with K a field) and
− the fixed point structure of θ in E7,1(K) is a fully embedded metasymplectic

space F4(K,L) with L a quadratic extension of K, isometrically embedded as
a long root subgroup geometry, or

− the fixed point structure of θ in E7,7(K) is an ideal dual polar Veronesian.
(5) ∆ = E8(K) (with K a field) and the fixed point structure of θ in E8,8(K) is a fully

(and automatically isometrically) embedded metasymplectic space F4(K,H) with H
either a quaternion algebra over K or an inseparable quadratic field extension of
degree 4 in characteristic 2.

The definition of the various fixed structures in the theorem (line spreads, ideal subspace,
standard split metasymplectic space, ideal Veronesian, and so on), as far as they are
essential to understand our proofs, will be given in the relevant subsections of Section 2.
We call these fixed structuresWeyl substructures in ∆. These Weyl substructures are large
and highly structured subsets of the (simplicial) building. Indeed, each Weyl substructure
∆′ is itself a thick spherical building.

Putting the above theorem in tabular form, we obtain the list of Weyl substructures for
simply laced diagrams, along with their Coxeter type, given in Table 3. In the table,
the absolute type is the Coxeter type of the ambient building ∆, and the relative type
is the Coxeter type of the Weyl substructure ∆′. Moreover, in each case we list the fix
diagram of the associated automorphisms of ∆ fixing ∆′ (the opposition diagram can then
be obtained using the involution in Table 2).
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Abs. type Rel. type Description of Weyl substructure Fix diagram

A2n−1

Bn symplectic polar space of rank n 2A1
2n−1;n

An−1 composition line spread 1A2
2n−1;n−1

Dn

Bi ideal subspace of rank i D1
n;i

Bn/2 composition line spread D2
n;n/2

E6

F4 standard split metasymplectic space 2E6;4

A2 ideal Veronesian E6;2

E7

F4 partial composition spread E7;4

B3 ideal dual polar quaternion Veronesian E7;3

E8 F4 quaternion metasymplectic space E8;4

Table 3. Weyl substructures

2. Proof of the Main Result—Classical cases

In this section we prove Theorem A for classical (simply laced) types.

2.1. Buildings of type An (projective spaces). A symplectic polarity of a projective
space is a polarity such that every point is contained in its image. Symplectic polarities
are always related to a nondegenerate alternating form in the underlying vector space,
and hence only exist for projective spaces of odd rank over commutative fields (see [18]).
A line spread of a projective space is a partition of the point set into lines. A line spread
is a composition spread if it induces a line spread in every subspace spanned by members
of the spread. Note that this is automatic if a line spread is elementwise fixed under a
collineation.

The following theorem proves Theorem A for projective spaces.

Theorem 2.1. An non-trivial automorphism of An,1(K) = PG(n,K) is a polar {1, 2′}-
kangaroo if, and only if, either its is anisotropic, or it is a symplectic polarity (and then
it is a polar {1, 2′, 3}-kangaroo), or it elementwise fixes a line spread (and then it is a
polar {0, 1, 2′}-kangaroo). Consequently, θ is a polar {1, 2′}-kangaroo if, and only if, it is
uniclass.

Proof. Suppose that θ is a polar {1, 2′}-kangaroo of An,1(K) = PG(n,K), for some skew
field K. Suppose first that θ is type preserving and non-trivial. The points of the long
root subgroup geometry are the incident point-hyperplane pairs of PG(n,K), collinear if
sharing either the point or the hyperplane. In order to avoid confusion with collinearity in
the projective space, we call collinear points in the long root subgroup geometry adjacent.
It is easy to deduce the following remaining mutual positions:

• The two point-hyperplane pairs (p,H) and (p′, H ′) correspond to symplectic points
(distance 2) in the long root subgroup geometry if and only if p ∈ H ′ and p′ ∈ H.
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• The two point-hyperplane pairs (p,H) and (p′, H ′) correspond to special points
(distance 2′) if and only if either p ∈ H ′ and p′ /∈ H, or p /∈ H ′ and p′ ∈ H.

• The two point-hyperplane pairs (p,H) and (p′, H ′) correspond to opposite points
(distance 3) if and only if p /∈ H ′ and p′ /∈ H.

Observe that if θ fixes a hyperplane, then it fixes all points of that hyperplane (because
θ is a (polar) 1-kangaroo). It follows that if θ fixes a hyperplane, then it is the identity
(because the dual of the above observation implies that θ fixes all hyperplanes). Since we
assumed that θ ̸= id, no hyperplane is fixed. Dually, θ does not fix any point.

Next observe that if θ maps a point p to a distinct point pθ, then θ stabilises the line
ppθ. To see this, suppose, for a contradiction, that pθ

2
does not belong to ppθ. Then we

select a hyperplane H containing ppθ but not pθ
2
. Then obviously (pθ, H) and (pθ

2
, Hθ)

are special, contradicting the fact that θ is a polar 2′-kangaroo.

Now by [15, Proposition 3.3(i)] the set of fixed lines of θ is a spread, which is necessarily
a composition spread (as noted above). It follows from Theorem 1.5 that θ is uniclass.

Conversely, let θ fix a composition line spread in PG(n,K) and let (p,H) be a point-
hyperplane pair. Let L be the unique spread line containing p. There are two possibilities.
Either L ⊆ H, and then, since Lθ = L, we have pθ ∈ H and p ∈ Hθ, hence (p,H) and
(p,H)θ are symplectic, or L ∩H = {p} and then p /∈ Hθ and pθ /∈ H, so that (p,H) and
(p,H)θ are opposite. Hence (p,H) and (p,H)θ are never identical, adjacent or special.
This proves that θ is a {0, 1, 2′}-kangaroo.

Now assume that θ is a type interchanging polar {1, 2′}-kangaroo. We may assume it
is not anisotropic. Observe the following: If a point-hyperplane flag is mapped onto a
symplectic one in the long root subgroup geometry, then there is a fixed point-hyperplane
pair. To see this, suppose (p,H) is symplectic to (Hθ, pθ). Then p ∈ pθ and (p, pθ) is

mapped onto (pθ
2
, pθ), which is collinear to (p, pθ) if p ̸= pθ

2
. The latter is never the case

since θ is a polar 1-kangaroo. Hence (p, pθ) is fixed.

Moreover, note that if a point p is contained in its image pθ, then p = pθ
2
. For if not,

then (p, pθ) is distinct from but adjacent to (pθ
2
, pθ), contradicting θ being a 1-kangaroo.

Since we may assume that θ is not anisotropic, the above observation implies that we
may assume that θ fixes some point-hyperplane flag (p0, p

θ
0) (and so (pθ0)

θ = p0). Now
note that for a point p ∈ pθ0, the image pθ contains p. Indeed, if p were not contained in
pθ, then the point-hyperplane pairs (p, pθ0) and (p0, p

θ) would be special, a contradiction
(because the second is the image of the first under θ). Hence every point in pθ0 is incident
with its image. Now dually, every hyperplane incident with some point of pθ0 is incident
with its image. Hence every point is incident with its image, and we conclude that θ is a
symplectic polarity. Hence θ is uniclass by Theorem 1.5.

