4.3 Composition Series
Let M be an A-module.

A series for M is a strictly decreasing sequence of
submodules

M=M, D My > ... D M, = {0}
beginning with M and finishing with {0 } .
The length of this series is n .
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A composition series is a series in which
no further submodule can be inserted

which, for the above, is equivalent to saying

each composition factor M;/M; . is
simple,

that is, each M,;/M;,; is nontrivial and has no
submodule except for itself and the trivial submodule.
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Example: The Z-module Z3, has the following
lattice of submodules:
u u Zao = (1)

(6) (15)

{0} = (0)



Any path from the top to the bottom will yield a
composition series:

e.g. (1) D (2) D (6) D (0),

with composition factors:

(1)/{2) (2/302)/(22/302)

Z30/ 2730

12

7./27. = 7o,
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(2)/{6) = 22/67 = 1Z3,

(6)/(0)y = 67/30Z = Zs

In fact, all composition series for Zsg
produce composition factors Zs , Zs , Zs

(in accordance with the Jordan-Holder Theorem
below).
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Notation: If N is a module, let #(/N) denote
the least length of a composition series of N , if
one exists, and put /(N) = oo if no composition
series for NN exists.

Theorem:  Suppose M has a composition
series of length n .

Then every composition series of M  has
length n , and every series can be refined
(that is, submodules can be inserted) to yield
a composition series.
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Proof: Here /(M) < n . Consider a submodule
N of M where N # M . We first show

((N) < £(M) . (%)

Put ¢/ = /(M) and let
M = My D My D... > M, = {0}
be a composition series of length £ . Then

N = NnMy, O NnM; 2 ... O NnM, = {0}

is a chain of submodules from N to {0} .
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By a module isomorphism theorem, for each 7,

N N Mz NN Mz
N N Mz’+1 (N M Mz) M Mz’+1

M; i1 7

12

the last of which is a submodule of the simple module
M; /| M;.; . Hence

N N M,
N M M

iIs trivial or simple.
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Thus, deleting repetitions from the above chain from
N to {0} must yield a composition series for N |

which proves

/(N) <

(M) .

Suppose /(N) = £

Then, no repetitions occurred in the previous process,
so, by the earlier isomorphism,

(NN M)+ My =

M;

(Vi) .

(+¢)
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We observe, by induction, that

NNM = M, (Vi),

since, clearly
NnM, = Nn{0} = {0} = M,,

which starts the induction,

and, for ¢ < ¢ — 1, using (xx) and an inductive
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hypothesis,
NNM, = (NNM;)+ (NNM )

= (NONM;))+ M = M.
In particular,
M = My = NNMy = NNM = N,
which contradicts that N # M .
Hence /(N) < £ and (%) is proved.
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Now consider any series

M = M, D M D ... > M, = {0} (1)
of length k. By (%),

( = 0(M) > L(M]) > ... > UM,) =0,

SO
t > k.

If (f) is a composition series, then ¢ < k , by
definition of ¢ ,so ¢ =k .
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This proves

all composition series of M have the
same length n .

If (f) is not a composition series, then k < n ,
because if k = n , then we can insert another
module somewhere to get another series of length
n+1<¢=mn, which is nonsense.

Hence any series which I1s not a composition series
can be successively refined until its length is n , in
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which case it becomes a composition series, and the
Theorem is proved.

Corollary: A module M has a
composition series iff M satisfies the a.c.c.
and d.c.c.

Proof: (=) If M has a composition series of
length n , then, by the previous Theorem,

all series have length < n ,
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so all ascending and descending chains must be
stationary,

that is, M satisfies both the a.c.c. and the d.c.c.

(<) Suppose M satisfies both the a.c.c. and
the d.c.c.

If M = {0} then certainly M has a composition
series.

Suppose M #£ {0} .
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Since M satisfies the maximal condition (equivalent
to the a.c.c),

the set of proper submodules of M
has a maximal element M; , so M /M is simple.

Suppose we have found submodules

M = My D My D ... D M, (k> 1)

where M;/M; 1 is simple for 1 =0,...,k—1.

783



If M; = {0} then we have a composition
series for M .

It M % {0} , then, again since M satisfies the
maximal condition, we can find a submodule M4
of M) such that M /M., is simple.

Either M has a composition series, or by induction
we have an infinite strictly descending chain

M =M, > M D... O M, D ...
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The latter is excluded because M satisfies the d.c.c.

Hence M has a composition series and the Corollary
Is proved.

Say that a module M has finite length if it has a
composition series

(equivalently satisfies both the a.c.c. and d.c.c.)

iIn which case all composition series have the same
length ¢(M) , called the length of M .
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We now prove a uniqueness result concerning the
composition factors:

Jordan-Holder Theorem: here is a one-one
correspondence between the composition factors
of any two composition series of a module of finite
length such that

corresponding factors are isomorphic.

