4.6 Appendix: Gauss' Theorem

Let A be a ring. Recall $x \in A$ is **irreducible** if x is not a unit and, for all $y, z \in A$,

$$x = yz \implies y$$
 or z is a unit,

and prime if $\ x \neq 0$, $\ x$ is not a unit and, for all $y,z \in A$,

 $x \mid yz \implies x \mid y \text{ or } x \mid z$.

924

Call $a, b \in A$ associates if there exists a unit $c \in A$ such that a = bc.

Suppose throughout that A is a **unique** factorization domain (UFD), by which we mean

(i) A is an integral domain;

(ii) every nonzero nonunit of A can be expressed as a product of irreducibles;

(iii) the factorization of (ii) is unique up to order and associates.

We will develp a sequence of lemmas leading to the proof of

Gauss' Theorem: A[x] is a UFD.

That A[x] is an integral domain is a straightforward exercise.

Observe that everything divides 0 in A.

If x_1 , \ldots , $x_n \in A$ are not all zero, then

by inspecting irreducible divisors, unique up to associates, one can write down a product of (powers of) irreducibles

$$g = \text{g.c.d.} \{ x_1, \ldots, x_n \},$$

having the property that

$$g \mid x_1 \ , \ \ldots \ , \ g \mid x_n$$

and

$$h \mid x_1, \ldots, h \mid x_n \implies h \mid g.$$

It follows quickly that g.c.d.'s are unique up to associates.

Further

if
$$g = g.c.d. \{ x_1, \ldots, x_n \}$$
 and
 $x_1 = gy_1, \ldots, x_n = gy_n$
then
 $1 = g.c.d. \{ y_1, \ldots, y_n \}.$

928

Call $p(x) \in A[x]$ primitive if

 $1 = \text{g.c.d.} \{ \text{ coefficients of } p(x) \}.$

Certainly then,

all irreducible polynomials in A[x] of degree > 0 are primitive.

(The irreducible polynomials of degree 0 are just the irreducible elements of A.)

Observation: Suppose

$$0 \neq f(x) \in A[x]$$
 and $\lambda \in A$.
Then
 $f(x) = \lambda g(x)$
for some primitive $g(x)$ iff
 $\lambda = g.c.d. \{ \text{ coefficients of } f(x) \}.$

Proof: Write $f(x) = a_0 + \ldots + a_n x^n$ $(a_n \neq 0)$.

(
$$\Leftarrow$$
) Suppose $\lambda = g.c.d. \{ a_0, \dots, a_n \}$. Write
 $a_0 = \lambda b_0, \dots, a_n = \lambda b_n,$
and put $g(x) = b_0 + \dots + b_n x^n$. Then
 $f(x) = \lambda g(x)$ and $1 = g.c.d. \{ b_0, \dots, b_n \},$
so g is primitive.
(\Longrightarrow) Suppose $f(x) = \lambda g(x)$ for some primitive
 $g(x) = b_0 + \dots + b_n x^n$. Then

$$a_0 = \lambda b_0, \ldots, a_n = \lambda b_n,$$

so certainly λ divides each of a_0,\ldots,a_n .

If also $\,\mu\,$ divides each of $\,a_0,\ldots,a_n\,$ then $\,\mu\,$ must divide $\,\lambda$,

for otherwise, since A is a UFD, some irreducible divisor of μ would divide each of b_0, \ldots, b_n , contradicting that $1 = \text{g.c.d.} \{b_0, \ldots, b_n\}$.

Hence $\mu \mid \lambda$, proving $\lambda = \text{g.c.d.} \{a_0, \ldots, a_n\}$.

Lemma 1: Let f(x) be a nonzero polynomial over A such that

$$f(x) = \lambda g(x) = \mu h(x) ,$$

where $\lambda, \mu \in A$ and g(x) and h(x) are primitive. Then g(x) and h(x) are associates.