Conversely, let θ be a symplectic polarity of PG(n,K). Let (p,H) be any point-hyperplane
pair. Then there are exactly two possibilities. Either H = pθ, and then the pair is fixed,
or H ̸= pθ and then, since p ∈ pθ and Hθ ∈ H, the pairs (p,H) and (Hθ, pθ) = (p,H)θ

are symplectic. Hence they are never adjacent and never special (they are never opposite
either). Hence θ is a {1, 2′, 3}-kangaroo. This completes the proof of the theorem. □

2.2. Buildings of types Dn (Oriflamme complexes of polar spaces). In this section
we consider collineations of hyperbolic polar spaces. Note that this includes the case of
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automorphisms of type Dn buildings interchanging types n−1 and n. Trialities of D4 will
also be briefly considered (and eliminated).

We begin with some preliminaries. Let Γ be a polar space. An ovoid is a set of points
intersecting every maximal singular subspace in exactly one point. A subspace of Γ is
called ideal if it induces an ovoid in the upper residue of each of its submaximal singular
subspaces.

In order to smoothly transfer from the terminology of [8] to the notation and setting in the
present paper, we note that, since the polar node of a Dn diagram is the node labelled 2
(in Bourbaki labelling), the points of the corresponding long root subgroup geometry are
the lines of the polar space Γ, and we review the different mutual positions. Lines L and
M of Γ are:

• adjacent (distance 1) if they are contained in a common plane of Γ;
• symplectic (distance 2) if they are not adjacent and either they share a point, or
they are contained in a common singular subspace;

• special (distance 2′) if there is a unique point on either of them collinear to all
points of the other line;

• opposite (distance 3) if each point of either is collinear to exactly one point of the
other line.

We recall the following proposition from [8].

Proposition 2.2 ([8, Proposition 3.8]). Let θ be a collineation of a hyperbolic polar space
of rank at least 3. The following are equivalent:

(i) θ is non-trivial, not anisotropic, but maps no point to a distinct collinear point;
(ii) θ is a non-trivial polar {1, 2′}-kangaroo fixing at least one point;
(iii) the fixed point set of θ is a nonempty ideal subspace.

The following theorem, along with Proposition 2.4 below, proves Theorem A for hyperbolic
polar spaces (buildings of type Dn). Note that in Case (ii) we do not have to require that
θ does not fix any point (if it does, then it is automatically the identity, which is also
uniclass).

Theorem 2.3. Let θ be a collineation of a hyperbolic polar space. Then θ is a polar
{1, 2′}-kangaroo if, and only if, θ is either anisotropic, or

(i) the fixed points of θ form an ideal subspace, or
(ii) it fixes element-wise a line spread.

Consequently, θ is a polar {1, 2′}-kangaroo if, and only if, it is uniclass.

Proof. Let θ be a polar {1, 2′}-kangaroo, and suppose that θ is not anisotropic and fixes
some point. Then by Proposition 2.2 the fix structure is a nonempty ideal subspace. So
we may assume that θ is a collineation without fixed points. We must show that θ fixes
a line spread element-wise.

We first claim that there is at least one fixed line. Indeed, suppose not. Then, since
θ is not anisotropic, there is a symplectic pair (L,Lθ) of lines. Suppose first that Lθ is

collinear to L. Pick a point p ∈ L. If p ⊥ pθ
2
, then ppθ and pθpθ

2
are either adjacent or

equal, both contradictions to our hypotheses. Hence p is not collinear to pθ
2
. It follows

that there is a unique point of L collinear to pθ
2
. Consequently, we may pick a point q ∈ L
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distinct from p and not collinear to pθ
2
. The lines qpθ and qθpθ

2
= (qpθ)θ contain a pair of

non-collinear points, hence they are either special or opposite. But by our assumption on
θ, they are opposite. However, pθ is collinear to both qθ and pθ

2
, a contradiction, leading

to a fixed line in this case.

Now assume L and Lθ intersect but are not contained in a plane. Let p = L ∩ Lθ. Since
the polar space has rank at least 3, we can pick a plane π on Lθ and a line M ⊆ π with
p ∈ M ̸= Lθ. The line M θ, which does not belong to π since θ is a polar 1-kangaroo,
intersects π in pθ ∈ Lθ \ {p} and so, it is disjoint from M . However, since pθ is collinear
to M , it is not opposite, hence must be symplectic and disjoint, bringing us back to the
previous case, and hence again leading to a fixed line.

So we may assume that θ fixes a line L. Pick q ∈ L and note that q ̸= qθ. Let p be
any point collinear with L. Then p ⊥ pθ as otherwise pq and pθqθ are special. Suppose
ppθ is not fixed. Then, as θ is in particular a polar 1-kangaroo, p is not collinear to pθ

2
.

This yields a point r ∈ ppθ not collinear to rθ. Then qr and qθrθ are special, again a
contradiction. We conclude that ppθ is fixed.

Obviously L ∩ ppθ = ∅, so L, p, pθ generate a singular 3-space Σ. Now let x be an
arbitrary point of Γ not collinear to L. Then it is collinear to all points of a plane π ⊆ Σ.
Since Σθ = Σ, and since π ̸= πθ (otherwise each of its lines are fixed since they cannot
be mapped onto adjacent ones) the intersection π ∩ πθ is a line M . The image M θ is
coplanar with M (as both lie in πθ), which implies that M = M θ. So x is collinear to the
fixed line M and, switching the roles of L and M , we again conclude that x ⊥ xθ and xxθ

is fixed. So the fixed lines form a spread, completing the “only if” direction of the proof.

Now assume that θ is a collineation that is not anisotropic. If the fixed points of θ form
an ideal subspace, then by Proposition 2.2 θ is a polar {1, 2′}-kangaroo. So suppose now
that θ fixes a line spread. Let L be an arbitrary line. If L is not fixed, then each point of L
is sent to a collinear point outside L. It follows that L and Lθ are disjoint. Suppose that
they are special. Then some point x ∈ L is collinear to all points of Lθ. Pick y ∈ L \ {x}.
Then y ⊥ yθ, so yθ is collinear to both x and y, hence to L. Since there are at least two
choices for y, we conclude that L and Lθ are symplectic or opposite. It follows that θ is
a polar {1, 2′}-kangaroo. □

We now eliminate the possibility of trialities of buildings of type D4.

Proposition 2.4. No triality of D4(K) is a polar {1, 2′}-kangaroo.

Proof. We work in the oriflamme complex of D4(K), consisting of the points, lines and
two classes of maximal subspaces of a nondegenerate hyperbolic quadric of Witt index
4. The maximal simplices consist of a point contained in a line contained in a maximal
singular subspace of each type. A triality of D4(K) is then an automorphism of the
oriflamme complex permuting the types of points and maximal singular subspaces in a
cycle of length 3.

