
4.4 Noetherian Rings
Recall that a ring A is Noetherian if it satisfies

the following three equivalent conditions:

(1) Every nonempty set of ideals of A has a

maximal element (the maximal condition);

(2) Every ascending chain of ideals is stationary

(the ascending chain condition (a.c.c.));

(3) Every ideal of A is finitely generated.
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Later in this section we will prove

Hilbert’s Basis Theorem

which says that a polynomial ring in one

indeterminate over a Noetherian ring is itself

Noetherian.

In particular, by iteration, the polynomial ring

F [x1, . . . , xn] over a field F is Noetherian.

It will follow quickly that all finitely generated

rings are Noetherian.
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But first we will prove that all proper ideals in

Noetherian rings have primary decompositions,

and simplify the First Uniqueness Theorem

concerning the uniqueness of associated prime ideals.

Call an ideal I of a ring A irreducible if, for all

ideals J , K of A ,

I = J ∩ K =⇒
(

I = J or I = K
)

.

Lemma: Every ideal of a Noetherian ring is a

finite intersection of irreducible ideals.
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Proof: Suppose the set

Σ = { J � A | J is not a finite

intersection of irreducible ideals }

is nonempty. By the maximal condition, Σ has a

maximal element M .

Certainly M is not irreducible, so M = J ∩ K

for some ideals J , K such that

J 6= M 6= K .
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But M ⊂ J and M ⊂ K , so, by maximality of

M in Σ ,

J 6∈ Σ and K 6∈ Σ .

Hence J and K are both finite intersections of

irreducible ideals,

so M = J ∩ K also is such an intersection,

contradicting that M ∈ Σ .

Hence Σ = ∅ , and the Lemma is proved.
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Lemma: Every proper irreducible ideal of a

Noetherian ring is primary.

Proof: Let A be a Noetherian ring. If I is a

proper ideal then I is irreducible iff the zero ideal

of A/I is irreducible.

It suffices then to suppose A is nonzero and {0}
is irreducible, and prove that {0} is primary.

Let x, y ∈ A such that xy = 0 .
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We show x = 0 or yn = 0 for some n ≥ 1 .

Consider the chain of ideals

Ann (y) ⊆ Ann (y2) ⊆ . . . ⊆ Ann (yn) ⊆ . . .

which is stationary, since A is Noetherian. Hence

(∃n ≥ 1) Ann (yn) = Ann (yn+1) = . . .
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We show 〈x〉 ∩ 〈yn〉 = {0} .

Suppose z ∈ 〈x〉 ∩ 〈yn〉 . Then

z = vx = wyn (∃v, w ∈ A) ,

so

wyn+1 = (wyn)y = vxy = v0 = 0 ,

so
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w ∈ Ann (yn+1) = Ann (yn) ,

yielding

z = wyn = 0 .

This proves 〈x〉 ∩ 〈yn〉 = {0} . By irreducibility of

{0} , we get

〈x〉 = {0} or 〈yn〉 = {0} ,

whence x = 0 or yn = 0 , and we are done.
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The previous two lemmas prove:

Theorem: Every proper ideal of a Noetherian

ring has a primary decomposition.

We can refine the First Uniqueness Theorem for

primary decompositions, in this context, but first

prove:

Proposition: Every ideal of a Noetherian ring

contains a power of its radical.
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Proof: Let I be an ideal of a Noetherian ring A ,

so

r(I) = 〈 x1 , . . . , xk 〉

for some x1, . . . , xk ∈ A . Then

(∀i = 1, . . . , k)(∃ni ≥ 1) xni

i ∈ I .

Put

m =

k
∑

i=1

(ni − 1) + 1 .
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Observe that

(

r(I)
)m

= 〈 xj1
1 . . . x

jk
k |

k
∑

i=1

ji = m 〉 .

But if

k
∑

i=1

ji = m then jℓ ≥ nℓ for some

ℓ ∈ {1, . . . , k}) .

Hence each generator of
(

r(I)
)m

lies in I , so
(

r(I)
)m

⊆ I .
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Corollary: The nilradical is nilpotent in a

Noetherian ring.

Proof: If A is Noetherian, then

N = r({0})

is the nilradical of A , so, by the previous

Proposition,

Nm ⊆ {0} for some m ≥ 1 ,

whence equality holds, which proves N is nilpotent.
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Exercises: (1) Find an example of a Noetherian

ring whose Jacobson radical does not equal the

nilradical.

(2) Show that if a ring satisfies the d.c.c. on

ideals then the nilradical and Jacobson radical are

equal.