Proof: By the previous Observation, both λ and μ are g.c.d.'s of the coefficients of f(x), so divide

each other, so

$$\lambda = \mu \sigma \qquad \exists \text{ unit } \sigma .$$

Hence

$$\mu \sigma g(x) = \lambda g(x) = \mu h(x) ,$$

SO

$$\sigma g(x) = h(x)$$

since A[x] is an integral domain and $\mu \neq 0$, which proves g(x) and h(x) are associates. Since A is an integral domain, let F be its field of fractions,

so A[x] embeds in F[x] .

Lemma 2: Let $f(x), g(x) \in A[x]$ be primitive polynomials which are associates in F[x]. Then f(x) and g(x) are associates in A[x]. **Proof:** The units of ${\cal F}[x]$ are nonzero elements of ${\cal F}$, so

$$f(x) = (a/b)g(x) \qquad \exists a, b \in A \setminus \{0\} ,$$

SO

 $bf(x) = ag(x) \; .$ By Lemma 1, f(x) and g(x) are associates in $A[x] \; .$

Lemma 3: Products of primitive polynomials are primitive.

Proof: Let f(x), g(x) be primitive and write

$$f(x) = a_0 + \ldots + a_n x^n$$

$$g(x) = b_0 + \ldots + b_n x^n$$

for some a_0 , ..., a_n , b_0 , ..., $b_n \in A$

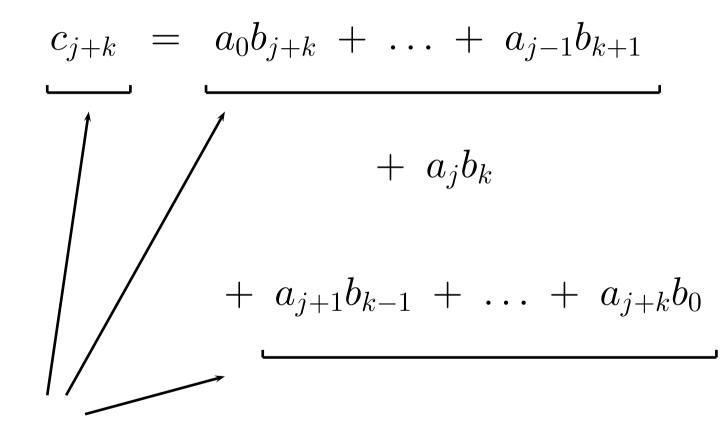
(using zero coefficients if necessary).

Suppose

$$f(x)g(x) = c_0 + \ldots + c_{2n}x^{2n}$$

is **not** primitive. Then $1 \neq \text{g.c.d.} \{ c_0, \ldots, c_{2n} \}$, so, for some irreducible $p \in A$, $p \mid c_i$ for all i. But f(x) and g(x) are primitive, so $(\exists j \leq n)$ $p \not\mid a_j$ and $p \mid a_{j+1}, \ldots, a_n$ $(\exists k \leq n)$ $p \not\mid b_k$ and $p \mid b_{k+1}, \ldots, b_n$.

But



all divisible by p

(where $b_{\ell} = a_{\ell} = 0$ for $\ell > n$), so that $p \mid a_j b_k$, yielding $p \mid a_j$ or $p \mid b_k$ (since p is prime), which contradicts the choice of j and k. Hence f(x)g(x) is primitive. **Lemma 4:** Suppose $f(x) \in A[x]$ is irreducible of degree > 0. Then f(x) is irreducible in F[x].

Proof: Suppose that f(x) is not irreducible in F[x] , so

$$f(x) = g_1(x)g_2(x)$$

for some nonunits $g_1(x)$, $g_2(x)$ in F[x] , so

 $deg (g_1(x)) , deg (g_2(x)) > 0 .$

By taking common denominators,

$$g_1(x) = h_1(x)/b_1$$
, $g_2(x) = h_2(x)/b_2$

for some

$$h_1(x) \ , \ h_2(x) \ \in \ A[x] \ , \ b_1 \ , \ b_2 \ \in \ A ackslash \{0\} \ .$$
 Then

$$b_1 b_2 f(x) = h_1(x) h_2(x)$$
.