Suppose that θ is a triality. By [24, Main Result 2.2], we know that, if θ fixes some line,
then it is conjugate to the standard triality of type Iid producing the split Cayley hexagon.
However, we now show that such a triality is not a polar {1, 2′}-kangaroo (we refer to [24]
for notation and background).
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Let p be an absolute point, that is, p ∈ πp := pθ ∩ pθ
2
. Each line through p in πp is

fixed. Select a line L through p not containing any further absolute point (besides p) and

not contained in pθ ∪ pθ
2
. Then Lθ is contained in pθ, but does not contain p. Hence it

intersects πp in some point x. If L and Lθ are not special, then they are symplectic, hence

contained in a singular subspace U . Then U , which is of the type of pθ
2
containing L and

px, is mapped onto the point Lθ ∩ (px)θ = Lθ ∩ px = {x}. Hence x and U are absolute.

Also, xθ = U θ2 is generated by Lθ2and(Lθ)θ
2
= L. Since x is absolute, all points of the

plane U ∩ U θ2 are absolute, by the properties of trialities of type Iid. But L ⊆ U ∩ U θ2 ,
contradicting the choice of L.

Thus we may assume that θ does not fix any line. Also, not all lines are mapped onto
opposite lines (as such an automorphism is necessarily anisotropic and type preserving,
by [6, Theorem 1.3]). But not all lines can be mapped onto symplectic ones either as
this would mean the triality is domestic and then, by [24, Main Result 2.1] we are in the
previous case again, a contradiction. Hence there exists a line L mapped to a symplectic
one, and a line M adjacent to L mapped to an opposite. Set p = L ∩M . By replacing θ
with its inverse if needed, we may assume that Lθ is disjoint from but collinear to L. Let
U be the maximal singular subspace spanned by L and Lθ. By possibly redefining (L,M)
by (Lθ,M θ), we may assume that U is mapped onto a point. The image pθ intersects U
in a plane π through Lθ.

Hence all lines of U θ−1
through p are mapped onto all lines of π. Note that U θ−1 ∩ U

contains L and hence is a plane α. Let α intersect Lθ in x. Select y ∈ Lθ \ {x} and such
that the image of the planar line pencil in α through p is not mapped onto the pencil in π
through y. Then the inverse image of the line pencil in π through y is a planar line pencil
in U θ−1

with only L in U . Hence the other lines of that pencil, being collinear with α,
cannot be collinear with their image. But they contain a point collinear to these images,
namely p. So we obtain special pairs, a contradiction. □

Digression—We take the opportunity here to improve on Proposition 3.8 of [8]. This
proposition states a few equivalent conditions for a collineation of a hyperbolic polar space
of rank n to be a polar {0, 1, 2′}-kangaroo. The weakest one mentioned there reads as
follows.

(Int(k)) There exists k, 0 ≤ k ≤ n− 1, such that for every maximal singular subspace M ,
the subspace M ∩M θ is k-dimensional and globally fixed by θ.

Here, we will prove the following improvement.

Proposition 2.5. Let θ be a collineation of a hyperbolic polar space of rank n. Then θ
is a polar {0, 1, 2′}-kangaroo if, and only if, there exists k, 0 ≤ k ≤ n − 1, such that for
every maximal singular subspace M , the subspace M ∩M θ is k-dimensional.

Proof. Clearly, we only have to prove the “if” statement. So, we assume that there exists
k, 0 ≤ k ≤ n−1, such that for every maximal singular subspaceM , the subspaceM∩M θ is
k-dimensional. In view of (Int(k)), it suffices to show that, for given such M , the subspace
U := M ∩M θ is stabilised. We claim that θ is ℓ-domestic for every ℓ ≥ n−k− 1. Indeed,
let W be a singular subspaces of dimension ℓ and suppose for a contradiction that W is
mapped onto an opposite. Let M be a maximal singular subspace containing W , then
M θ ∩ M is disjoint from W as W does not contain any point collinear to each point of
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W θ. Hence dimM ∩ M θ ≤ n − 1 − ℓ − 1 ≤ k − 1, a contradiction to our assumption.
Now, if k ≥ 1, then θ is (n− k)-domestic and (n− k− 1)-domestic, which implies by [19,
Theorem 6.1] that every singular subspace of dimension n− k − 1 contains a fixed point.
Let S be such a subspace in M intersecting M θ in just one point x. Since x is the only
point of S in M θ, it is the only point in Sθ and hence it has to be fixed. We conclude
that M ∩M θ is pointwise fixing.

Now let k = 0. Then [15, Lemma 2.1] implies that every maximal singular subspace M
has a fixed point, which clearly coincides with M ∩M θ. □

3. Proof of the Main Result—Exceptional cases

In this section we prove Theorem A for the exceptional simply laced types En, n = 6, 7, 8.
We first deal with the case of type preserving automorphisms of buildings of type E6.

Proposition 3.1. Theorem A holds for type preserving automorphisms of E6(K).

Proof. By [10, Main Result (a)] the fix structure of a type preserving automorphism is
a naturally embedded quaternion or octonion Veronesean, which is an ideal Veronesean
(in the sense of [9]) if and only if the collineation is a polar {1, 2′}-kangaroo. Thus by
Theorem 1.5 the uniclass property is equivalent to the polar {1, 2′}-kangaroo property. □

Henceforth we consider oppomorphisms of buildings of type En, n = 6, 7, 8.

3.1. Polar {1, 2′}-kangaroo oppomorphisms. In this subsection we prove the follow-
ing theorem, which severely restricts the possibilities for {1, 2′}-kangaroos via the classi-
fication of domestic automorphisms in exceptional types given in [8, 13, 16, 23].

Theorem 3.2. Let θ be a non-trivial polar {1, 2′}-kangaroo of En(K) with n ∈ {6, 7, 8}.

(i) If n = 6 then θ is either anisotropic or domestic.
(ii) If n ∈ {7, 8} then θ is either anisotropic, or θ is domestic and does not fix a

chamber.

Theorem 3.2 follows immediately from Propositions 3.3 and 3.4 below. We begin by
proving that each {1}-kangaroo automorphism of En(K) with n ∈ {7, 8} which fixes a
chamber, is the identity (see Proposition 3.3). Then we show that each non-domestic {2′}-
kangaroo oppomorphism of En(K) with n ∈ {6, 7, 8} is anisotropic (see Proposition 3.4).
These two results are dual to each other in the sense that distance 2′ can be viewed as
codistance 1, and indeed the proofs can be viewed as being dual to each other. We note
that one of the crucial facts that makes our proof work is the fact that the symps are of
hyperbolic type. This is why a similar result for type F4 cannot be proved this way (and
indeed we conjecture that the corresponding results are not true in this case).

