
4.5 Hilbert’s Nullstellensatz (Zeros

Theorem)

We develop a deep result of Hilbert’s, relating

solutions of polynomial equations to ideals of

polynomial rings in many variables.

Notation: Put A = F [x1, . . . , xn] where F is

a field. Write

x = (x1, . . . , xn) and λ = (λ1, . . . , λn)
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if λ1, . . . , λn ∈ F . Suppose p(x) ∈ A . Then

p(λ) is the result of evaluating p(x) in F

after substituting λi for xi for each i ,

and if p(λ) = 0 then call λ a zero of p = p(x) .

Put

Z
(
p(x)

)
= { λ ∈ F n | p(λ) = 0 } ,

called the zero set of p(x) .
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e.g. If n = 1 and p(x) is nonzero then

|Z
(
p(x)

)
| ≤ degree of p(x) .

If n = 2 and F = R , then

Z
(
x1x2

)
= union of x1 and x2 -axes :

x1

x2
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Z
(
x1x2 − 1

)
= hyperbola 1st and 3rd quadrants :

Z
(
x1x2+1

)
= hyperbola 2nd and 4th quadrants :

x1

x2

x1

x2
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Z
(
(x2

1 + x2
2 − 1)(x1 + x2 − 1)

)

is the union of a circle and a line:

x1

x2

The circle and line separately correspond to

irreducible factors of the polynomial.
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If T ⊆ A put

Z(T ) = { λ | p(λ) = 0 ∀p(x) ∈ T } ,

called the zero set of T .

Clearly, if T ⊆ A and I = 〈T 〉ideal then

Z(T ) = Z(I) .
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A subset Y of F n is called algebraic if

(∃T ⊆ A) Y = Z(T ) ,

that is, if Y is the solution set of some system of

polynomial equations.

But all ideals of A are finitely generated (Hilbert’s

Basis Theorem), so

Y is algebraic iff Y is the solution set of some

finite system of polynomial equations.
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Given Y ⊆ F n , define the ideal of Y to be

I(Y ) = { p(x) ∈ A | p(λ) = 0 ∀λ ∈ Y } ,

the set of polynomials which vanish at all points of

Y . Clearly

I(Y ) � A .

It is easy to see that

Y1 ⊆ Y2 ⊆ F n =⇒ I(Y1) ⊇ I(Y2)

and also that
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T1 ⊆ T2 ⊆ A =⇒ Z(T1) ⊇ Z(T2) .

Further, it is clear that

Y ⊆ F n =⇒ Y ⊆ Z
(
I(Y )

)

and

T ⊆ A =⇒ T ⊆ I
(
Z(T )

)
.
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Corollary: If Y is algebraic then

Z
(
I(Y )

)
= Y .

Proof: If Y = Z(T ) for some T ⊆ A , then

Y ⊆ Z
(
I(Y )

)
= Z

(
I
(
Z(T )

))
⊆ Z(T ) = Y ,

at the second last step because T ⊆ I
(
Z(T )

)
,

whence equality holds.
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Question: Under what conditions is it the case,

for I � A , that

I = I
(
Z(I)

)
?

Answer: . . . when I = r(I) , and F is

algebraically closed (see below).
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Hilbert’s Nullstellensatz (Zeros Theorem):

If

I � A = F [x1, . . . , xn]

where F is an algebraically closed field, and

p(x) ∈ A where

p(λ) = 0 (∀λ ∈ Z(I)) ,

then p(x) ∈ r(I) .
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This will be proved shortly after some preparation.

Corollary: If I � A and F is

algebraically closed then

I
(
Z(I)

)
= r(I) .

Proof: If I � A then it is easy to see that

r(I) ⊆ I
(
Z(I)

)
,

so if, further, F is algebraically closed then, by the
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Nullstellensatz, I
(
Z(I)

)
⊆ r(I) , whence equality.

Corollary: Let F be algebraically closed.

Then there is a one-one inclusion-reversing

correspondence between algebraic sets in F n and

ideals of A which coincide with their radicals:

Y 7→ I(Y ) , Y algebraic;

I 7→ Z(I) , I = r(I) � A .
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Proof: If Y is algebraic then by an earlier Corollary,

Z
(
I(Y )

)
= Y .

