
4.3 Composition Series

Let M be an A-module.

A series for M is a strictly decreasing sequence of

submodules

M = M0 ⊃ M1 ⊃ . . . ⊃ Mn = {0}

beginning with M and finishing with {0 } .

The length of this series is n .
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A composition series is a series in which

no further submodule can be inserted

which, for the above, is equivalent to saying

each composition factor Mi/Mi+1 is

simple,

that is, each Mi/Mi+1 is nontrivial and has no

submodule except for itself and the trivial submodule.
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Example: The Z-module Z30 has the following

lattice of submodules:

{0} = 〈0〉

Z30 = 〈1〉

〈15 〉〈6〉 〈10 〉

〈5〉〈2〉 〈3〉
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Any path from the top to the bottom will yield a

composition series:

e.g. 〈1〉 ⊃ 〈2〉 ⊃ 〈6 〉 ⊃ 〈0〉 ,

with composition factors:

〈1〉/〈2〉 = Z30/2Z30 = (Z/30Z)/(2Z/30Z)

∼= Z/2Z = Z2 ,
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〈2〉/〈6〉 ∼= 2Z/6Z
∼= Z3 ,

〈6〉/〈0〉 ∼= 6Z/30Z
∼= Z5

In fact, all composition series for Z30

produce composition factors Z2 , Z3 , Z5

(in accordance with the Jordan-Holder Theorem

below).
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Notation: If N is a module, let ℓ(N) denote

the least length of a composition series of N , if

one exists, and put ℓ(N) = ∞ if no composition

series for N exists.

Theorem: Suppose M has a composition

series of length n .

Then every composition series of M has

length n , and every series can be refined

(that is, submodules can be inserted) to yield

a composition series.
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Proof: Here ℓ(M) ≤ n . Consider a submodule

N of M where N 6= M . We first show

ℓ(N) < ℓ(M) . (∗)

Put ℓ = ℓ(M) and let

M = M0 ⊃ M1 ⊃ . . . ⊃ Mℓ = {0}

be a composition series of length ℓ . Then

N = N∩M0 ⊇ N∩M1 ⊇ . . . ⊇ N∩Mℓ = {0}

is a chain of submodules from N to {0} .
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By a module isomorphism theorem, for each i ,

N ∩ Mi

N ∩ Mi+1
=

N ∩ Mi

(N ∩ Mi) ∩ Mi+1

∼=
(N ∩ Mi) + Mi+1

Mi+1
,

the last of which is a submodule of the simple module

Mi / Mi+1 . Hence

N ∩ Mi

N ∩ Mi+1
is trivial or simple.
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Thus, deleting repetitions from the above chain from

N to {0} must yield a composition series for N ,

which proves

ℓ(N) ≤ ℓ(M) .

Suppose ℓ(N) = ℓ .

Then, no repetitions occurred in the previous process,

so, by the earlier isomorphism,

(N ∩ Mi) + Mi+1 = Mi (∀i) . (∗∗)
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We observe, by induction, that

N ∩ Mi = Mi (∀i) ,

since, clearly

N ∩ Mℓ = N ∩ {0} = {0} = Mℓ ,

which starts the induction,

and, for i ≤ ℓ − 1 , using (∗∗) and an inductive
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hypothesis,

N ∩ Mi = (N ∩ Mi) + (N ∩ Mi+1)

= (N ∩ Mi) + Mi+1 = Mi .

In particular,

M = M0 = N ∩ M0 = N ∩ M = N ,

which contradicts that N 6= M .

Hence ℓ(N) < ℓ and (∗) is proved.
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Now consider any series

M = M ′
0 ⊃ M ′

1 ⊃ . . . ⊃ M ′
k = {0} (†)

of length k . By (∗) ,

ℓ = ℓ(M) > ℓ(M ′
1) > . . . > ℓ(M ′

k) = 0 ,

so

ℓ ≥ k .

If (†) is a composition series, then ℓ ≤ k , by

definition of ℓ , so ℓ = k .
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This proves

all composition series of M have the

same length n .

If (†) is not a composition series, then k < n ,

because if k = n , then we can insert another

module somewhere to get another series of length

n + 1 ≤ ℓ = n , which is nonsense.