Proposition 3.3. Let θ be a collineation of a long root subgroup geometry ∆ isomorphic
to either E7,1(K) or E8,8(K) mapping no point to a distinct collinear one. Suppose that θ
stabilises a symp ξ and a maximal singular subspace U ⊆ ξ. Then θ is the identity.
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Proof. We first claim that ξ is pointwise fixed. Since no point is mapped to a collinear
one, the singular subspace U is pointwise fixed. Let U ′ be a maximal singular subspace
of ξ intersecting U in a hyperplane of U . Then U ∩ U ′ is fixed and hence, since U is also
fixed, the subspace U ′ is stabilised, and hence pointwise fixed by the same observation as
above. Since every point of ξ is contained in a maximal singular subspace intersecting U
in a hyperplane of U , the claim follows.

Next we claim that every symp intersecting ξ in a maximal singular subspace, is pointwise
fixed. Indeed, every point p of such a symp is close to ξ, and hence contained in a unique
maximal singular subspace W of ∆ intersecting ξ in a singular subspace V . By uniqueness
of W and the fact that V is fixed, θ fixes p, as otherwise it would be mapped onto a
collinear distinct point. The claim follows.

Now the graph with vertices the symps of ∆ adjacent when intersecting in a maximal
singular subspace is connected. Hence θ fixes all symps and is therefore the identity. □

Proposition 3.4. Let θ be an oppomorphism of either E6,2(K), or E7,1(K), or E8,8(K)
mapping no point to a point at distance 2′. Suppose that θ maps some symp ξ to an
opposite symp, and maps a maximal singular subspace U ⊆ ξ of ξ to an opposite. Then θ
is anisotropic.

Proof. The proof is very similar to the previous one, taking into account the following
Observation (∗).

(∗) Each point of a singular subspace is either opposite or special to any point of an
opposite singular subspace.

We first claim that every point of ξ is mapped to an opposite point. Since no point is
mapped to a special one, Observation (∗) implies that every point of U is mapped to an
opposite. Let U ′ be a maximal singular subspace of ξ intersecting U in a hyperplane of U .
Then U ∩U ′ is mapped to an opposite (as each point of it is mapped to an opposite) and
hence, since U is mapped to an opposite, and U ′ is unique with respect to U ′ ∩ U in ξ,
the subspace U ′ is also mapped to an opposite. Hence each point of U ′ is mapped to an
opposite (using Observation (∗) again). Since every point of ξ is contained in a maximal
singular subspace intersecting U in a hyperplane of U , the claim follows.

Next we claim that every symp intersecting ξ in a maximal singular subspace, is mapped
to an opposite symp. Indeed, every point p of such a symp ζ is close to ξ, and hence
contained in a unique maximal singular subspace W of ∆ intersecting ξ in a singular
subspace V . By uniqueness of W and the fact that V is mapped to an opposite, θ maps
W to an opposite, and Observation (∗) again implies that p is mapped onto an opposite.
Hence every point of the symp ζ is mapped onto an opposite and so ζ is mapped to an
opposite. The claim is proved.

Now the assertion follows as before from the connectivity of the graph on symps, adjacent
when intersecting in a maximal singular subspace. □

Thus the proof of Theorem 3.2 is complete. Combining this theorem with the classification
of domestic automorphisms of buildings of type En we conclude that if θ is a non-trivial
polar {1, 2′}-kangaroo oppomorphism of En(K), n ∈ {6, 7, 8}, then θ is either anisotropic,
or is uncapped, or is one of precisely six special classes of automorphisms listed below
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(see [13, 23] for the E6 case, [8, Theorem 1] for the E7 case, and [16, Theorem A] for the
E8 case):

– Class 1: Symplectic polarities in type E6.
– Class 2: Collineations of E7,1(K) fixing a metasymplectic space F4,1(K,L) for some
quadratic extension L of K.

– Class 3: Collineations of E7,7(K) fixing a dual polar space (an ideal dual polar
Veronesian).

– Class 4: Collineations of E8,8(K) fixing a metasymplectic space F4,1(K,H) for some
quaternion division algebra H over K, or an inseparable field extension H of K of
degree 4.

– Class 5: Collineations pointwise fixing an equator geometry in E7,1(K)
– Class 6: Collineations pointwise fixing an equator geometry in E8,8(K).

Comparing this list with Theorem 1.5 we see that the automorphisms in classes 1, 2, 3,
and 5 are uniclass, while those in classes 4 and 6 are not. Thus, in order to complete the
proof of Theorem A for buildings of type En, it remains to:

(1) eliminate the possibility of uncapped {1, 2′}-kangaroo oppomorphisms;
(2) show that the oppomorphisms in classes 1–4 are indeed {1, 2′}-kangaroos;
(3) show that the oppomorphisms in classes 5 and 6 are not {1, 2′}-kangaroos.

Task (1) is straightforward:

Proposition 3.5. Polar {1, 2′}-kangaroo oppomorphisms of En(K), n ∈ {6, 7, 8}, are
necessarily capped.

Proof. By Theorem 3.2 every {1, 2′}-kangaroo oppomorphism is domestic. Suppose θ
is not capped. By Proposition 1.4, there exists a line L of the corresponding long root
geometry which is mapped onto an opposite, but no point of L is mapped onto an opposite.
Then clearly each point of L is mapped onto a point at distance 2′, a contradiction. □

The remaining tasks (2) and (3) require further work, and are dealt with in the following
subsections.

3.2. Class 1: Symplectic polarities in E6. A symplectic polarity of a building of type
E6 is a type interchanging automorphism of order 2 whose fixed point structure is a
building of type F4 containing residues isomorphic to symplectic polar spaces (such an F4

building is a standard split metasymplectic space).

As required by task (2) listed above, we claim that a symplectic polarity is a polar {1, 2′}-
kangaroo. First note the following (see [11, Lemma 4.2(2)]):

Lemma 3.6. A symplectic polarity of E6(K) does not map any vertex of type 2 or 4 to
an opposite. Equivalently, a symplectic polarity induces a collineation in E6,2(K) mapping
no point or line to an opposite.

We now show that in any long root subgroup geometry, a point-domestic and line-domestic
collineation is necessarily a (polar) {1, 2′}-kangaroo.

Proposition 3.7. If Γ = (X,L ) is a long root subgroup geometry, then every collineation
θ of Γ that is both point-domestic and line-domestic is a {1, 2′}-kangaroo.
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Proof. Suppose that θ maps a point p to a collinear point q = pθ. In ResΓ(p), we can

find a point opposite both points corresponding to the respective lines pq and pθ
−1
p (use

Proposition 3.30 of [22]). To that point corresponds a line L through p. Pick x ∈ L \ {p}
arbitrarily. Then {x, q} and {p, xθ} are special pairs. Lemma 1.2 implies that x and xθ

are opposite, a contradiction.

