
4.1 Primary Decompositions

— generalization of factorization of an integer as a

product of prime powers.

— “unique factorization” of ideals in a large class

of rings.

In Z , a prime number p gives rise to a prime

ideal pZ ; a prime power pn gives rise to a

primary ideal pn
Z .
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Call an ideal Q of a ring A primary if

(i) Q 6= A ; and

(ii) For all x, y ∈ A ,

xy ∈ Q =⇒

x ∈ Q or yn ∈ Q (∃n ≥ 1) .
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Clearly

Every prime ideal is primary

(taking n = 1 in the definition).

Observation: Q is primary iff

A/Q is not trivial and every zero-divisor in A/Q

is nilpotent.

657



Proof: (=⇒) If Q is primary then certainly

A/Q is not trivial,

and if z + Q ∈ A/Q is a zero-divisor, then

zw + Q = (z + Q)(w + Q) = Q (∃w 6∈ Q)

so zw ∈ Q , so zn ∈ Q for some n ≥ 1

(since w 6∈ Q ), yielding

(z + Q)n = zn + Q = Q ,

proving z + Q is nilpotent.
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(⇐=) Suppose A/Q is not trivial, and every

zero-divisor in A/Q is nilpotent.

Certainly Q 6= A . Let x, y ∈ A such that

xy ∈ Q .

Either x ∈ Q or x 6∈ Q . If x 6∈ Q then

(y + Q)(x + Q) = yx + Q = Q ,

so y + Q is a zero-divisor, so

yn + Q = (y + Q)n = Q (∃n ≥ 1) ,

so yn ∈ Q , proving Q is primary.
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Example: The primary ideals of Z are precisely

0Z and pi
Z

where p is prime and i ≥ 1 .

Proof: It is easy to check that 0Z and pi
Z are

primary for p prime and i ≥ 1 .

Suppose Q � Z is primary. Then Q = mZ for

some m ∈ Z
+ , and m 6= 1 , since Q 6= Z .

Suppose that m 6= 0 and m is not a prime power.
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Then

m = piq

for some prime p , i ≥ 1 and integer q such that

p 6 | q .

But then p + mZ is a zero-divisor of Z/mZ

and p + mZ is not nilpotent,

contradicting that mZ is primary and the previous

Observation.

Hence m = 0 or m is a prime power.
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Observe that 0Z is prime and pi
Z = (pZ)i , so

that

in Z all primary ideals are powers of prime

ideals.

Observation: The contraction of a primary

ideal is primary.

Proof: Let f A → B be a ring homomorphism

and Q � B be primary. WTS f−1(Q) is primary.
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Suppose x, y ∈ A and xy ∈ f−1(Q) .

Then

f(xy) = f(x)f(y) ∈ Q ,

so

f(x) ∈ Q or
[

f(y)
]n

= f(yn) ∈ Q

for some n ≥ 1 , yielding

x ∈ f−1(Q) or yn ∈ f−1(Q) ,

proving f−1(Q) is primary, noting f−1(Q) 6= A .

663



We relate prime and primary ideals using the radical

operator:

Theorem: The radical of a primary ideal is the

smallest prime ideal containing it.

Proof: Let Q � A be primary. By an early result,

the radical of Q ,

r(Q) = { a ∈ A | an ∈ Q (∃n ≥ 1) } ,

is the intersection of all the prime ideals containing

Q . It suffices then to check that r(Q) is prime.
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Suppose that x, y ∈ A and xy ∈ r(Q) . Then

xmym = (xy)m ∈ Q (∃m ≥ 1) .

But Q is primary, so

xm ∈ Q or ymn = (ym)n ∈ Q

for some n ≥ 1 . Hence x ∈ r(Q) or y ∈ r(Q) .

This proves r(Q) is prime, so therefore r(Q) is

the smallest prime ideal containing Q .
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If P , Q � A , P prime, Q primary and

P = r(Q)

then we say Q is P -primary.

e.g. If A = Z and p is prime then

r(pi
Z) = pZ ,

so pi
Z is pZ-primary.
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Exercise: Let A be a UFD (unique factorization

domain) and let x ∈ A be prime. Verify that all

powers of xA are primary.

