
4.2 Chain Conditions

Imposing chain conditions on the

poset of submodules of a module,

or on the

poset of ideals of a ring,

makes a module or ring more tractable and facilitates

the proofs of deep theorems.
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Proposition: Let Σ be a poset with respect to

≤ . TFAE

(i) Every increasing sequence

x1 ≤ x2 ≤ . . . ≤ xn ≤ . . .

in Σ is stationary, that is,

(∃n)(∀m ≥ n) xm = xn ;

(ii) Every nonempty subset of Σ has a maximal

element.
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Proof: (i) =⇒ (ii): If (ii) is false, then there

is a nonempty subset X of Σ with no maximal

element, so ∃x1 ∈ X ;

(∃x2 ∈ X) x1 < x2 ;

(∃x3 ∈ X) x1 < x2 < x3 ;

so continuing, X contains

x1 < x2 < x3 < . . . < xn < . . .

which is strictly increasing, so (i) fails.
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(ii) =⇒ (i): If (ii) holds and

x1 ≤ x2 ≤ . . . ≤ xn ≤ . . . (∗)

is an increasing sequence in Σ , then

{ x1, . . . , xn , . . . }

has a maximal element, say xk , so for every m ≥ k ,

xm ≥ xk ≥ xm ,

whence equality, proving (∗) is stationary, and (i)

holds.
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Let Σ be the set of submodules of a module M .

Regarding Σ as a poset with respect to ⊆ , we

refer to

(i) as the ascending chain condition (a.c.c.)

and

(ii) as the maximal condition.

Any module satisfying the a.c.c. or equivalently the

maximal condition is called Noetherian.
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On the other hand regarding Σ as a poset with

respect to ⊇ , we refer to

(i) as the descending chain condition (d.c.c.)

and

(ii) as the miminal condition.

Any module satisfying the d.c.c. or equivalently the

minimal condition is called Artinian.
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Examples: (1) Any finite module satisfies both

the a.c.c. and d.c.c.

These include all finite abelian groups,

regarded as Z-modules.

(2)

The ring Z (regarded as a Z-module)

satisfies the a.c.c but not the d.c.c.

This was proved in the Overview (page 18).
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(3) Consider the group Q under addition. Then

Z is a subgroup and we may form the quotient group

Q/Z = { q + Z | q ∈ Q } .

Fix a prime number p , and put

G = { a/pn + Z | n ≥ 0 , a ∈ Z }

and, for i ≥ 0 ,

Gi = { a/pi + Z | a ∈ Z } .

Clearly G is a subgroup of Q/Z and each Gi is a

subgroup of G .
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Moreover,

G0 ⊂ G1 ⊂ . . . Gn ⊂ . . . (∗)

is a strictly increasing sequence, so, regarded as a

Z-module,

G does not satisfy the a.c.c.

Exercise: Prove that the only subgroups

of G are G and Gi for i ≥ 0 .
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By (∗) and this exercise, there are no infinite

strictly descending chains of subgroups of G , so, as

a Z-module,

G satisfies the d.c.c.

(4) Fix a prime number p and put

H = { m/pn | m ∈ Z , n ≥ 0 } .

Then clearly H is a subgroup of Q and

0 −→ Z −→ H −→ H/Z = G −→ 0
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is exact, where the second mapping is inclusion and

G is the group of (3). Thus

H doesn’t satisfy the d.c.c.

because it has a subgroup Z which doesn’t, and

H doesn’t satisfy the a.c.c.

because it has a quotient G which doesn’t.
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(5)

The polynomial ring F [x] , where F is a

field, satisfies the a.c.c. but not the d.c.c.

on ideals.

The proof is left as an exercise, using the fact that

F [x] is a PID, and copying the details of (2).

(6) The polynomial ring F [x1 , x2 , . . . ] using

infinitely many indeterminates does not satisfy the

d.c.c. on ideals (as for (5)),
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but also does not satisfy the a.c.c. since

〈x1〉 ⊂ 〈x1 , x2〉 ⊂ . . . ⊂ 〈x1 , . . . xn〉 ⊂ . . .

is an infinite strictly increasing chain of ideals.

Proposition: Let M be an A-module.

Then M is Noetherian iff every submodule

of M is finitely generated.
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Proof: (=⇒) Suppose M is Noetherian and let

N be a submodule of M . Let

Σ = { finitely generated submodules of N } .

Then Σ has a maximal element N0 .

If N 6= N0 then

∃x ∈ N\N0 ,

so 〈N0 ∪ {x}〉 is a finitely generated submodule of

N bigger than N0 , contradicting maximality.

Hence N0 = N , so N is finitely generated.
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(⇐=) Suppose all submodules of M are finitely

generated. Let

M1 ⊆ M2 ⊆ . . . ⊆ Mn ⊆ . . . (∗)

be an ascending chain of submodules.