Now suppose that θ maps a point p to a special point q = pθ, that is, {p, pθ} is a special
pair. Set {r} = p⊥ ∩ q⊥. Again we find a line L through p locally opposite both pr and

prθ
−1
. Choosing x ∈ L \ {p} arbitrarily, we again find that {x, r} and {xθ, r} are special

pairs. This implies that {x, q} and {xθ, p} are opposite pairs. Consequently, L and Lθ

are opposite lines, a contradiction. □

Combining Lemma 3.6 and Proposition 3.7 achieves Task (2) for symplectic polarities of
E6 buildings.

Remark 3.8. Even more generally, Proposition 3.7 holds in all so-called hexagonic geome-
tries. Without going into details, we mention that these are essentially the Lie incidence
geometries having exactly the same distance relations between points as long root sub-
group geometries. Examples are line Grassmannians of polar spaces, and the geometries
of type F4,4.

In summary, combined with (the proof of) Proposition 3.1, we have shown the following
characterisation. Moreover, comparing with Theorem 1.5 we have completed the proof of
Theorem A for buildings of type E6.

Theorem 3.9. An non-trivial automorphism θ of E6(K), for some field K, is a polar
{1, 2′}-kangaroo if, and only if, it is an anisotropic duality, a symplectic polarity, or a
collineation pointwise fixing an ideal Veronesean.

3.3. Class 2: Fixing a metasymplectic space in E7,1(K). The main property, proved
in [8], is the following.

Proposition 3.10 ([8, Theorem 7.23]). Let θ be an automorphism of the building E7(K).
Then the following are equivalent.

(1) θ does not fix any chamber and has opposition diagram E7;3.
(2) The fixed point structure of θ induced in E7,1(K) is a fully isometrically embedded

metasymplectic space F4,1(K,L), for some quadratic extension L of K.
(3) The collineation induced in E7,7(K) has no fixed points and does not map any point

to a symplectic one, but it maps at least one point to a collinear one.

Concerning (2), an equivalent way of saying “fully isometrically embedded” is saying it
is a subspace with induced geometry a metasymplectic space in which opposite points
are also opposite in E7,7(K). The fix diagram is E7;4. The geometry F4,1(K,L) is the Lie
incidence geometry naturally associated to a building of type F4 obtained from a building
E6(L) by Galois descent, or to a building associated to a group of mixed type over the
pair of fields (K,L) in characteristic 2, where L is an inseparable quadratic extension of
K (so dimK L = 2).

Now let θ be an automorphism of E7(K) with opposition diagram E7;3 and fix diagram
E7;4. In [8], the action of θ on E7,7(K) is examined. Then Proposition 3.10(3) tells us
that the displacement of the points is highly restricted. But also the displacement of the
symps is highly restricted. Indeed, Lemmas 7.7 and 7.16 of [8] say the following.
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Lemma 3.11. Let ξ be an arbitrary symp of E7,7(K). Then either ξ is fixed, or ξ ∩ ξθ is
a line, or ξ is opposite ξθ.

Translated to E7,1(K), this lemma says that θ is a polar {1, 2′}-kangaroo, as required.

3.4. Class 3: Fixing a dual polar space in E7,7(K). Let θ be an automorphism of
E7(K) with opposition diagram E7;4 and fix diagram E7;3. Then the following assertions
are shown in [8], where again the action of θ on E7,7(K) is examined (see Corollaries 6.1
and 6.11, and Lemma 6.7 of [8]).

Lemma 3.12. Let θ be an automorphism of E7,7(K) with opposition diagram E7;4 and fix
diagram E7;3.

(1) A point is never mapped to a collinear one, nor to an opposite one.
(2) The symp determined by a point x mapped onto a symplectic one, and its image

xθ, is stabilised.
(3) No symp is mapped onto an adjacent symp.

Lermma 6.9 of [8] and its proof in [8] imply the following.

Lemma 3.13. Let θ be an automorphism of E7,7(K) with opposition diagram E7;4 and fix
diagram E7;3.

(1) The collineation induced by θ in the residue of any fixed point, pointwise fixes an
ideal Veronesean.

(2) The collineation induced by θ in a fixed symp pointwise fixes an ideal subspace
which is a polar space of rank 2.

(3) The fix diagram of θ is E7;3.

A substructure with the properties (1) and (2) of Lemma 3.13, that is, a substructure
consisting of a set P of points, a set L of lines and a set S of symps of E7,7(K) such
that

(i) the set of lines and symps in L and S , respectively, incident with a point p ∈ P
defines an ideal Veronesean in the residue of p;

(ii) the set of points and lines in P and L , respectively, incident with a symp ξ ∈ S
defines an ideal subspace which is a polar space of rank 2 in ξ,

will be called an ideal dual polar Veronesean.

Lemma 3.12(3) already shows that θ is a polar {1}-kangaroo. We now show that it is also
a polar {2′}-kangaroo.

Proposition 3.14. An automorphism θ of E7(K) with opposition diagram E7;4 and fix
diagram E7;3 is a polar {1, 2′}-kangaroo.

Proof. It suffices to show that θ does not map a symp ξ of E7,7(K) to a disjoint non-opposite
symp. So, suppose for a contradiction that ξ and ξθ are disjoint and not opposite. Then,
by the last paragraph of Section 1.6, there is a unique symp ζ intersecting ξ in a maximal
singular subspace U and ξθ in a maximal singular subspace U ′. Suppose U θ = U ′. Let
x ∈ U be arbitrary. By Lemma 3.12(1), the point xθ is symplectic to x and so the
symp determined by x and xθ is ζ. Then Lemma 3.12(2) asserts that ζ is fixed, and
Lemma 3.13(2) implies that U contains a fixed point, contradicting ξ ∩ ξθ = ∅.
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Hence there is some point of U ′ which is the image of a point y ∈ ξ \ U . Again, y and yθ

are symplectic and determine a unique symp ζ ′, fixed under θ. Clearly, ζ ′∩ξ is a maximal
singular subspace Uy. As in the previous paragraph, Uy contains a fixed point, leading to
the same contradiction as before.

This proves the proposition. □

3.5. Class 4: Fixing a metasymplectic space in E8,8(K). The main property, proved
in [16, Theorem A], Theorem 4.1, is the following.

Proposition 3.15. Let θ be an automorphism of the building E8(K). Then the following
are equivalent.

(1) θ has opposition diagram E8;4 and the same fix diagram.
(2) The fixed point structure of θ induced in E8,8(K) is a fully isometrically embedded

metasymplectic space F4,1(K,H), for some quaternion division algebra H of K, or
an inseparable field extension H of degree 4 of K.

(3) θ fixes a full subgeometry of E8,8(K) with fix diagram E8;4.

The metasymplectic space F4,1(K,H) is the Lie incidence geometry naturally associated
with a building of type F4 arising from E7(L), with L a separable quadratic extension of
K contained in the quaternion algebra H over K, by Galois descent, or it is a building
associated to a group of mixed type over the pair of fields (K,H) in characteristic 2, where
H is an inseparable extension of K and dimK H = 4.

Now, Lemmas 4.4 and 4.5 of [16] precisely state that θ as in Proposition 3.15 is a polar
{1, 2′}-kangaroo.

