1.3 Local Rings and Residue Fields

Call a ring A local if A has exactly one maximal ideal M , and call $A/M\,$ the residue field of A .

Examples:

(1) Any field F is local since $\{0\}$ is the only maximal ideal

($\{0\}$ and F are the **only** ideals of F)

and $F \cong F/\{0\}$ is its own residue field.

(2) Let R be any (possibly noncommutative) ring and G any group written multiplicatively. The **group ring** R[G] comprises formal linear combinations

$$\sum_{e \in G} \alpha_g g$$

where $\alpha_g \in R$ for each $g \in G$ and only finitely many α_g are nonzero, with componentwise addition:

g

$$\sum \alpha_g g + \sum \beta_g g = \sum (\alpha_g + \beta_g) g,$$

and **convolution** product:

$$\left(\sum_{g \in G} \alpha_g g\right) \left(\sum_{h \in G} \beta_h h\right) = \sum_{k \in G} \left(\sum_{gh=k} \alpha_g \beta_h\right) k ,$$

It is routine to check that R[G] is a (possibly noncommutative) ring.

e.g.
$$\mathbb{Z}_2[C_2] = \{ 1, x, 0, 1+x \}$$
,

where $C_2 = \{ x , x^2 = 1 \}$ is the cyclic group of order 2 , written multiplicatively,

has unique maximal ideal

$$M = \{ 0, 1+x \}$$
 (easy to verify)

so that $\mathbb{Z}_2[C_2]$ is local, with residue field

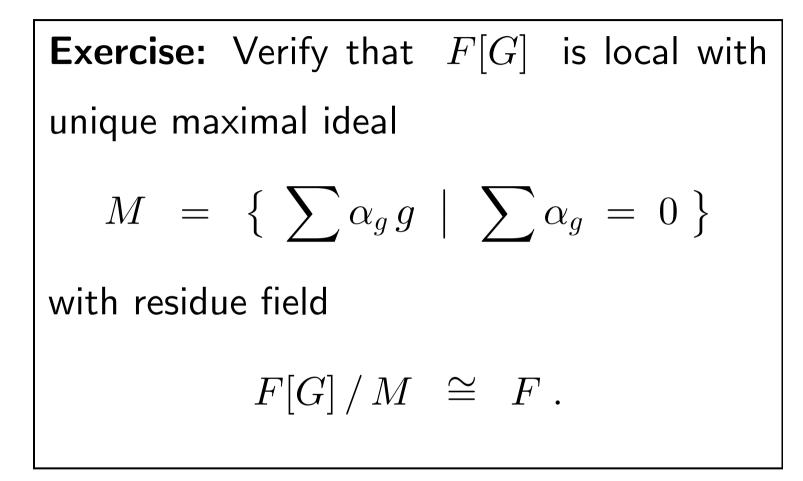
$$\mathbb{Z}_2[C_2]/M \cong \mathbb{Z}_2.$$

Example: Let F be a field of prime characteristic p, that is,

$$\underbrace{1+1+\ldots+1}_{p \text{ times}} = 0.$$

Let G be any abelian p-group, that is,

each element of $\,G\,$ has order a power of $\,p$.



A ring with only finitely many maximal ideals is called **semi-local**.

Exercises:

(1) Prove that

$$A_1 = \{ a/b \mid a, b \in \mathbb{Z}, 2 \not| b \}$$

is a local ring with residue field \mathbb{Z}_2 . (2) Prove that

$$A_2 = \{ a/b \mid a, b \in \mathbb{Z}, 2 \not\mid b, 3 \not\mid b \}$$
 is a semi-local ring.

(3) Exhibit a semi-local ring with exactly n maximal ideals, where $n \in \mathbb{Z}^+$.

(4) Prove that

$$A_3 = \{ p(x)/q(x) \mid \\ p(x), q(x) \in \mathbb{R}[x], q(0) \neq 0 \}$$

is a local ring with residue field $\ \mathbb R$.

(5) Prove that $\mathbb{R}[[x]]$ is a local ring with residue field \mathbb{R} .

The following result may be useful:

Proposition:

(i) Let A be a ring and M ≠ A an ideal such that all elements of A\M are units.
Then A is local and M is maximal.
(ii) Let A be a ring and M a maximal ideal such that all elements of 1 + M are units.

Then A is local.

Proof: (i) If $A \neq I \lhd A$ then no element of I is a unit, so $I \subseteq M$.

Thus M is the unique maximal ideal of A, so A is local.

(ii) Let
$$x \in A \setminus M$$
. Since M is maximal,
 $A = \langle M \cup \{x\} \rangle$
 $= \{ ax + m \mid a \in A, m \in M \}.$

In particular

$$1 = ax + m \qquad (\exists a \in A)(\exists m \in M)$$

SO

$$ax = 1 - m \in 1 + M$$
.

By hypothesis ax is a unit. Hence x also is a unit.

Thus all elements of $A \setminus M$ are units.

By (i), A is local, and the proof is complete.