(3) Find an example of an ideal I of a ring

A which does not contain a power of its radical

r(I) (so necessarily A is not Noetherian).
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Theorem: Let A be Noetherian, Q and M

ideals of A with M maximal. TFAE

(i) Q is M -primary;

(ii) r(Q) = M ;

(iii) Mn ⊆ Q ⊆ M (∃n > 0) .

Proof: (i) =⇒ (ii): follows by definition.

(ii) =⇒ (i): follows (regardless of whether A is

Noetherian) by an earlier result (page 684).
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(ii) =⇒ (iii): follows from the previous Proposition.

(iii) =⇒ (ii): if Mn ⊆ Q ⊆ M for some n > 0

then

M = r(Mn) ⊆ r(Q) ⊆ r(M) = M ,

so r(Q) = M .

Our final observation about primary decompositions

of ideals in Noetherian rings is a refinement of the

First Uniqueness Theorem (page 701):
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Theorem: Let A be a Noetherian ring and I

a proper ideal. Then the prime ideals belonging

to I are the prime ideals in

{ (I : x) | x ∈ A } .

Proof: Let I =

n
⋂

i=1

Qi be a minimal primary

decomposition of I , and put

Pi = r(Qi) (∀i) .
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Then, by the First Uniqueness Theorem,

{ P1 , . . . , Pn } = { prime ideals P |

(∃x ∈ A) P = r(I : x) }

If x ∈ A and (I : x) is prime, then

r(I : x) = (I : x)

is prime, so (I : x) ∈ {P1, . . . , Pn} .

Conversely, let i ∈ {1, . . . , n} . By the earlier
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Proposition (page 815),

(∃m ≥ 1) Qi ⊇ Pm
i .

Put R =
⋂

j 6=i

Qj . Then

R Pm
i ⊆ R ∩ Pm

i ⊆ R ∩ Qi = I .

Let m0 be the least integer such that

R Pm0

i ⊆ I .
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If m0 = 0 then

R ⊆ I ⊆ R ,

so I = R , which contradicts minimality of the

primary decomposition of I .

Hence m0 ≥ 1 , and so we may choose some

x ∈ R Pm0−1 \ I .

In particular x ∈ R\I , so x 6∈ Qi . As in the
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proof of the First Uniqueness Theorem (see pages

706-707), we have

(I : x) = (Qi : x)

and

r(I : x) = r(Qi : x) = Pi .

Certainly then

(I : x) ⊆ r(I : x) ⊆ Pi .
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Also,

Pi x ⊆ R Pm0−1
i Pi = R Pm0 ⊆ I ,

so Pi ⊆ (I : x) , whence equality holds.

This shows

{P1 . . . , Pn } = { prime ideals (I : x) | x ∈ A } ,

and completes the proof of the Theorem.
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We now investigate the preservation of the

property of being Noetherian under certain natural

constructions.

We have already observed (on page 766) that

homomorphic images of Noetherian rings are

Noetherian,

and (on page 766) that
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a finitely generated module over a Noetherian

ring is Noetherian.

Theorem: Let A be a subring of a ring B .

Suppose that A is Noetherian and B is finitely

generated as an A-module.

Then B is a Noetherian ring.
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Proof: By the immediately preceding observation,

B is a Neotherian A-module.

But all ideals of B are also A-submodules of B

(though not necessarily conversely).

Since A-submodules satisfy the a.c.c., so do ideals

of B , so B is a Noetherian ring.

Example: The ring Z[i] of Gaussian integers is a

finitely generated Z-module, and Z is Noetherian.

By the previous Theorem, Z[i] is a Noetherian ring.
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Theorem: Rings of fractions of Noetherian

rings are Noetherian.

Proof: Let A be a Noetherian ring and S a

multiplicatively closed subset.

Let J � S−1A , so

J = S−1I (∃I � A) .

since all ideals of S−1A are extended. But A is

Noetherian, so

I = 〈 x1 , . . . , xn 〉
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for some x1, . . . xn ∈ A , whence

J = 〈 x1/1 , . . . , xn/1 〉.

Thus all ideals of S−1A are finitely generated, which

shows S−1A is Noetherian.

Hilbert’s Basis Theorem: Let A be a

Noetherian ring. Then the polynomial ring

A[x] is Noetherian.
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Proof: We prove that all ideals of A[x] are finitely

generated. Consider {0} 6= J � A[x] , and put

I = { leading coefficients of polynomials in J } .

It is easy to show that I � A , so

I = 〈 a1 , . . . , an 〉

for some a1, . . . , an ∈ A , since A is Noetherian.
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Then, for each i = 1, . . . , n , there is a polynomial

pi(x) = aix
di + ( terms of lower degree )

in J , for some di ≥ 0 . Put

J ′ = 〈 p1(x) , . . . , pn(x) 〉

and

d = max { d1 , . . . , dn } .