3.6. Classes 5 and 6: Pointwise fixing an equator geometry in E7,1(K) or E8,8(K).
There are two remaining classes of domestic automorphisms of buildings of types E7 and
E8 which do not fix any chamber. They have no fix diagram as they fix vertices of each
type. We must show that these automorphisms are not {1, 2′}-kangaroos.
We treat them together, as they can be uniformly described in an elegant way using
equator geometries.

Proposition 3.16. Let θ be a collineation of a long root subgroup geometry Γ pointwise
fixing an equator geometry E(p, q) and acting fixed point freely on its set I of poles. Then
there exist points of Γ mapped onto collinear or special ones.

Proof. Without loss of generality we may suppose that pθ = q. Let L be any line through
p, and let ξ be any symp through L. Let ζ be the unique symp through q intersecting ξ
in some point x ∈ E(p, q). Since x is fixed, we note ξθ = ζ. On L there is a unique point
u special to q; it is the unique point of L collinear to x. It follows from Lemma 1.1 that
u is collinear to the points of a unique line M of ζ through x. Let w be the unique point
of M collinear to q. Then p ⊥ u ⊥ w ⊥ q. Since u and q are special (by Lemma 1.2), the
point w is independent of the choice of ξ. It follows that the line qw is contained in the
image of every symp through L. Hence Lθ = qw, implying uθ ∈ qw. But each point on
qw is either collinear or special to u, proving the assertion. □

In summary, we have shown the following theorem.
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Theorem 3.17. A non-trivial automorphism θ of E7(K) or E8(K) is a polar {1, 2′}-
kangaroo if, and only if, exactly one of the following holds.

(1) θ is anisotropic.
(2) θ is domestic, its fix structure is a Weyl substructure and it has fix diagram one

of E7;3, E7;4, or E8;4.

Consequently, θ is a polar {1, 2′}-kangaroo if, and only if, it is uniclass.

The proof of Theorem A is now complete.

3.7. Counterexamples. We now provide examples illustrating that Theorem A does not
hold for non-simply laced spherical buildings.

Example 3.18. Let ∆ be a split building of type F4 over a field K. If charK ̸= 2 then
the homologies θ = hα(−1) (with α any short root, and using standard notation in the
Chevalley group; see for example [13, Section 1.1]) are {1, 2′}-kangaroos that do not fix
a Weyl substructure. Indeed, θ is a {1, 2′, 3}-kangaroo (that is, each point of F4,1(K) is
either fixed, or mapped to distance 2). The proof of this fact can be extracted from the
proof of [13, Lemma 4.8] where we the full displacement spectra of θ is obtained, but it
also follows directly from Proposition 3.7 noting that the opposition diagram of θ is F4

4;1.
Note that θ fixes a non-thick building with thick frame of type B4 (by [13, Theorem 4.9]),
which is not a Weyl substructure.

If charK = 2 then there is no canonical choice of short and long roots, however once one
class is declared long and the other short, the short root elations are {1, 2′}-kangaroos
(indeed, they are {1, 2′, 3}-kangaroos) that do not fix a Weyl substructure. For the cal-
culation of the displacement spectra of these automorphisms, see [13, Theorem 2.1].

Example 3.19. A split building ∆ of type Bn is equivalent to a parabolic quadric in some
projective space of dimension 2n, that is, a nondegenerate quadric of maximal Witt index
n in PG(2n,K), for some field K. The polar type corresponds to the lines, just like the
case of type Dn. The standard equation of such a quadric is, with respect to a suitable
basis,

X−1X1 +X−2X2 + · · ·+X−nXn = X2
0 .

If charK ̸= 2, then the linear map defined on the coordinates by Xi 7→ Xi, i ∈ {−n,−n+
1, . . . ,−1, 1, 2, . . . , n} and X0 7→ −X0 clearly induces an automorphism of ∆. But since
the fix structure is hyperbolic quadric of Witt index n, it contains full chambers and hence
cannot be a Weyl substructure.

If charK = 2, then we consider a central elation, that is, a collineation induced on ∆
conjugate to the map defined on the coordinates by

X1 7→ X1 +X−1,

X0 7→ X0 +X−1,

Xi 7→ Xi, i ∈ {−n,−n+ 1, . . . ,−1, 2, 3, . . . , n}.
A central elation also fixes chambers and hence their fix structure is never a Weyl sub-
structure.

Now we claim that in both previous cases, lines are either fixed, or mapped to distance
2 (that is, a line L and its image L′ either coincide, or L ∩ L′ is a point and L and L′

are not contained in a common plane). Indeed, in both cases the set of fixed points is a
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geometric hyperplane, that is, a set of points intersecting each line K in either K itself,
or in a unique point. The claim then follows from [7, Lemma 3.5.1].

Hence, in both cases, the collineation is a {1, 2′, 3}-kangaroo.

In view of these examples, it is tempting to conjecture that in the general case distinct
from Cn, a collineation preserving the polar type is uniclass if, and only if, it is a polar
{1, 2′}-kangaroo which is not a polar 3-kangaroo.

4. Another application of Proposition 3.4

We conclude with a characterisation of the root elations as polar kangaroos. The proof
in the exceptional cases uses Proposition 3.4. The polar kangaroo that we consider is
the polar {2, 2′}-kangaroo. In the exceptional cases, it really characterises root elations,
whereas in the classical cases some other examples turn up. In fact, we can even allow all
polar spaces (hence all buildings of types Bn) and obtain a complete classification. Rather
surprisingly, we can also include the case of buildings of type F4.

4.1. The exceptional simply laced cases.

Proposition 4.1. A polar {2, 2′}-kangaroo θ of E6(K), E7(K) or E8(K) is either anisotropic
or a (central) root elation.

Proof. By [10, Main Result 2], a type preserving polar {2, 2′}-kangaroo of E6(K) is a
(central) elation. Hence from now on we may assume that θ is an oppomorphism. We
consider the action of θ on the corresponding long root subgroup geometry.

First suppose that θ is symp-domestic, that is, θ does not map any symp of the long root
subgroup geometry onto an opposite one. Then Theorem 1 of [11] and Corollary 3 of [12]
imply that either θ is trivial, or the opposition diagram of θ is one of

E7;1 = • • • • • •
•

or E8;1 = • • • • • • •
•

.

Now Theorem 1 of [13] implies that θ is a central long root elation.