If I = r(I) � A then, by the previous Corollary,

I
(
Z(I)

)
= I .

Injectivity and surjectivity follow quickly. The

inclusion-reversing property has already been noted.
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Before proving the Nullstellensatz, we review and

develop some theory of field extensions: recall that

if F is a subfield of a field K then we call

K an extension of F ,

in which case

K may be regarded as a vector space over F .

If this vector space is finite dimensional then we call

the extension finite.
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Theorem: If K is a finite extension of F of

dimension m , and L is a finite extension of K

of dimension n , then

L is a finite extension of F of dimension mn .

Proof: left as an exercise.

Suppose K is an extension of F . Say that

α ∈ K is algebraic over F

if p(α) = 0 for some nonzero p(x) ∈ F [x] .
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Call K algebraic over F if all elements of K

are algebraic over F .

If α1 , . . . , αn ∈ K then write

F [α1 , . . . , αn] = subring of K generated by

F and α1 , . . . , αn

= F -subalgebra of K generated

by α1 , . . . , αn .
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note: square brackets denote subring,

and write

F (α1 , . . . , αn) = subfield of K generated by

F and α1 , . . . , αn

note: round brackets denote subfield.

869



Call α1 , . . . , αn ∈ K

algebraically independent over F

if

p(α1, . . . , αn) 6= 0 ,

for all nonzero p(x1, . . . , xn) ∈ F [x1, . . . , xn] ,

in which case the evaluation map

p(x1, . . . , xn) 7→ p(α1, . . . , αn)
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defines a ring isomorphism:

F [x1, . . . , xn] −→ F [α1, . . . , αn]

(where the latter is a subring of K ), whence

F (α1, . . . , αn) is the ring of fractions of

F [α1, . . . , αn] isomorphic to the ring

F (x1, . . . , xn) of rational functions in

indeterminates x1, . . . , xn .
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Theorem: Let K be an extension of a field F

and suppose α ∈ K is algebraic over F . Then

F [α] = F (α)

is a finite (and hence algebraic) extension of F .

Proof: Certainly F [α] ⊆ F (α) .
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To prove the reverse set containment, suppose

p(x) ∈ F [x] such that

p(α) 6= 0 (evaluated in K ) .

It is sufficient to show p(α)−1 ∈ F [α] .

Since α is algebraic, let m(x) ∈ F [x] be the

minimum polynomial of α , that is, the nonzero

polynomial of least degree such that m(α) = 0 .

Then

p(x) = m(x) q(x) + r(x)
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for some polynomials q(x) , r(x) such that r(x)

has degree < degree of m(x) . Hence

p(α) = r(α) . (∗)

But m(x) is irreducible (because it is minimal), so

(
∃ a(x) , b(x)

)
r(x)a(x) + m(x)b(x) = 1 .

Evaluating in K yields

1 = r(α) a(α) + m(α) b(α) = p(α) a(α) ,
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so that p(α)−1 = a(α) ∈ F [α] .

It follows that

F (α) = F [α] .

Also (∗) shows that F [α] is spanned by

1 , α , . . . , αd−1 over F where d =

degree of m(x) . Thus
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F (α) is finite dimensional over F .

Finally, if β ∈ F [α] then

{ 1 , β , . . . , βd }

is linearly dependent (being of size > d ), so

g(β) = 0 for some nonzero polynomial g(x) .

This proves F (α) is algebraic over F .
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Theorem: Suppose α1 , . . . , αn ∈ K

are algebraic over F . Then

F [α1, . . . , αn] = F (α1, . . . , αn)

is a finite (and hence algebraic) extension

of F .

Proof: If n = 1 this is the result of the previous

Theorem, which starts an induction.

877



Suppose n > 1 . By an inductive hypothesis,

F [α1, . . . , αn−1] = F (α1, . . . , αn−1)

is a finite extension of F . Then

F [α1, . . . , αn] = F [α1, . . . , αn−1][αn]

= F (α1, . . . , αn−1)[αn] ,

and certainly αn is algebraic over F (α1, . . . , αn−1) ,

being algebraic over F .
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By the previous Theorem,

F (α1, . . . , αn) = F (α1, . . . , αn−1)(αn)

= F (α1, . . . , αn−1)[αn]

= F [α1, . . . , αn]

is a finite extension of F [α1, . . . , αn−1] .