Hence (x − λ)nF [x] is a primary ideal of F [x]

where F is a field, λ ∈ F and n ≥ 1 .

Exercise: Find a ring A and I � A such

that I is not primary yet, for all x, y ∈ A ,

xy ∈ I =⇒ xm ∈ I or ym ∈ I (∃m ≥ 1) .
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We give an example to show that primary ideals need

not be powers of prime ideals.

Example: Let A = F [x, y] where F is a field

and put

Q = 〈 x , y2 〉 = Ax + Ay2 .

Define

φ : A −→ F [y] / 〈 y2 〉

by

p(x, y) 7→ p(0, y) + 〈 y2 〉 .
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Then φ is easily seen to be an onto ring

homomorphism and

kerφ = { p(x, y) ∈ A | p(0, y) ∈ 〈 y2 〉 } .

Certainly x , y2 ∈ ker φ , so Q ⊆ kerφ .

If p(x, y) ∈ kerφ then

p(x, y) = p1(y) + xp2(x, y)

for some p1(y) ∈ F [y] and p2(x, y) ∈ F [x, y] ,
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so that

p1(y) = p(0, y) ∈ 〈 y2 〉

so p(x, y) ∈ 〈 x , y2 〉 = Q .

Thus ker φ = Q .

By the Fundamental Homomorphism Theorem,

A/Q ∼= F [y] / 〈 y2 〉 .
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By the remark following the first exercise on page

667,

〈 y2 〉 = y2F [y] = (yF [y]
)2

is a primary ideal of F [y] ,

so all zero-divisors of F [y] / 〈 y2 〉 , and hence also

of A/Q , are nilpotent. Thus

Q is a primary ideal of A .

671



Further,

r(Q) = 〈 x , y 〉 = Ax + Ay ,

so
[

r(Q)
]2

= (Ax)2 + (Ay)2 + (Ax)(A(y)

= Ax2 + Ay2 + Axy ,

so

[

r(Q)
]2

⊂ Q ⊂ r(Q) .
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Thus Q is not a power of its radical.

Claim: Q is not a power of any prime

ideal.

Proof: Suppose Q = P n for some prime ideal

P and n ≥ 1 . Then
[

r(Q)
]2

⊂ Q ⊆ P and P n = Q ⊂ r(Q) .

We check P = r(Q) .
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If α ∈ P then αn ∈ P n ⊆ r(Q) ,

so α ∈ r(r(Q)) = r(Q) .

If β ∈ r(Q) then β2 ∈
[

r(Q)]2 ⊆ P ,

so β ∈ P , since P is prime.

Hence, indeed P = r(Q) , so

P 2 ⊂ P n ⊂ P

which is impossible.

Thus Q is not a power of a prime ideal.
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We now give an example to show that powers of

prime ideals need not be primary.

Example: Let A = F [x, y, z] , where F is a

field, and put

I = (xy − z2)A ,

B = A/I ,

P = 〈 x + I , z + I 〉 .
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Claim: P is a prime ideal of B and

P 2 is not primary.

Proof: We first show that P is prime by verifying

that B/P is an integral domain.

Let φ : A −→ F [y] where

φ : p(x, y, z) 7→ p(0, y, 0) .
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It is easy to check that φ is an onto ring

homomorphism.

Also φ(xy − z2) = 0 , so I ⊆ kerφ .

Hence φ induces an onto ring homomorphism

φ : B = A/I −→ F [y]

where

φ : p(x, y, z) + I 7→ p(0, y, 0) .
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Clearly x + I and z + I lie in ker φ , so

P ⊆ kerφ .

Conversely, suppose

p(x, y, z) + I ∈ kerφ ,

and write

p(x, y, z) = p1(y) + x p2(x, y) + z p3(x, y, z)

for some p1(y) ∈ F [y] , p2(x, y) ∈ F [x, y] and
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p3(x, y, z) ∈ F [x, y, z] .

Then

p1(y) = p(0, y, 0) = φ
(

p(x, y, z) + I
)

= 0 ,

so

p(x, y, z) ∈ 〈 x , z 〉 ,

so

p(x, y, z) + I ∈ 〈 x + I , z + I 〉 = P .
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Thus ker φ = P , so

B/P ∼= F [y] .

