4.5 Hilbert’s Nullstellensatz (Zeros
Theorem)

We develop a deep result of Hilbert's, relating

solutions of polynomial equations to ideals of
polynomial rings in many variables.

Notation: Put A = Flxq,...,x,] where F is
a field. Write

X = (X1,...,T,) and X = (A,..., )
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if Ai,...., A\, € F. Suppose p(x) € A. Then

p(A) is the result of evaluating p(x) in F
after substituting )\, for z; for each 17 |,

and if p(A) =0 then call A\ a zero of p = p(x).
Put

Z(p(x)) = {A€F" | p(A) = 0}.

called the zero set of p(x) .
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e.g. If n=1 and p(x) is nonzero then

1Z(p(x))| < degree of p(x) .

If n=2 and F =R, then

Z(a:lazg) — union of x1 and x5 -axes :

L9
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Z (2129 — 1) = hyperbola 1st and 3rd quadrants

Z(x1xa+1) = hyperbola 2nd and 4th quadrants :

L9

.

~

L9

—

L1
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Z((zi+ x5 — 1) (21 + 29 — 1))
Is the union of a circle and a line:

L9

A -

The circle and line separately correspond to
irreducible factors of the polynomial.
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If T C A put
Z(T) ={A [ p(A) =0 Vpx) € T},

called the zero set of 1.

Clearly, if T" C A and I = (T)igear then
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A subset Y of F™ is called algebraic if
(AT C A) Y = Z(T),

that is, if Y is the solution set of some system of
polynomial equations.

But all ideals of A are finitely generated (Hilbert's
Basis Theorem), so

Y is algebraic iff Y is the solution set of some
finite system of polynomial equations.
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Given Y C F"™  define the ideal of Y to be
I(Y) = {p(x)€A | pA) = 0 VAEY},

the set of polynomials which vanish at all points of

Y . Clearly
(YY) < A.
It Is easy to see that

Vi C Y, CF' — I(V) 2 I(Y))

and also that
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Corollary: If Y is algebraic then

Z(Z(Y)) = Y.

Proof: If Y = Z(T) forsome T C A, then

Y C Z(Z(Y)) = z(z(zm)) C Z(T) =Y,

at the second last step because T C Z(Z(T)) .
whence equality holds.
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Question: Under what conditions is it the case,
for I <1 A, that

I = Z(2()7

Answer: ...when [ = r(I), and F is
algebraically closed (see below).
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Hilbert’s Nullstellensatz (Zeros Theorem):

It
I < A:F[azl,...,xn]

where F' is an algebraically closed field, and
p(x) € A where

p(A) =0 (VA e 2(])),
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This will be proved shortly after some preparation.

Corollary: f I < A and F s
algebraically closed then

Proof: If I << A then it is easy to see that
r(I) € Z(2(1)),

so if, further, F' is algebraically closed then, by the
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Nullstellensatz, Z(Z(I)) C r(I), whence equality.

Corollary: Let F' be algebraically closed.
Then there is a one-one inclusion-reversing
correspondence between algebraic sets in F" and
ideals of A which coincide with their radicals:

Y — Z(Y) , Y algebraic;
I — ZU1) , I =rI) < A.
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Proof: If Y is algebraic then by an earlier Corollary,

Injectivity and surjectivity follow quickly.  The
iInclusion-reversing property has already been noted.
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Before proving the Nullstellensatz, we review and
develop some theory of field extensions: recall that
if F' is a subfield of a field K then we call

K an extension of F',

In which case

K may be regarded as a vector space over F'.

If this vector space is finite dimensional then we call
the extension finite.
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Theorem: If K is a finite extension of F' of
dimension m , and L is a finite extension of K
of dimension n , then

L is a finite extension of F' of dimension mn .

Proof: left as an exercise.

Suppose K is an extension of F'. Say that
o € K is algebraic over F

if p(a) = 0 for some nonzero p(x) € Fx] .
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Call K algebraic over F' if all elements of K
are algebraic over F'.