By the Theorem on extensions of extensions,
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F (α1, . . . , αn) is a finite extension of F , and

we are done.

Theorem: Let F be a field and E a finitely

generated F -algebra.

If E is a field then E is a finite (and hence

algebraic) extension of F .

880



Proof: Suppose E is a field and

E = F [ α1 , . . . , αn ]

for some n ≥ 1 and α1 , . . . , αn ∈ E .

By the previous Theorem, it suffices to prove that

α1 , . . . , αn are algebraic over F . (∗)

Suppose (∗) is false, so WLOG we may suppose

α1 is not algebraic over F . Hence
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{α1} is an algebraically independent set over F .

Suppose we have 1 ≤ m < n such that

{ α1 , . . . , αm } is algebraically independent

over F , yet not all of αm+1 , . . . , αn are

algebraic over F (α1 , . . . , αm) .

(∗∗)
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WLOG we may suppose αm+1 is not algebraic over

F (α1 , . . . , αm) .

We will verify that { α1 , . . . , αm+1 } is

algebraically independent over F .

Let

p(x1, . . . , xm, xm+1)

be a nonzero polynomial in F [x1, . . . , xm+1] .
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Then

p(x1, . . . , xm+1) = p0(x1, . . . , xm) +

p1(x1, . . . , xm)xm+1 + . . .

+ pN(x1, . . . , xm)xNm+1

for some N ≥ 0 and coefficient polynomials in

F [x1, . . . , xm] with pN(x1, . . . , xm) nonzero.
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Certainly

p0(α1, . . . , αm) , . . . , pN(α1, . . . , αm)

∈ F (α1, . . . , αm)

and

pN(α1, . . . , αm) 6= 0 ,

since α1 , . . . , αm are algebraically independent

over F .
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Hence

p(α1, . . . , αm, xm+1)

is a nonzero polynomial with coefficients in

F (α1, . . . , αm) , so,

since αm+1 is not algebraic over F (α1, . . . , αm) ,

p(α1, . . . , αm+1) 6= 0 .

This proves {α1, . . . , αm+1} is algebraically

independent over F .
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Thus, continuing this way from (∗∗) , we get to a

stage where

for some r such that 1 ≤ r ≤ n

{ α1 , . . . , αr } is algebraically

independent over F

and each of αr+1 , . . . , αn is algebraic

over F (α1, . . . , αr) .
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Put

K = F (α1, . . . , αr) ,

so, by earlier remarks (page 871),

K ∼= F (x1, . . . , xr) ,

the field of rational functions. Certainly

E = F [α1, . . . , αn] ⊆ F (α1, . . . , αr)[αr+1, . . . , αn]

= K[αr+1, . . . , αn] ⊆ E ,
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so

E = K[αr+1, . . . , αn] .

By the previous Theorem,

E is a finite (algebraic) extension of K .

But F ⊆ K ⊆ E ,

E is finitely generated as an F -algebra, and

E is finitely generated as a K-module
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(being a finite dimensional vector space over K ).

Hence, by the last theorem we proved on Noetherian

rings (page 845),

K is finitely generated as an F -algebra, say

K = F [β1, . . . , βs]

for some β1, . . . , βs ∈ K .
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For each i = 1, . . . , s , we may write

βi =
fi(α1, . . . , αr)

gi(α1, . . . , αr)

for some polynomials

fi = fi(x1, . . . , xr) , gi = gi(x1, . . . , xr)

where we may suppose

fi , gi have no irreducible factors in common.
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The proof now splits:

Case (i): Suppose gi is constant for each i .

WLOG we may suppose gi = 1 for each i .

Now 0 6= α1 ∈ K , so α−1
1 ∈ K , yielding

α−1
1 = p(β1, . . . , βs)

for some nonzero polynomial p(x1, . . . , xs) .
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But then

α−1
1 = p

(
f1(α1, . . . , αr) , . . . , fs(α1, . . . , αr)

)

= q(α1, . . . , αr)

where

q(x1, . . . , xr) =

p
(
f1(x1, . . . , xr) , . . . , fs(x1, . . . , xr)

)

is a nonzero polynomial.
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Hence

α1 q(α1, . . . , αr) − 1 = 0 .