Hence B/P is an integral domain, since F [y] is,

which proves

P is a prime ideal.

We now show that P 2 is not primary.

Observe that
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(x + I)(y + I) = xy + I

= xy − (xy − z2) + I

= z2 + I = (z + I)2 ∈ P 2 .

Also

P 2 = 〈 x2 + I , xz + I , z2 + I 〉 .
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If P 2 is primary then x + I ∈ P 2 or

yk + I = (y + I)k ∈ P 2 (∃k ≥ 1)

so that

x or yk ∈ 〈 x2 , xz , z2 , xy − z2 〉 ,

which is impossible, by inspecting monomials in

α x2 + β xz + γ z2 + δ (xy − z2)

for α, β, γ, δ ∈ A .
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Thus

P 2 is not a primary ideal,

and the Claim is proved.
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Despite the previous example we have:

Theorem: If Q � A and r(Q) is maximal,

then Q is primary.

In particular, all powers of a maximal ideal M

are M -primary.

Proof: Suppose Q , M are ideals of A , where

M is maximal and M = r(Q) .

By an early result about radicals of ideals (the

theorem on page 220),
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M is the intersection of all prime ideals of A

containing Q ,

so M is the unique prime ideal of A containing

Q , that is,

M/Q is the unique prime ideal of A/Q .

Every nonunit of a ring is contained in a maximal

ideal (the corollary on page 93, a result using Zorn’s

Lemma),

so every nonunit of A/Q is contained in M/Q .
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But all elements in M have powers lying in Q , so

every nonunit of A/Q is nilpotent.

Zero-divisors are nonunits, so

every zero-divisor in A/Q is nilpotent.

By an earlier Observation (page 657),
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Q is primary.

If now M is any maximal ideal of A then

r(Mn) = M (∀n ≥ 1)

by an exercise (on page 217),

so, by what we have just proved, Mn is primary, so

M -primary,

and the Theorem is proved.
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We now study “decompositions” of ideals as

intersections of primary ideals.

Lemma: Let P be a prime ideal and

Q1 , . . . , Qn be P -primary ideals. Then

Q =

n
⋂

i=1

Qi

is also P -primary.
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Proof: By an exercise (page 216),

r(Q) =

n
⋂

i=1

r(Qi) =

n
⋂

i=1

P = P ,

so it just remains to check Q is primary.

Suppose x, y ∈ A and xy ∈ Q . Then

xy ∈ Qi (∀i) .

If x ∈ Q then we are done.
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If x 6∈ Q then x 6∈ Qj for some j , so

yn ∈ Qj (∃n ≥ 1) ,

since Qj is primary, so

y ∈ r(Qj) = P ,

yielding

ym ∈ Q (∃m ≥ 1) ,

since r(Q) = P , proving Q is P -primary.
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Lemma: Let P be prime, Q be P -primary

and x ∈ A . Then

(i) x ∈ Q =⇒ (Q : x) = A ;

(ii) x 6∈ Q =⇒ (Q : x) is P -primary;

(iii) x 6∈ P =⇒ (Q : x) = Q .

Proof: (i) If x ∈ Q then Ax ⊆ Q , since

Q � A , so (Q : x) = A .
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(iii) Suppose x 6∈ P . Certainly Q ⊆ (Q : x) .

Consider y 6∈ Q . If xy ∈ Q then

xk ∈ Q (∃k ≥ 1)

since Q is primary, so

x ∈ r(Q) = P ,

contradicting that x 6∈ P . Hence

xy 6∈ Q , so y 6∈ (Q : x) .
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Thus (Q : x) ⊆ Q , so equality holds, and (iii) is

proved.

(ii) Suppose x 6∈ Q .

If y ∈ (Q : x) then xy ∈ Q , so

yk ∈ Q (∃k ≥ 1)

(because x 6∈ Q and Q is primary), so

y ∈ r(Q) = P .
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Thus

Q ⊆ (Q : x) ⊆ P ,

yielding

P = r(Q) ⊆ r(Q : x) ⊆ r(P ) = P .

