
4.6 Appendix: Gauss’ Theorem

Let A be a ring. Recall x ∈ A is irreducible if x

is not a unit and, for all y, z ∈ A ,

x = yz =⇒ y or z is a unit,

and prime if x 6= 0 , x is not a unit and, for all

y, z ∈ A ,

x | yz =⇒ x | y or x | z .
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Call a, b ∈ A associates if there exists a unit

c ∈ A such that a = bc .

Suppose throughout that A is a unique

factorization domain (UFD), by which we mean

(i) A is an integral domain;

(ii) every nonzero nonunit of A can be expressed

as a product of irreducibles;

(iii) the factorization of (ii) is unique up to order

and associates.
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We will develp a sequence of lemmas leading to the

proof of

Gauss’ Theorem: A[x] is a UFD.

That A[x] is an integral domain is a

straightforward exercise.

Observe that everything divides 0 in A .

If x1 , . . . , xn ∈ A are not all zero, then
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by inspecting irreducible divisors, unique up to

associates, one can write down a product of (powers

of) irreducibles

g = g.c.d. { x1 , . . . , xn } ,

having the property that

g | x1 , . . . , g | xn

and

h | x1 , . . . , h | xn =⇒ h | g .
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It follows quickly that g.c.d.’s are unique up to

associates.

Further

if g = g.c.d. { x1 , . . . , xn } and

x1 = gy1 , . . . , xn = gyn

then

1 = g.c.d. { y1 , . . . , yn } .
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Call p(x) ∈ A[x] primitive if

1 = g.c.d. { coefficients of p(x) } .

Certainly then,

all irreducible polynomials in A[x] of degree

> 0 are primitive.

(The irreducible polynomials of degree 0 are just

the irreducible elements of A .)
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Observation: Suppose

0 6= f(x) ∈ A[x] and λ ∈ A .

Then

f(x) = λ g(x)

for some primitive g(x) iff

λ = g.c.d. { coefficients of f(x) } .

Proof: Write f(x) = a0 + . . .+anx
n (an 6= 0) .
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(⇐=) Suppose λ = g.c.d. { a0, . . . , an } . Write

a0 = λb0 , . . . , an = λbn ,

and put g(x) = b0 + . . . + bnx
n . Then

f(x) = λg(x) and 1 = g.c.d. { b0, . . . , bn } ,

so g is primitive.

(=⇒) Suppose f(x) = λg(x) for some primitive

g(x) = b0 + . . . + bnx
n . Then
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a0 = λb0 , . . . , an = λbn ,

so certainly λ divides each of a0, . . . , an .

If also µ divides each of a0, . . . , an then µ must

divide λ ,

for otherwise, since A is a UFD, some irreducible

divisor of µ would divide each of b0, . . . , bn ,

contradicting that 1 = g.c.d. {b0, . . . , bn} .

Hence µ | λ , proving λ = g.c.d. {a0, . . . , an} .
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Lemma 1: Let f(x) be a nonzero polynomial

over A such that

f(x) = λg(x) = µh(x) ,

where λ, µ ∈ A and g(x) and h(x) are

primitive.

Then g(x) and h(x) are associates.

Proof: By the previous Observation, both λ and

µ are g.c.d.’s of the coefficients of f(x) , so divide
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each other, so

λ = µσ ∃ unit σ .

Hence

µσg(x) = λg(x) = µh(x) ,

so

σg(x) = h(x)

since A[x] is an integral domain and µ 6= 0 ,

which proves g(x) and h(x) are associates.
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Since A is an integral domain, let F be

its

field of fractions,

so A[x] embeds in F [x] .

Lemma 2: Let f(x), g(x) ∈ A[x] be primitive

polynomials which are associates in F [x] . Then

f(x) and g(x) are associates in A[x] .

935



Proof: The units of F [x] are nonzero elements of

F , so

f(x) = (a/b)g(x) ∃a, b ∈ A\{0} ,

so

bf(x) = ag(x) .

By Lemma 1, f(x) and g(x) are associates in

A[x] .
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Lemma 3: Products of primitive polynomials

are primitive.

Proof: Let f(x) , g(x) be primitive and write

f(x) = a0 + . . . + anx
n

g(x) = b0 + . . . + bnx
n

for some a0 , . . . , an , b0 , . . . , bn ∈ A

(using zero coefficients if necessary).
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Suppose

f(x)g(x) = c0 + . . . + c2nx
2n

is not primitive. Then 1 6= g.c.d. { c0 , . . . , c2n } ,

so, for some irreducible p ∈ A , p | ci for all i .