Hence any series which is not a composition series

can be successively refined until its length is n , in
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which case it becomes a composition series, and the

Theorem is proved.

Corollary: A module M has a

composition series iff M satisfies the a.c.c.

and d.c.c.

Proof: (=⇒) If M has a composition series of

length n , then, by the previous Theorem,

all series have length ≤ n ,
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so all ascending and descending chains must be

stationary,

that is, M satisfies both the a.c.c. and the d.c.c.

(⇐=) Suppose M satisfies both the a.c.c. and

the d.c.c.

If M = {0} then certainly M has a composition

series.

Suppose M 6= {0} .
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Since M satisfies the maximal condition (equivalent

to the a.c.c),

the set of proper submodules of M

has a maximal element M1 , so M/M1 is simple.

Suppose we have found submodules

M = M0 ⊃ M1 ⊃ . . . ⊃ Mk (k ≥ 1)

where Mi/Mi+1 is simple for i = 0, . . . , k − 1 .
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If Mk = {0} then we have a composition

series for M .

If Mk 6= {0} , then, again since M satisfies the

maximal condition, we can find a submodule Mk+1

of Mk such that Mk/Mk+1 is simple.

Either M has a composition series, or by induction

we have an infinite strictly descending chain

M = M0 ⊃ M1 ⊃ . . . ⊃ Mk ⊃ . . .
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The latter is excluded because M satisfies the d.c.c.

Hence M has a composition series and the Corollary

is proved.

Say that a module M has finite length if it has a

composition series

(equivalently satisfies both the a.c.c. and d.c.c.)

in which case all composition series have the same

length ℓ(M) , called the length of M .
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We now prove a uniqueness result concerning the

composition factors:

Jordan-Holder Theorem: There is a one-one

correspondence between the composition factors

of any two composition series of a module of finite

length such that

corresponding factors are isomorphic.

Proof: Let M be a module of finite length ℓ .
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If ℓ = 0 then the set of composition factors is

always empty, so the result is vacuously true, which

starts an induction.

Suppose ℓ > 0 and let

M = M0 ⊃ M1 ⊃ . . . ⊃ Mℓ = {0}

M = M ′
0 ⊃ M ′

1 ⊃ . . . ⊃ M ′
ℓ = {0}

be two composition series.
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If M1 = M ′
1 then, by an inductive hypothesis

(since ℓ(M1) = ℓ − 1 ),

there is an appropriate correspondence between

{ Mi/Mi+1 | i = 1, . . . , ℓ − 1 }

and

{ M ′
i/M

′
i+1 | i = 1, . . . , ℓ − 1 } ,

so, since

M0/M1 = M ′
0/M

′
1 ,
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there is an appropriate correspondence between

{ Mi/Mi+1 | i = 0, . . . , ℓ − 1 }

and

{ M ′
i/M

′
i+1 | i = 0, . . . , ℓ − 1 } ,

and we are done.

Suppose then M1 6= M ′
1 , so M1 + M ′

1 = M ,

since M1 is maximal in M .
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M = M1 + M ′
1

M ′
1M1

M1 ∩ M ′
1
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By module isomorphism theorems,

M/M1 = M1 + M ′
1 / M1

∼= M ′
1 / M1 ∩ M ′

1

and

M/M ′
1 = M1 + M ′

1 / M ′
1
∼= M1 / M1 ∩ M ′

1 .

But

ℓ(M1 ∩ M ′
1) < ℓ(M1) , ℓ(M2) < ℓ

so we can apply an inductive hypothesis to

composition series of these modules.
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Let F1 , F2 , F ′
1 be the collections of composition

factors for M1 , M1 ∩M ′
1 , M ′

1 respectively. Then

there are appropriate correspondences between

F1 ∪ { M/M1 }

and F2 ∪ { M1/M1 ∩ M ′
1 , M/M1 }

and F2 ∪ { M/M ′
1 , M ′

1/M1 ∩ M ′
1 }

and F ′
1 ∪ { M/M ′

1 }

which proves the Theorem.
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Theorem: The length ℓ(M) of a module M

defines an additive function on the class of all

A-modules of finite length.