Secondly, suppose that some symp ξ is mapped onto an opposite symp ξθ. Let p ∈ ξ be
arbitrary. Since ξθ is opposite ξ, there exists some point of ξθ opposite p. By Lemma 1.3,
the point pθ is either symplectic to p, special to p, or opposite p. Since we assume that
θ is a polar {2, 2′}-kangaroo, the only possibility is that pθ is opposite p. Hence θ maps
each point of ξ to an opposite point. It follows that every (maximal) singular subspace of
ξ is mapped onto an opposite. Now Proposition 3.4 implies that θ is anisotropic. □

In the classical cases, we will classify polar {2, 2′}-kangaroos without the parapolar ter-
minology. We start with projective spaces.
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4.2. Projective spaces. Let PG(n,K) be a projective space of dimension n ≥ 2 over the
skew field K. We note that a two pairs {p,H} and {p′, H ′}, where p, p′ are points and
H,H ′ are hyperplanes, are at distance 2 or 2′ in the long root subgroup geometry if, and
only if, H ̸= H ′, p ̸= p′ and p ∈ H ′ or p′ ∈ H. It follows that a collineation θ is a polar
{2, 2′}-kangaroo if, and only if, θ fixes every point in the intersection of a hyperplane and
its image, as soon as these are distinct, and, dually, θ stabilises every hyperplane through
each point p and pθ, as soon as p ̸= pθ. It follows easily that in such a case the line ppθ is
stabilised.

A Baer subplane B of PG(2,K) is a subplane with the properties that each line of PG(2,K)
contains at least one point of B and, dually, each point of PG(2,K) is contained in at
least one line of B. A Baer collineation θ of PG(2,K) is a collineation whose fix structure
is a Baer subplane. Typically, B is a subplane isomorphic to PG(2,F), with F a subfield
of K over which K has dimension 2, and after appropriately introducing coordinates, θ
acts on each coordinate as a skew field automorphism of K with fix subfield F. In case K
is commutative, θ is always an involution.

Proposition 4.2. A non-trivial polar {2, 2′}-kangaroo collineation θ of PG(n,K), n ≥ 2,
is a central collineation (elation or homology), or n = 2 and θ is a Baer collineation.

Proof. We may assume that θ is non-trivial. First suppose n = 2. Then, since the line ppθ

is fixed as soon as p ̸= pθ, [15, Proposition 3.3] implies that θ is either a central collineation
or a Baer collineation. If n ≥ 3, then the intersection J of a non-fixed hyperplane with its
image contains a line and is pointwise fixed. We select x ∈ J and y /∈ J . If all hyperplanes
through y not containing x are stabilised, then all hyperplanes through y are stabilised
and θ is a central collineation. Hence we may assume that some hyperplane H throiugh
y not through x is stabilised. Then H ∩ Hθ is fixed pointwise, but is diatinct from J .
Consequently the subspace spanned by J and H ∩ Hθ is pointwise fixed, implying that
θ is either the identity, or pointwise fixes a hyperplane. We again conclude that θ is a
central collineation. □

Proposition 4.3. A polar {2, 2′}-kangaroo duality θ of PG(n,K), n ≥ 2, is anisotropic.

Proof. Suppose for a contradiction that θ is not anisotropic. Then some point p is mapped
onto a hyperplane H containing p. There are two possibilities.

(1) Suppose Hθ = p. Select q ∈ H \ {p}. Then p = Hθ ∈ qθ ̸= H. If q ∈ qθ, then
{q,H} is symplectic to {Hθ, qθ} = {p, qθ}. If q /∈ qθ, then {q,H} is special to
{p, qθ}. Both are contradictions.

(2) Suppose Hθ ̸= p. Then Hθ2 ̸= H and an arbitrary point q ∈ ppθ
2 \ {p, pθ2} is

mapped onto a hyperplane through H ∩ Hθ2 . The pair {q,H} is mapped onto

the pair {pθ2 , qθ}. Since q ̸= pθ
2
, H ̸= qθ and pθ

2 ∈ H these two pairs are either
symplectic or special, a contradiction.

We conclude that θ is anisotropic after all. □

4.3. Polar spaces. A polar {2, 2′}-kangaroo of a building of type Dn, n ≥ 4, over the field
K, is a collineation of the corresponding polar space Dn,1(K) mapping each line either to
a coplanar one, or to an opposite. We take a broader perspective and look at collineations
of all polar spaces of rank at least 3 with that property. We call such collineations linewise
{2, 2′}-kangaroos.
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We reduce the classification of linewise {2, 2′}-kangaroos to the classification of certain
domestic collineations.

In the next proof we freely use basic results on polar spaces (see [25, Chapter 1]).

Proposition 4.4. Let θ be a non-trivial collineation of a polar space of rank at least 3.
Then θ is a linewise {2, 2′}-kangaroo if, and only if, either it is anisotropic, or among all
singular subspaces only lines are mapped to opposites.

Proof. First let θ be a non-trivial linewise {2, 2′}-kangaroo of a polar space of rank at
least 3. In view of the classification of opposition diagrams in [11, 12], it suffices to show
that, if θ is not anisotropic, then is is 0-domestic and 3-domestic, that is, it does not map
any point to to an opposite and it does not map any singular 3-space to an opposite one.

Suppose that θ maps some point p to an opposite point pθ. Lines through p are never
coplanar with lines through p′, hence each line through p is mapped onto an opposite
line through pθ. Consequently, each plane through p is mapped onto an opposite plane
through pθ. Suppose for a contradiction that some point x ⊥ p is mapped onto a collinear
point xθ. Let π be any plane through p and x. Since π and πθ are opposite, there is
a unique line L in π all of whose points are collinear to xθ. Note that x ∈ L. Then
the image Lθ contains xθ and is contained in πθ. Since π and πθ are opposite, they are
disjoint, and so L and Lθare not coplanar. Since xθ ∈ Lθ is collinear to all points of L,
the lines L and Lθ are not opposite either. We conclude that xθ is opposite x.

Likewise, all points collinear to any point in p⊥ are mapped onto an opposite, which
implies that θ is anisotropic.

Now suppose that θ maps a singular 3-space Σ to an opposite. Suppose that θ is not
anisotropic. Since θ is then point-domestic by the previous arguments, the map θΣ map-
ping a point x of Σ onto the line Σ ∩ (xθ)⊥ induces a symplectic polarity in Σ. Let L
be a fixed line for that symplectic polarity. Then L and Lθ are contained in a singular
3-space, hence not opposite, and are yet not coplanar (because Σ and Σθ are disjoint).
This contradiction shows that θ is 3-domestic.

Secondly, let θ be a non-trivial collineation which is 0-domestic and 3-domestic. Suppose
L is a line such that L and Lθ are neither coplanar, nor opposite. If L and Lθ intersect
in a point p, then, since lines have at least three points, we can find a point q ∈ L \ {p}
which is mapped onto a point qθ ̸= p. The points q and qθ are opposite, a contradiction.
Suppose L is such that L and Lθ are disjoint but contained in a common singular 3-space
Σ. Then Σθ−1

contains L and we can find a singular 3-space Σ0 through L such that
Σ0 ∩ Σ = Σ0 ∩ Σθ−1

= L and no point of Σ0 \ L is collinear to all points of either Σ

or Σθ−1
(noting that, if the polar space has type D4, then, by [11, Corollary 4] and [12,

Theorem 1], 0-domesticity implies that θ is type preserving). Now one checks easily that
Σ0 and Σθ

0 are opposite, a contradiction. Suppose at last that L and Lθ are disjoint and
there exists a unique point p ∈ L collinear to all points of Lθ. Then there exists a unique
point q ∈ Lθ collinear to all points of L. Each point x ∈ L distinct from p and qθ

−1
is

mapped onto an opposite point. □

So, a polar {2, 2′}-kangaroo which is not anisotropic has opposition diagram B2
n,1, n ≥ 3,

or D2
n,1, n ≥ 4 (the case n = 3 is contained in Section 4.2). Such collineations are

classified by [15, Theorem 3]. Without going into details, we mention that these are
always axial collineations (hence long root elations), except if the polar space is symplectic
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and the characteristic of the underlying field is not 2 (then we have certain homologies),
or the polar space has rank 3 (and then also collineations qualify which pointwise fix a
substructure isomorphic to a polar space of rank 3 inducing a Baer subplane in each plane
that contains at least two fixed points).