Certainly f(x) is primitive (being irreducible).

Write

$$h_1(x) = c_1 k_1(x) , h_2(x) = c_2 k_2(x)$$

where $k_1(x)$, $k_2(x)$ are primitive and $c_1, c_2 \in A$, so

$$b_1 b_2 f(x) = c_1 c_2 k_1(x) k_2(x)$$
.

By Lemma 3, $k_1(x)k_2(x)$ is primitive,

so, by Lemma 1,

f(x) and $k_1(x)k_2(x)$ are associates.

But

$$deg (k_1(x)), deg (k_2(x)) > 0,$$

so neither $k_1(x)$ nor $k_2(x)$ is a unit, contradicting that f(x) is irreducible in A[x].

Hence f(x) is irreducible in F[x] and the lemma proved.

Lemma 5: F[x] is a UFD.

Proof: This follows because F[x] is a principal ideal domain (being a Euclidean domain) and details are left as an exercise or further reading.

Now we can prove

Gauss' Theorem: A[x] is a UFD.

Proof: Let $0 \neq f(x) \in A[x]$ where f(x) is

not a unit. Then

$$f(x) = \lambda g(x)$$

for some primitive $g(x) \in A[x]$, where

$$\lambda = \text{g.c.d.} \{ \text{ coefficients of } f(x) \}.$$

If deg (g(x)) = 0 then g(x) is a unit (since it is primitive).

Suppose $\deg(g(x)) > 0$.

If g(x) is not irreducible then

$$g(x) = g_1(x)g_2(x)$$

for some nonunits $\,g_1(x)$, $\,g_2(x)$,

both of degree > 0 (for otherwise λ would not be the g.c.d. of the coefficients of f(x)),

and continuing, if necessary, we get a factorization

$$g(x) = g_1(x) \dots g_n(x)$$

where each $g_i(x)$ is irreducible of degree > 0

(this point being reached because there is no infinite strictly descending sequence of degrees).

Also (using the fact that A is a UFD) we can factorize

$$\lambda = \lambda_1 \dots \lambda_n$$

where $\lambda_1 \;,\; \ldots \;,\; \lambda_n$ are irreducible in $\;A\;$ and hence in $\;A[x]\;.$

Thus we get at least one factorization

$$f(x) = \lambda_1 \ldots \lambda_n g_1(x) \ldots g_m(x)$$

into a product of irreducibles (possibly m=0).

Suppose also

$$f(x) = \mu_1 \ldots \mu_s h_1(x) \ldots h_t(x)$$

is a product of irreducibles, where each $\mu_i \in A$ and each $h_j(x) \in A[x]$ has degree > 0. Certainly $g_1(x)$, ..., $g_m(x)$, $h_1(x)$, ..., $h_t(x)$ are primitive so, by Lemma 3,

 $g_1(x) \ \ldots \ g_m(x)$ and $h_1(x) \ \ldots \ h_t(x)$ are primitive, so, by Lemma 1, are associates. Hence WLOG

$$g_1(x) \ldots g_m(x) = h_1(x) \ldots h_t(x)$$

$$\lambda_1 \ \ldots \ \lambda_n \ = \ \mu_1 \ \ldots \ \mu_s \ .$$

Since A is a UFD, n = s and $\lambda_1, \ldots, \lambda_n$ and μ_1, \ldots, μ_s can be paired off into associates.

By Lemma 4,

$$g_1(x) , \ldots , g_m(x) , h_1(x) , \ldots , h_t(x)$$

are irreducible in $\ F[x]$,

so, by Lemma 5, these can be paired off into associates with respect to F[x].

But by Lemma 2, these are then associates with respect to $\,A[x]$,

and Gauss' Theorem is proved.

If K is a field then K is trivially a UFD, so by iterating Gauss' Theorem we get that

$$K[x_1,\ldots,x_n]$$
 is a UFD.