Proof: Suppose

0 −→ M ′

α

−→ M

β

−→ M ′′ −→ 0

is exact, where all modules have finite length. We

need to show

ℓ(M) = ℓ(M ′) + ℓ(M ′′) .
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Let

M ′ = M ′
0 ⊃ M ′

1 ⊃ . . . ⊃ M ′
ℓ(M ′) = {0}

M ′′ = M ′′
0 ⊃ M ′′

1 ⊃ . . . ⊃ M ′′
ℓ(M ′′) = {0}

be composition series for M ′ and M ′′ respectively.

Since α is injective,

α(M ′) = α(M ′
0) ⊃ α(M ′

1) ⊃

. . . ⊃ α(M ′
ℓ(M ′)) = {0}

is a composition series for α(M ′) = kerβ .

794



Since β is onto,

M/ ker β = β−1(M ′′
0 )/ kerβ

⊃ β−1(M ′′
1 )/ ker β ⊃

. . . ⊃ β−1(M ′′
ℓ(M ′′))/ ker β = {ker β}

is a composition series for M/ kerβ . Combining

these two series produces the following series for

M :
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M = β−1(M ′′
0 ) ⊃ β−1(M ′′

1 ) ⊃

. . . ⊃ β−1(M ′′
ℓ(M ′′)) = ker β

{0} = α(M ′
ℓ(M ′)) ⊂ . . . ⊂ α(M ′

0) = α(M ′)

But this is a composition series, because, by another

isomorphism theorem, for i = 0 , . . . , ℓ(M ′′) − 1 ,
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β−1(M ′′
i ) / β−1(M ′′

i+1)

∼=

(

β−1(M ′′
i ) / kerβ

)

/

(

β−1(M ′′
i+1) / kerβ

)

,

which is simple. Hence

ℓ(M) = ℓ(M ′) + ℓ(M ′′) ,

and the Theorem is proved.
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Interpreting the theory for vector spaces yields:

Proposition: Let V be a vector space over a

field F . TFAE

(i) V is finite dimensional.

(ii) V has finite length.

(iii) V satisfies the a.c.c.

(iv) V satisfies the d.c.c.

If any of these hold, then dimension equals length.

798



Proof: (i) =⇒ (ii) If { x1 , . . . , xn } is a

basis for V then

V = 〈 x1 , . . . , xn 〉 ⊃ 〈 x1 , . . . , xn−1 〉 ⊃

. . . ⊃ 〈 x1 〉 ⊃ {0}

is a composition series of length n .

(ii) =⇒ (iii), (ii) =⇒ (iv): follow from the earlier

Corollary on page 781.
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(iii) =⇒ (i), (iv) =⇒ (i): Suppose (i) is false, so

V contains an infinite sequence

x1 , . . . , xn , . . .

of linearly independent vectors. For each n ≥ 1 put

Un = 〈 x1 , . . . , xn 〉 ,

Vn = 〈 xn+1 , xn+2 , . . . 〉 .

Then
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{0} ⊂ U1 ⊂ U2 ⊂ . . . ⊂ Un ⊂ . . .

V ⊃ V1 ⊃ V2 ⊃ . . . ⊃ Vn ⊃ . . .

are strictly ascending and descending chains

respectively,

so that both (iii) and (iv) fail to hold.
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Corollary: Let A be a ring in which

M1 M2 . . . MN = {0}

for some (not necessarily distinct) maximal ideals

M1 , . . . , Mn .

Then A is Noetherian iff A is Artinian.
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Proof: First note that if

I � A , M � A , M maximal

then I / IM is an A-module, so also

I/IM is an A/M -module

(since M ⊆ Ann (I/IM) ), that is,

I/IM is a vector space over the field A/M ,
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so, by the previous Proposition,

I/IM satisfies the a.c.c. on subspaces (ideals)

iff

I/IM satisfies the d.c.c. on subspaces (ideals).

Consider the chain

A ⊃ M1 ⊇ M1M2 ⊇ . . . ⊇ M1 . . . Mn = {0} .

Then, by repeated application of an earlier Theorem

about exactness (on page 756),
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A satisfies the a.c.c. on ideals

iff each factor

A/M1 , M1/M1M2 , . . . , M1 . . .Mn−1 / M1 . . .Mn

satisfies the a.c.c. on ideals

iff

each factor satisfies the d.c.c. on ideals

iff

A satisfies the d.c.c. on ideals,

and the Corollary is proved.
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