If o1, ..., o, € K then write
Flag, ..., ay] = subring of K generated by
Fand a7, ..., o

F'-subalgebra of K generated
by a1, ... , Oy .
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note: square brackets denote subring,

and write

F(ai, ..., a,) = subfield of K generated by

Fand o1, ..., o

note: round brackets denote subfield.
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Call a1, ..., o, € K

algebraically independent over F
if

p(ala'“aan) # 07

for all nonzero p(x1,...,x,) € Flxi,...,x,],
iIn which case the evaluation map

p(CEl)' . 73771) = p(alw y '7an)
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defines a ring isomorphism:
Flxy,...,x,] — Flag,...,qp)

(where the latter is a subring of K ), whence

F(ay,...,ap) is the ring of fractions of
Flag,...,a,] isomorphic to the ring
F(xy,...,x,) of rational functions in

indeterminates x1,...,T, .
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Theorem: Let K be an extension of a field F
and suppose o € K is algebraic over F'. Then

is a finite (and hence algebraic) extension of F'.

Proof: Certainly Fla] C F(a).
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To prove the reverse set containment, suppose
p(x) € Flx| such that

pla) # 0 (evaluated in K ).

It is sufficient to show p(a)™! € Fla].

Since « is algebraic, let m(z) € F|z] be the
minimum polynomial of « , that is, the nonzero

polynomial of least degree such that m(a) = 0 .
Then
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for some polynomials ¢(z), r(z) such that r(x)
has degree < degree of m(x) . Hence

pla) = r(a). (*)

But m(x) is irreducible (because it is minimal), so
(3 alx), b(z)) r(z)a(x) + m(x)b(x) = 1.

Evaluating in K yields
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so that p(a)™! = a(a) € Fla].

It follows that

Also (%) shows that Fla| is spanned by

1, o, ... , a1 over F where d =

degree of m(x) . Thus
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F(a) is finite dimensional over F'.

Finally, if 6 € Fla] then

{]‘7/87“‘7/Bd}

is linearly dependent (being of size > d ), so
g(8) = 0 for some nonzero polynomial ¢g(x) .

his proves F'(«) is algebraic over F'.
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Theorem: Suppose o1, ..., o, € K
are algebraic over F'. Then

Flag,...,an] = Flag,...,aq)

is a finite (and hence algebraic) extension
of F'.

Proof: If n =1 this is the result of the previous
Theorem, which starts an induction.
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Suppose n > 1. By an inductive hypothesis,
Flay,...,an 1] = F(ag,...,0, 1)

Is a finite extension of F' . Then

F[ozl,...,ozn] — F[Ozl,...,Oén_l][Oén]
= Flag,...,a, 1),
and certainly «,, is algebraicover F(aq,...,ap 1),

being algebraic over F'.
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By the previous Theorem,

Flai,...,ay) = Flag,...,a,1)(ay)
— F(ala X an—l)[an]
— F[Oél,...,Oén:
is a finite extension of Flay,...,a, 1] .

By the Theorem on extensions of extensions,
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F(aq,...,qa,) is a finite extension of F , and
we are done.

Theorem: Let F' be a field and E a finitely
generated F'-algebra.

If E is a field then FE is a finite (and hence
algebraic) extension of F'.
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Proof: Suppose FE is a field and
b = F[Ckl,.-.,an]

forsome n>1 and a1, ..., o, € E .

By the previous Theorem, it suffices to prove that

a1, ..., oy are algebraic over F'. ()

Suppose (x) is false, so WLOG we may suppose
a1 Is not algebraic over F'. Hence
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{aq} is an algebraically independent set over F'.

Suppose we have 1 < m < n such that

{ a1, ..., a, } is algebraically independent
over F', yet not all of a1, ..., o, are|(*xx)
algebraic over F(aq, ..., Q) .
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WLOG we may suppose «,,+1 Is not algebraic over
Flai, ..., a,).

We will verify that { a1, ... , Qmi1 } s
algebraically independent over F'.

Let

p(ajla e ooy Imy :E’m—l—l)

be a nonzero polynomial in Fzy,...,Zp11] .
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Then

p(x1, ..., Tme1) = polz1,...,2m) +

pl(xla SO 7ajm>xm—|—1 + ...