Then

∞
⋃

i=1

Mi is easily seen to be a submodule of

M ,

so is generated by finitely many elements, say

x1 , . . . , xr .
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Then

(∀j = 1, . . . , r) (∃ ij ) xj ∈ Mij .

Put

m = max { i1 , . . . , ir }

so

(∀j) xj ∈ Mm .

But then
∞
⋃

i=1

Mi ⊆ Mm ⊆

∞
⋃

i=1

Mi ,

so equality holds, and (∗) is stationary.
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Theorem: Let

0 −→ M ′

α

−→ M

β

−→ M ′′;−→ 0

be an exact sequence of A-modules.

Then M is Noetherian [Artinian] iff M ′

and M ′′ are.

Proof: We prove the result for Noetherian, the

argument for Artinian being similar.

(=⇒) Suppose M is Noetherian.
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Because α is injective, any ascending chain of

submodules of M ′ corresponds to an ascending

chain of submodules of M , so the former is

stationary, since the latter is.

Hence M ′ is Noetherian.

Because β is surjective,

M ′′ ∼= M/ ker β

so that submodules of M ′′ correspond to

submodules of M containing ker β , and the

correspondence is inclusion preserving.
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Hence any ascending chain of submodules of M ′′

corresponds to an ascending chain of submodules of

M , so the former is stationary, since the latter is.

Hence M ′′ is Noetherian.

(⇐=) Suppose M ′ , M ′′ are Noetherian. Let

L1 ⊆ L2 ⊆ . . . ⊆ Ln ⊆ . . . (∗)

be an ascending chain of submodules of M . Then

α−1(L1) ⊆ α−1(L2) ⊆ . . . ⊆ α−1(Ln) ⊆ . . .
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is an ascending chain of submodules of M ′ , and

β(L1) ⊆ β(L2) ⊆ . . . ⊆ β(Ln) ⊆ . . .

is an ascending chain of submodules of M ′′ .

Since these sequences are stationary,

(∃n1)(∀m ≥ n1) α−1(Lm) = α−1(Ln1
)

(∃n2)(∀m ≥ n2) β(Lm) = β(Ln2
)
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Put n = max { n1 , n2 } , so (∀m ≥ n) ,

α−1(Lm) = α−1(Ln) and β(Lm) = β(Ln) .

We will prove that

(∀m ≥ n) Lm = Ln .

Let m ≥ n and x ∈ Lm . Then

β(x) ∈ β(Lm) = β(Ln) ,
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so, for some y ∈ Ln , β(x) = β(y) , so, by

exactness,

x − y ∈ ker β = im α .

But Ln ⊆ Lm , so x − y ∈ Lm , giving

x − y = α(z)
(

∃z ∈ α−1(Lm)
)

.

But α−1(Lm) = α−1(Ln) , so α(z) ∈ Ln , giving

x = y + α(z) ∈ Ln .
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Hence

Lm ⊆ Ln ⊆ Lm ,

whence equality. This proves (∗) is stationary, so

M is Noetherian, and the Theorem is proved.

Corollary: If M1 , . . . , Mn are Noetherian

[Artinian] A-modules then so is

M1 ⊕ . . . ⊕ Mn .
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Proof: This follows by induction and the previous

Theorem applied to the exact sequence

0 −→ Mn

α

−→
⊕n

i=1 Mi

β

−→
⊕n−1

i=1 Mi −→ 0

where

α : x 7→ (0, . . . , 0, x)

β : (x1, . . . , xn) 7→ (x1, . . . , xn−1) .
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Call a ring A Noetherian [Artinian] if it is so

as an A-module, that is,

if it satisfies the a.c.c. [d.c.c.] on ideals.

Examples: (1) Any ring with only finitely many

ideals (such as a finite ring or a field) is certainly

both Noetherian and Artinian.

(2) The ring Z is Noetherian but not Artinian.

(3) Any PID is Noetherian (by the Proposition on

page 752) since all ideals are finitely generated.
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(4) The ring F [x1, . . . , xn, . . .] where F is a field

is neither Noetherian nor Artinian, but is an integral

domain, so has a field of fractions, which is both

Noetherian and Artinian. Thus

subrings of Noetherian [Artinian] rings need

not be Noetherian [Artinian].

However quotients are well-behaved. By the earlier

Theorem (on page 756) we get immediately
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Corollary: Any homomorphic image of

a Noetherian [Artinian] ring is Noetherian

[Artinian].

Ring and module properties can be linked:

Theorem: Let A be a Noetherian [Artinian]

ring and M a finitely generated A-module.

Then M is Noetherian [Artinian].
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Proof: By general theory (a Proposition on page

324),

M ∼= An / N

for some n > 0 and some submodule N of An .

But An is Noetherian [Artinian], being a direct sum

of Noetherian [Artinian] modules.

Hence, by the previous Corollary, M is Noetherian

[Artinian].
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