But

x1 q(x1, . . . , xr) − 1

is a nonzero polynomial.

This yields a contradiction, since

{ α1 , . . . , αr } is algebraically independent.
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Case (ii): Suppose g1 . . . gs is not constant.

Put

h = h(x1, . . . , xr) =
(
g1 . . . gs

)
+ 1

so

h is a nonconstant polynomial which is not

divisible by any irreducible factor of g1 . . . gs .
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Put

γ = h(α1, . . . , αr) 6= 0

since { α1 , . . . , αr } is algebraically independent

over F .

But γ and hence γ−1 lie in K = F [β1, . . . , βs] ,

so

γ−1 = p(β1, . . . , βs)

for some nonzero p(x1, . . . , xs) ∈ F [x1, . . . , xs] .
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Hence

γ−1 = p

(
f1(α1, . . . , αr)

g1(α1, . . . , αr)
, . . . ,

fs(α1, . . . , αr)

gs(α1, . . . , αr)

)

=
q1(α1, . . . , αr)

q2(α1, . . . , αr)

for some polynomials

q1 = q1(x1, . . . , xr) , q2 = q2(x1, . . . , xr)

∈ F [x1, . . . , xr]
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such that

(a) q1 , q2 have no common irreducible factors;

(b) either q2 is constant, or q2 is a product of

(powers of) irreducible divisors of g1 . . . gs .

Then

1 = γγ−1 = h(α1, . . . , αr)
q1(α1, . . . , αr)

q2(α1, . . . , αr)
,

898



so

q2(α1, . . . , αr) − h(α1, . . . , αr) q1(α1, . . . , αr)

= 0 .

But { α1 , . . . , αr } is algebraically independent,

so, in F [x1, . . . , xr]

q2 − hq1 = 0 ,

yielding
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hq1 = q2 . (†)

If q2 is constant then h is constant, contradicting

that h is nonconstant.

Hence q2 is nonconstant so, by (b) above,

q3 divides q2

for some irreducible factor q3 of g1 . . . gs .

But q3 does not divide h = (g1 . . . gs) + 1 so,
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by (†) and the fact that F [x1, . . . , xn] is a UFD

(Gauss’ Theorem, see below),

q3 must divide q1

which contradicts (a) above.

This proves (∗) and completes the proof of the

Theorem.
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Corollary: Let F be a field, A a finitely

generated F -algebra, and M a maximal ideal

of A .

Then A/M is a finite algebraic extension of (an

embedding) of F .

In particular, if F is algebraically closed then

A/M ∼= F .
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Proof: Let φ : F −→ A/M where

φ(λ) = λ+M (λ ∈ F ) .

Clearly φ is a homomorphism and

kerφ = { λ ∈ F | λ ∈M } = {0} ,

since M 6= A . Hence φ is an embedding.

But A is finitely generated as an F -algebra, so

A/M is finitely generated as a φ(F )-algebra.
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Also A/M is a field, so, by the previous Theorem,

A/M is a finite algebraic extension of

φ(F ) ∼= F .

If F is algebraically closed, then so is φ(F ) , so

φ(F ) contains all roots of all polynomial equations

over itself, so

A/M = φ(F ) ∼= F .
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Finally we come to the

Proof of Hilbert’s Nullstellensatz:

Here F is an algebraically closed field,

A = F [x1, . . . , xn] (n ≥ 1)

and I � A .

We are given p(x) ∈ A such that

p(λ) = 0
(
∀λ ∈ Z(I)

)
(∗)

905



where

Z(I) = {λ ∈ F n | q(λ) = 0
(
∀ q(x) ∈ I

)
} .

We need to prove

p(x) ∈ r(I) ,

that is, some power of p(x) lies in I .
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We argue by contradiction.

Suppose p(x) 6∈ r(I) .

But r(I) is the intersection of all prime

ideals of A containing I (see page 220).

Hence

p(x) 6∈ P

for some prime ideal P � A where I ⊆ P .
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Consider the ring of fractions

B = S−1(A/P )

where

S = { p(x)m + P | m ≥ 0 }

(which is clearly multiplicatively closed).
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If B is the zero ring then

1 + P / 1 + P = 0 + P / 1 + P

so

(1 + P )(p(x)m + P ) = P (∃m ≥ 0)

so

p(x)m + P = P

so p(x)m ∈ P , whence p(x) ∈ P , contradicting

that p(x) 6∈ P .
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Hence B is not a zero ring, so there is some

maximal ideal M of B , and

B/M is a field.