+ PN(-I‘h e 7ajm) ZUZH

for some N > 0 and coefficient polynomials in
Flzy,..., x5 with py(2q,...,2,) nonzero.
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Certainly

po(()él,...,Oém), ,pN(Oél,...,Oém)

c F(oq,...,ozm)

and

py(ai, ..., ap) #= 0,

since o1, ..., o are algebraically independent
over F'.
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Hence
p(ala ooy Uy :Em—l—l)

s a nonzero polynomial with coefficients in
F(ai,...,anm), so,

since «,,,1 is not algebraic over F(aq,...,a,),

p(alw")am—l—l) 7é 0.

This proves  {aq,...,qpi1}  is algebraically
independent over F'.
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Thus, continuing this way from (%x) , we get to a
stage where

for some r such that 1 <r <n

{ a1, ..., a. } is algebraically
independent over F

and each of «a,1, ..., o, Is algebraic
over F(ag,...,q;) .
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Put
K = F(al,...,ar),

so, by earlier remarks (page 871),

K = F(xi,...,x),

the field of rational functions. Certainly

b

K[Oéfr‘-l—b"w&n] C E7

Flaj,...,a,] € F(ag,...,o)|amaq,. ..

, Qe
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SO
E = Klajq,...,0] .

By the previous Theorem,

E is a finite (algebraic) extension of K .

But ' € K C F,

E is finitely generated as an F'-algebra, and

E is finitely generated as a K-module
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(being a finite dimensional vector space over K ).

Hence, by the last theorem we proved on Noetherian
rings (page 845),

K is finitely generated as an F'-algebra, say

K = F|pi,..., 05
for some (4,...,0, € K .
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For each 1 =1,...,s, we may write

fi(ala R ar)

gilaq, ..., o)

B =

for some polynomials

f,,; — fi(azl,...,azr) ] g;, = gi(azl,...,azr)

where we may suppose

fi, g; have no irreducible factors in common.
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The proof now splits:

Case (i): Suppose g; is constant for each 7 .

WLOG we may suppose ¢g; =1 for each 7.

Now 0 # a; € K ,s0o aj’

al_l — p(ﬁla R 768)

for some nonzero polynomial p(x1,...,xs) .

c K, yielding
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But then

041_1 p(fl(Oél,...,Oéf,a),...,fS(Oél,...,Oéf,a>)

|
K
—~

Q
.

Q
=
~—

where

Q(ajla = 7337“) —

p(fl(azl,...,:zzr), . fs(afl,...,:zzr))

Is a nonzero polynomial.
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Hence
arq(ag,...,a) — 1 = 0.

But
r1q(x1,...,2.) — 1

IS a nonzero polynomial.

This yields a contradiction, since

{ a1, ..., a } is algebraically independent.
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Case (ii): Suppose g¢;...gs is not constant.

Put

SO

divisible by any irreducible factor of ¢;... g, .

h is a nonconstant polynomial which is not
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Put
v = h(ag,...,ap) # 0

since { ay, ..., a, } is algebraically independent
over F'.

But v and hence v ! liein K = F[B1,...,05,
SO

v = (B, Bs)

for some nonzero p(x1,...,x5) € Flxy,..., x4 .
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_ ( filaq, ..., ;) folan,...,ap) >
8 p 91(0417-”,0474)""’gs(ala-“?ar)

q(aq, ..., qp)
(g, ..., q;)

for some polynomials

g = q(z1,...,2:), @@ = @(x1,...,T,)
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such that

(@) ¢, g2 have no common irreducible factors;

(b) either ¢ is constant, or ¢y is a product of
(powers of) irreducible divisors of ¢ ...gs .

Then
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SO

w01, ar) — hlon,. .. o) qilan, ..., o)

= 0.
But { a1, ..., a, } is algebraically independent,
so, in Flxy,...,z,]

@2 —hg = 0,

yielding
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hai = ¢ . (1)

If g5 is constant then h is constant, contradicting
that A~ 1s nonconstant.

Hence ¢, is nonconstant so, by (b) above,
g3 divides @

for some irreducible factor g3 of ¢g;...9s .

But ¢3 does not divide h = (g1...9s) +1 so,
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by (1) and the fact that Flzy,...,x,| is a UFD
(Gauss' Theorem, see below),

g3 must divide ¢

which contradicts (a) above.

"his proves

"heorem.

(%)

and completes the proof of the
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Corollary: Let F' be a field, A a finitely
generated F'-algebra, and M a maximal ideal
of A.