Proof: Let M be a module of finite length ¢ .
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If ¢ = 0 then the set of composition factors is
always empty, so the result is vacuously true, which
starts an induction.

Suppose ¢ > 0 and let

M = My D My > ... D M, = {0}

M = M, D M >D... > M, = {0}

be two composition series.
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If M; = Mj then, by an inductive hypothesis
(since (M) = £—1),
there is an appropriate correspondence between
{ M;/M; .1 | i=1,...,—1}

and
{]\4{/]\4{+1 |l i=1,...,0—1},
SO, since

My/M, = My/M;,
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there is an appropriate correspondence between

{Mi/Miy1 | i=0,....0-1}

and
{]\ﬂ/MZ-’+1 | 1=0,...,0—11},

and we are done.

Suppose then M; # M, so M;+ M,
since M7 is maximal in M .

M,
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M = M, + M|
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By module isomorphism theorems,
M/M, = M;+ M,/ M, = M,/ M;N M,
and
M/M; = M;+ M, / M; = M; / M;N M .
But
((MiN M) < LM, L(Msy) < ¢

so we can apply an inductive hypothesis to
composition series of these modules.
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Let Fy, F,, F| be the collections of composition

factors for M;, M;N M;, M, respectively. Then
there are appropriate correspondences between

Fru{ M/M }
andad FQU{Ml/MlﬂM{, M/Ml}

anc Fu{ M/M;, M;/M;N M}
anc Fiu{ M/M;}

which proves the Theorem.
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Theorem: The length /(M) of a module M
defines an additive function on the class of all
A-modules of finite length.

Proof: Suppose
o o
O — M — M — M — 0

Is exact, where all modules have finite length. We
need to show

(M) = oM + oM.
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Let

M' = My O My D ... D My = {0}

M” — M(,)/ D) M{, ... M” {O}

be composition series for M’ and M" respectively.
Since « Is injective,

a(M') = a(Mj) D a(M]) D
Q(Me M) ) = {0}
is a composition series for a(M') = ker 3 .
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Since [ is onto,

M/ker = B7(M)/ker
> 87 (M{)/kerf D

S B (Mjpm)/ker B = {ker 3}

is a composition series for M /ker 3 . Combining

these two series produces the following series for
M
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M = g MY) D BTHMY) o

D ﬁ_l(Mé,(M//)) — kerﬁ

(0} = a(Mjuy) C ... C a(Mf) = a(M)

But this is a composition series, because, by another
isomorphism theorem, for ¢ =0, ... ,/(M") -1,
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BH(MY) [ B (M)

= (a0 /e 5) /(57 / Rer )
which is simple. Hence

(M) = (M) + £M7)
and the Theorem is proved.
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Interpreting the theory for vector spaces yields:

Proposition: Let V' be a vector space over a
field F'. TFAE

(i) V is finite dimensional.
(i) V has finite length.
(iii) V' satisfies the a.c.c.
(iv) V satisfies the d.c.c.

If any of these hold, then dimension equals length.
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Proof: (i) = (i) If {zy, ..., x,} isa
basis for V' then

V = <$1,---737n> D <£Bl,...,33n_1> D)

O (z1) D {0}
Is a composition series of length n .

(i) = (iii), (i) = (iv): follow from the earlier
Corollary on page 781.
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(iii) = (i), (iv) = (i): Suppose (i) is false, so
V' contains an infinite sequence

L] g oee 9 Ly y oo
of linearly independent vectors. For each n > 1 put

U, = (x1, ..., x,),

Vn — <5En_|_1, CEn_|_2,...>.

Then
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{0y c Uy Cc U, C ... CcU, C ...

Vovio>Vwo>...DOV, DO...

are strictly ascending and descending chains
respectively,

so that both (iii) and (iv) fail to hold.
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Corollary: Let A be a ring in which
My My ... My = {0}

for some (not necessarily distinct) maximal ideals
M, ..... M,

Then A i1s Noetherian iff A is Artinian.
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Proof: First note that if
I <A, M << A, M maximal

then I / IM is an A-module, so also
I/IM is an A/M-module
(since M C Ann (I/IM) ), that is,

I/IM is a vector space over the field A/M ,
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so, by the previous Proposition,

I/IM satisfies the a.c.c. on subspaces (ideals)

iff

I/IM satisfies the d.c.c. on subspaces (ideals).

Consider the chain

AD M DO MM O ... DO M ... M,

hen, by repeated application of an earlier
about exactness (on page 756),

= 10}

heorem
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A satisfies the a.c.c. on ideals

Iff each factor
A/My, My/ MMy, ..., My...M, 1/ M;...M,

satisfies the a.c.c. on ideals
iff
each factor satisfies the d.c.c. on ideals
iff
A satisfies the d.c.c. on ideals,

and the Corollary is proved.
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