834



Let

M = { q(x) ∈ A[x] | degree of q(x) ≤ d } .

Claim: J = (J ∩ M) + J ′ .

Clearly (J ∩ M) + J ′ ⊆ J . Conversely let

0 6= p(x) ∈ J . Then

p(x) = axm + ( terms of lower degree )

for some m ≥ 0 .
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If m ≤ d then p(x) ∈ J ∩ M .

Suppose m > d . Since a ∈ I

a =
∑n

i=1 ui ai (∃u1, . . . , un ∈ A) .

Put

q(x) = p(x) −
∑n

i=1 ui x
m−di pi(x) .

Then q(x) is an element of J of degree < m .
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By an inductive hypothesis,

q(x) ∈ (J ∩ M) + J ′ ,

so

p(x) = q(x) +
n

∑

i=1

ui x
n−di pi(x)

∈ (J ∩ M) + J ′ .
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This proves J ⊆ (J ∩ M) + J ′ , whence equality

holds, and the Claim is proved.

Regarded as an A-module, M is finitely

generated, by 1 , x , . . . , xd .

But A is Noetherian, so M is a Noetherian

A-module (by the Theorem on page 766).

But then J ∩ M , being an A-submodule of M
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must be finitely generated as an A-module by, say,

q1(x) , . . . , qk(x) .

The ideal of A[x] generated by

q1(x) , . . . , qk(x) , p1(x) , . . . , pn(x)

therefore contains J ∩M and J ′ , and is contained

in J ,

so equals (J ∩ M) + J ′ = J .
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Thus J is finitely generated, completing the proof

that A[x] is Noetherian.

Corollary: If A is Noetherian then so is

A[x1, . . . , xn] for every n ≥ 1 .

Proof: immediate by iterating Hilbert’s Basis

Theorem.
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Corollary: If A is a Noetherian ring and B

is a finitely generated A-algebra, then B is a

Noetherian ring.

In particular, every finitely generated ring, and

every finitely generated algebra over a field, is

Noetherian.

Proof: If A is Noetherian and B is generated as

an A-algebra by

b1 , . . . , bn ,

841



then B is a homomorphic image of the polynomial

ring A[x1, . . . , xn] under the map

p(x1, . . . , xn) 7→ p(b1, . . . , bn) ,

so must be Noetherian,

since A[x1, . . . , xn] is Noetherian (by the previous

Corollary),

and homomorphic images of Noetherian rings are

Noetherian.
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The last statement of the Corollary follows because

every field is Noetherian,

and every ring is an algebra over its subring generated

by 1 ,

which is isomorphic to either Zn , for some n , or

Z ,

both of which are Noetherian.
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The next (tricky) result says that, under certain

conditions, an intermediate ring B , sandwiched

between “well-behaved” rings A and C is itself

“well-behaved”.

A

B

C
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Theorem: Suppose A ⊆ B ⊆ C is a chain

of subrings and that

(i) A is Noetherian;

(ii) C is finitely generated as an A-algebra;

(iii) C is finitely generated as a B-module.

Then B is finitely generated as an A-algebra.
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Proof: Let

x1 , . . . , xm generate C as an A-algebra,

and

y1 , . . . , yn generate C as a B-module.

Then

(∀i = 1, . . . ,m) (∃ bi1 , . . . , bin ∈ B )

xi =

n
∑

k=1

bik yk
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and

(∀i, j ∈ {1, . . . ,m}) (∃ cij1 , . . . , cijn ∈ B )

yi yj =

n
∑

k=1

cijk yk .

Let B0 be the A-subalgebra of B generated by
{

bik , cijk | i, j ∈ {1, . . . ,m} , k ∈ {1, . . . , n}

}

.

By the previous Corollary, B0 is a Noetherian ring.
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Further

A ⊆ B0 ⊆ B ⊆ C

is a chain of subrings.

Claim: C is generated by y1 , . . . , yn

as a B0-module.

Each element c of C can be expressed as a

polynomial in x1, . . . , xm with coefficients from

A .
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But each xi and each product yiyj is a linear

combination of y1, . . . , yn with coefficients from

B0 ,

so that, after multiplying out, we can express c as a

linear combination of y1, . . . , yn with coefficients

from B0 , which proves the Claim.

By the Claim and the observation that B0 is

Noetherian, we conclude that

C is a Noetherian B0-module.
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But B is a B0-submodule of C , so

B is a Noetherian B0-module,

so is finitely generated.

But B0 is finitely generated as an A-algebra, so,

finally,

B is also finitely generated as an A-algebra,

and the Theorem is proved.
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