Then A/M is a finite algebraic extension of (an
embedding) of F'.

In particular, if F' is algebraically closed then

A/M = F.
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Proof: Let ¢ : F — A/M where
d(N) = A+ M (AeF).
Clearly ¢ is a homomorphism and
kergp = {AeF | xeM} = {0},

since M #* A . Hence ¢ is an embedding.

But A s finitely generated as an F'-algebra, so
A/M is finitely generated as a ¢(F')-algebra.
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Also A/M is a field, so, by the previous Theorem,

A/M is a finite algebraic extension of

OpF) = F.

If F' is algebraically closed, then so is ¢(F') , so
¢(F') contains all roots of all polynomial equations
over itself, so

12

A/M = ¢(F) & F.
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Finally we come to the
Proof of Hilbert’s Nullstellensatz:

Here F' is an algebraically closed field,
A = Flzy,...,2,)] (n > 1)

and I < A.

We are given p(x) € A such that

p(A) = 0 (VA e Z(1)) ()
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where

Z(I) = {Ae F" | q0) =0 (Vg(x) € I)}.

We need to prove

p(x) € r(I),

that is, some power of p(x) liesin I .
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We argue by contradiction.

Suppose p(x) & r(I) .

But »(I) is the intersection of all prime
ideals of A containing I (see page 220).

Hence
p(x) ¢ P
for some prime ideal P << A where [ C P .
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Consider the ring of fractions

B = S'(A4/P)

where

S = {p(x)" + P | m=0}

(which is clearly multiplicatively closed).
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If B is the zero ring then
1+P/1+P = 0+P/14+P
SO

(1+P)px)"+P) = P (dm > 0)

SO
px)"+P = P

, whence p(x) € P, contradicting
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Hence B is not a zero ring, so there is some
maximal ideal M of B, and

B/M is a field.

Define mappings

»: A — B by

f6) — (J)+P)/ (1+P)
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and

Clearly

@ and 1 are ring homomorphisms.
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We check that |r and ¢|p are injective.

Let A\ € kerv|p. Then

SO
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If A\ # 0 then
1+ P A+P\/ N1+ P

_ M
1+ P (1——P>(1+P> <

so M = B, contradicting that M # B .

Hence A = 0, so

kerip|p = kerolp = {0},

so both |r and ¢|p are injective.
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Hence

¢(F) and (F') are copies of F' in B
and B/M respectively.

Notation: If f = f(x) € A then denote by

S s ~ ~

f=7Fx and f=fx

the polynomials obtained from f by replacing
any coefficient v € F by ¢(vy) and ()
respectively.
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Clearly, then, since ¢ and Y are ring
homomorphisms, if f = f(x) € A and

a = (a,...,a,) € A"

then
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We now verify that

B is a finitely generated ¢(F')-algebra.

If b€ B then, for some f(x) € A and m >0

by fx)+P (f(x)+P>( 1+ P )

p(x)™ + P 1+ P p(x)™+ P

J?azl—l—P z, + P 1+P \"
1+P° 7 1+P )\px)+P)
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This verifies that B is generated, as a ¢(F)-
algebra, by

1+ P x, + P 1+ P

1+P 7 14+P 7 px)+P’

SO

B is finitely generated as a ¢(F')-algebra,

whence also

B/M is finitely generated as a v (F')-algebra.
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But F', and hence v (F'), are algebraically closed,
so, by our last Corollary (page 902), since B/M is

a field,

B/M = (F).

Hence, foreach 1 =1,...,n,

EXN € F)  Ylx) = P(N) .
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Put

A= Ay A

We now prove that

A e Z(I) but  p(A) # 0.

For all f(x) € I we have f(x) € P, so
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so f(A) = 0, since ¥|p is injective.

This proves

But
h(p(A) =

AN e Z(1).
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SO

Y(p(N) = (p (IXEF;P> + M.

If ¥(p(\)) = M then

p(x) + P
M
1+p
SO
1+ P
_ p(x)+ P 1+ P c M.
1+ P 1+ P p(x)+ P

so M = B, contradicting that M # B.
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Hence

SO

since v Is a homomorphism.

his contradicts that p(A) = 0 by (%),

and the proof of Hilbert's Nullstellensatz is complete.
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