But f(x) and g(x) are primitive, so

(∃j ≤ n) p 6 | aj and p | aj+1, . . . , an

(∃k ≤ n) p 6 | bk and p | bk+1, . . . , bn .
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But

cj+k = a0bj+k + . . . + aj−1bk+1

+ ajbk

+ aj+1bk−1 + . . . + aj+kb0

all divisible by p
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(where bℓ = aℓ = 0 for ℓ > n ),

so that p | ajbk , yielding

p | aj or p | bk (since p is prime),

which contradicts the choice of j and k .

Hence f(x)g(x) is primitive.
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Lemma 4: Suppose f(x) ∈ A[x] is

irreducible of degree > 0 .

Then f(x) is irreducible in F [x] .

Proof: Suppose that f(x) is not irreducible in

F [x] , so

f(x) = g1(x)g2(x)

for some nonunits g1(x) , g2(x) in F [x] , so

deg (g1(x)) , deg (g2(x)) > 0 .
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By taking common denominators,

g1(x) = h1(x)/b1 , g2(x) = h2(x)/b2

for some

h1(x) , h2(x) ∈ A[x] , b1 , b2 ∈ A\{0} .

Then

b1 b2 f(x) = h1(x) h2(x) .

Certainly f(x) is primitive (being irreducible).
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Write

h1(x) = c1 k1(x) , h2(x) = c2 k2(x)

where k1(x) , k2(x) are primitive and c1, c2 ∈ A ,

so

b1 b2 f(x) = c1 c2 k1(x) k2(x) .

By Lemma 3, k1(x)k2(x) is primitive,

so, by Lemma 1,

f(x) and k1(x)k2(x) are associates.
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But

deg (k1(x)) , deg (k2(x)) > 0 ,

so neither k1(x) nor k2(x) is a unit,

contradicting that f(x) is irreducible in A[x] .

Hence f(x) is irreducible in F [x] and the lemma

proved.

Lemma 5: F [x] is a UFD.
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Proof: This follows because F [x] is a principal

ideal domain (being a Euclidean domain) and details

are left as an exercise or further reading.

Now we can prove

Gauss’ Theorem: A[x] is a UFD.

Proof: Let 0 6= f(x) ∈ A[x] where f(x) is
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not a unit. Then

f(x) = λg(x)

for some primitive g(x) ∈ A[x] , where

λ = g.c.d. { coefficients of f(x) } .

If deg (g(x)) = 0 then g(x) is a unit (since it is

primitive).

Suppose deg (g(x)) > 0 .
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If g(x) is not irreducible then

g(x) = g1(x)g2(x)

for some nonunits g1(x) , g2(x) ,

both of degree > 0 (for otherwise λ would not

be the g.c.d. of the coefficients of f(x) ),

and continuing, if necessary, we get a factorization

g(x) = g1(x) . . . gn(x)
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where each gi(x) is irreducible of degree > 0

(this point being reached because there is no infinite

strictly descending sequence of degrees).

Also (using the fact that A is a UFD) we can

factorize

λ = λ1 . . . λn

where λ1 , . . . , λn are irreducible in A and hence

in A[x] .
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Thus we get at least one factorization

f(x) = λ1 . . . λn g1(x) . . . gm(x)

into a product of irreducibles (possibly m = 0 ).

Suppose also

f(x) = µ1 . . . µs h1(x) . . . ht(x)

is a product of irreducibles, where each µi ∈ A

and each hj(x) ∈ A[x] has degree > 0 .
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Certainly g1(x) , . . . , gm(x) , h1(x) , . . . , ht(x)

are primitive so, by Lemma 3,

g1(x) . . . gm(x) and h1(x) . . . ht(x)

are primitive, so, by Lemma 1, are associates.

Hence WLOG

g1(x) . . . gm(x) = h1(x) . . . ht(x)

λ1 . . . λn = µ1 . . . µs .
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Since A is a UFD, n = s and λ1 , . . . , λn and

µ1 , . . . , µs can be paired off into associates.

By Lemma 4,

g1(x) , . . . , gm(x) , h1(x) , . . . , ht(x)

are irreducible in F [x] ,

so, by Lemma 5, these can be paired off into

associates with respect to F [x] .
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But by Lemma 2, these are then associates with

respect to A[x] ,

and Gauss’ Theorem is proved.

If K is a field then K is trivially a UFD, so by

iterating Gauss’ Theorem we get that

K[x1, . . . , xn] is a UFD.
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