4.4. Metasymplectic spaces. Metasymplectic spaces are the natural point-line geome-
tries for the buildings of type F4. Up to now, they only appeared in this paper as fix
structures in larger buildings. Since we only need properties of them in this last para-
graph of the paper for a non-essential digression to our main results, we refer the reader to
the existing literature concerning precise definitions and basic properties. Good sources
are [3, 17, 22] and the accepted manuscript [7]. Let us just mention that metasymplectic
spaces behave very much like long root subgroup geometries in that they are parapolar
spaces for which two different points are either collinear, special, symplectic or opposite
(and in the latter case they are at distance 3 from each other in the collinearity graph).
The symps are polar spaces of rank 3 and form the point set of the dual metasymplectic
space (where the lines are the sets of symps containing a given singular plane). In that
dual space, symplectic points correspond to symps intersecting in just a point.

Here is our classification result.

Proposition 4.5. Let θ be a {2, 2′}-kangaroo of a metasymplectic space. Then θ is either
anisotropic, or symp-domestic. In the latter case, this means that the opposition diagram
for θ is either F1

4;1 or F4
4;1. Conversely, every domestic collineation with such opposition

diagram is a {2, 2′}-kangaroo in the corresponding metasymplectic space (that is, of type
F4,1 if the opposition diagram is F4

4;1, and F4,4 if the opposition diagram is F1
4;1).

Proof. First assume that θ is a {2, 2′}-kangaroo of the metasymplectic space Γ = (X,L ).
If θ does not map any symp to an opposite, the result follows from the classification of
opposition diagrams in [11].

So, suppose some symp ξ is mapped onto an opposite symp. We want to prove an
analogue of Proposition 3.4 for metasympledtic spaces. However, in view of Section 3.7,
such analogue is only possible if we bring in an additional assumption, and that is exactly
the 2-kangaroo assumption. Indeed, each point of ξ is either symplectic, special or opposite
each point of ξθ. By the {2, 2′}-kangaroo assumption, points of ξ are mapped onto opposite
points. Hitherto, this is similar to the proof of Proposition 4.1. But now we have to
deviate, because we cannot use Proposition 3.4, and its proof certainly does not extend
to the F4 case as metasymplectic spaces do not contain maximal singular subspaces that
are not contained in symps.

Let ζ be a symp intersecting ξ in a plane π. Suppose for a contradiction that ζθ is not
opposite ζ. Since πθ is opposite π, the only two possibilities are that ζ ∩ ζθ is a unique
point x, or ζ is disjoint from ζθ, but there exists a symp ξ0 intersecting both in planes.
First assume ζ ∩ ζθ = {x}. Any point y ∈ π ∩ x⊥ is mapped onto a point of ζθ, hence
collinear or symplectic to x, which implies that {y, yθ} is either collinear, symplectic or
special, a contradiction. Hence ζ ∩ ζθ = ∅ and there exists a symp ξ0 intersecting both
in planes, say α and α′, respectively. Now the only points of ζθ not symplectic or special
to some point of α are those of α′. Hence each point of α is sent to a collinear point in
α′. But then the map α → α : x 7→ (xθ)⊥ ∩ α is a duality of α each point of which is
absolute, a contradiction (see for instance [18, Lemma 3.2]).
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Hence we have shown that ζ is opposite ζ ′. Then again, all points of ζ are mapped onto
opposite points, and continuing like this, by connectivity, θ is anisotropic.

Now suppose that θ is domestic with one of the opposition diagrams F1
4;1 or F4

4;1. We
have to choose the duality class of the metasymplectic space such that θ does not map
symps to opposites, and hence only maps points to opposites. By [7, Lemma 5.2.1] no
pair {x, xθ}, x ∈ X, is special. Suppose now for a contradiction that some point x ∈ X
is mapped onto a symplectic point x′. By [7, Lemma 5.2.2(iv)], the symp ξ containing x
and x′ is stabilised. Select a symp ζ with ζ∩ξ = {x}. Then ζθ∩ξ = {x′} and since {x, x′}
is symplectic, properties of metasymplectic spaces imply that ζ and ζθ are opposite, a
contradiction. □

There is now an explicit list of collineations of metasymplectic spaces with opposition
diagram F1

4;1 or F4
4;1, see [7, Main Result]. They are either the long root elations, or

two specific examples given by their fix structure: either the fix structure is a geometric
hyperplane given by an extended equator geometry together with its tropics geometry in
the dual of the long root subgroup geometry of a split building of type F4 (equivalently,
the fix structure in building theoretic terms is a weak subbuilding with thick frame of type
B4), or the fix structure is a subspace isomorphic to the long root subgroup geometry of
a split building of type F4 and Γ corresponds to the long root subgroup geometry of a
building of absolute type F4 and relative type E6 (using the notation of [21, Table II],
with Tits index 2E2

6,4),

Remark 4.6. As a final remark, we make the following observation. The main purpose
of the present paper was to provide an alternative characterisation for uniclass automor-
phisms of spherical buildings in the simply laced case. As a digression we could also
classify {2, 2′}-kangaroo collineations in the Lie incidence geometries that behave like
long root subgroup geometries. In [16, §7.3], we classified, also as a digression, type pre-
serving automorphisms of spherical buildings whose displacement spectra is contained in
the union of two conjugacy classes, among which is the trivial class (call these for now
lower biclass automorphisms). The list of these automorphisms is strikingly similar to
the list of polar {2, 2′}-kangaroo collineations obtained above. Indeed, in both cases, one
reduces to opposition diagrams with only one orbit encircled, which is necessarily the
polar node(s). By the special nature of the long root subgroup geometry of type Cn (not
containing collinear or special pairs of points), the opposition diagram B1

n;1 does not turn
up in our analysis above of {2, 2′}-kangaroos, whereas it does turn up in the context of
lower biclass automorphisms. This makes it reasonable to conjecture that there will be
a very tight connection between upper biclass oppomorphisms of spherical buildings (the
displacement is contained in two conjugacy classes of the Weyl group among which is the
longest word) and polar {1, 2}-kangaroo automorphisms.

References
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