Define mappings

φ : A −→ B by

f(x) 7→
(
f(x) + P

)
/

(
1 + P

)
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and

ψ : A −→ B/M by

f(x) 7→ φ
(
f(x)

)
+ M .

Clearly

φ and ψ are ring homomorphisms.
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We check that ψ|F and φ|F are injective.

Let λ ∈ kerψ|F . Then

M = ψ(λ) = φ(λ) +M ,

so

(λ+ P )/(1 + P ) = φ(λ) ∈ M .

912



If λ 6= 0 then

1 + P

1 + P
=

(
λ+ P

1 + P

)(
λ−1 + P

1 + P

)
∈M

so M = B , contradicting that M 6= B .

Hence λ = 0 , so

kerψ|F = kerφ|F = {0} ,

so both ψ|F and φ|F are injective.
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Hence

φ(F ) and ψ(F ) are copies of F in B

and B/M respectively.

Notation: If f = f(x) ∈ A then denote by

f̂ = f̂(x) and f̃ = f̃(x)

the polynomials obtained from f by replacing

any coefficient γ ∈ F by φ(γ) and ψ(γ)

respectively.
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Clearly, then, since φ and ψ are ring

homomorphisms, if f = f(x) ∈ A and

α = (α1, . . . , αn) ∈ An

then

φ
(
f(α)

)
= f̂

(
φ(α1) , . . . , φ(αn)

)

and

ψ
(
f(α)

)
= f̃

(
ψ(α1) , . . . , ψ(αn)

)
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We now verify that

B is a finitely generated φ(F )-algebra.

If b ∈ B then, for some f(x) ∈ A and m ≥ 0

b =
f(x) + P

p(x)m + P
=

(
f(x) + P

1 + P

)(
1 + P

p(x)m + P

)

= f̂

(
x1 + P

1 + P
, . . . ,

xn + P

1 + P

)(
1 + P

p(x) + P

)m

.
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This verifies that B is generated, as a φ(F )-

algebra, by

x1 + P

1 + P
, . . . ,

xn + P

1 + P
,

1 + P

p(x) + P
,

so

B is finitely generated as a φ(F )-algebra,

whence also

B/M is finitely generated as a ψ(F )-algebra.
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But F , and hence ψ(F ) , are algebraically closed,

so, by our last Corollary (page 902), since B/M is

a field,

B/M = ψ(F ) .

Hence, for each i = 1, . . . , n ,

(∃λi ∈ F ) ψ(xi) = ψ(λi) .
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Put

λ = (λ1 , . . . , λn) .

We now prove that

λ ∈ Z(I) but p(λ) 6= 0 .

For all f(x) ∈ I we have f(x) ∈ P , so
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ψ
(
f(λ)

)
= f̃

(
ψ(λ1) , . . . , ψ(λn)

)

= f̃
(
ψ(x1) , . . . , ψ(xn)

)
= ψ

(
f(x)

)

=

(
f(x) + P

1 + P

)
+ M

=

(
P

1 + P

)
+ M = M
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so f(λ) = 0 , since ψ|F is injective.

This proves λ ∈ Z(I) .

But

ψ
(
p(λ)

)
= p̃

(
ψ(λ1) , . . . , ψ(λn)

)

= p̃
(
ψ(x1) , . . . , ψ(xn)

)
= ψ

(
p(x)

)
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so

ψ
(
p(λ)

)
=

(
p(x) + P

1 + P

)
+ M .

If ψ
(
p(λ)

)
= M then

p(x) + P

1 + P
∈ M

so

1 + P

1 + P
=

(
p(x) + P

1 + P

)(
1 + P

p(x) + P

)
∈ M ,

so M = B , contradicting that M 6= B .
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Hence

ψ
(
p(λ)

)
6= M .

so

p(λ) 6= 0

since ψ is a homomorphism.

This contradicts that p(λ) = 0 by (∗) ,

and the proof of Hilbert’s Nullstellensatz is complete.
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