Hence

r(Q : x) = P ,

so it suffices to check that (Q : x) is primary.
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Certainly 1 6∈ (Q : x) , so (Q : x) 6= A .

Suppose a, b ∈ A and ab ∈ (Q : x) .

WTS a ∈ (Q : x)

or bk ∈ (Q : x) for some k ≥ 1 .

Suppose bk 6∈ (Q : x) for all k ≥ 1 .

Then

b 6∈ r(Q : x) = P .
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But abx ∈ Q , so

ax ∈ Q or bℓ ∈ Q (∃ℓ ≥ 1) .

In the latter case, b ∈ r(Q) = P ,

contradicting that b 6∈ P .

Hence ax ∈ Q , so a ∈ (Q : x) .

This completes the proof that (Q : x) is P -primary.
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A primary decomposition of I � A is an

expression as a finite intersection of primary ideals:

I =

n
⋂

i=1

Qi (∗)

An equation of the form (∗) may not exist:

Exercise: Exhibit an ideal of a ring which

possesses no primary decomposition.
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Call the decomposition (∗) minimal if

(i) r(Q1) , . . . , r(Qn) are distinct; and

(ii) (∀i = 1, . . . , n) Qi 6⊇
⋂

j 6=i

Qj .

Observation: Any primary decomposition

may be replaced by a minimal one.
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Proof: Consider a primary decomposition

I =

n
⋂

i=1

Qi .

If r(Qi1) = . . . = r(Qik) = P , then,

by an earlier Lemma (page 688),

Q =
k

⋂

j=1

Qij
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is also P -primary, so we may replace

Qi1 , . . . , Qik by Q

in the decomposition.

Continuing if necessary we can guarantee that (i)

holds. If (ii) is violated then we may omit ideals

until (ii) is satisfied without changing the overall

intersection.

Call an ideal decomposable if it has a primary

decomposition.
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First Uniqueness Theorem: Let I be a

decomposable ideal and let (∗) be a minimal

primary decomposition. Put

Pi = r(Qi) for i = 1, . . . , n .

Then

{

P1 , . . . , Pn

}

=
{

prime ideals P |

(∃x ∈ A) P = r(I : x)
}

.
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The set { P1 , . . . , Pn } in the conclusion

of the Theorem is independent of the particular

minimal decomposition chosen for I , and can also

be restated as follows:

Regarding A/I as an A-module,

{ P1 , . . . , Pn }

is precisely the set of prime ideals which

occur as radicals of annihilators of elements

of A/I .
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We say that the prime ideals P1 , . . . , Pn belong

to I or are associated to I .

In particular, I is primary iff I has exactly

one associated prime ideal.

The minimal elements of P1 , . . . , Pn with respect

to ⊆ are called minimal or isolated prime ideals

belonging to I ;

the nonminimal ones are called embedded prime

ideals.
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Proof of the First Uniqueness Theorem: Let

x ∈ A . Then, by earlier exercises (pages 208 and

216),

r(I : x) = r
(

⋂

i

Qi : x
)

= r
(

⋂

i

(Qi : x)
)

=
⋂

i

r(Qi : x) =
⋂

i , x6∈Qi

Pi ,

in the last step, by (i) and (ii) of the Lemma on page

691.
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Thus, if r(I : x) is prime, then, by (i) of the

Theorem on page 194,

r(I : x) ∈ { Pi | x 6∈ Qi } .

This proves

{

prime P | (∃x ∈ A) P = r(I : x)

}

⊆
{

P1 , . . . , Pn } .
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Conversely, let i ∈ {1, . . . , n} .

Because the primary decomposition is minimal,

∃ xi ∈
(

⋂

j 6=i

Qj

)

\Qi .

Observe first that if y ∈ (Qi : xi) then yxi ∈ Qi ,

so

yxi ∈ Qi ∩
(

⋂

j 6=i

Qj

)

= I

so

y ∈ (I : xi) .
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Thus

(Qi : xi) ⊆ (I : xi) ⊆ (Qi : xi)

since I ⊆ Qi

so (I : xi) = (Qi : xi) . Hence

r(I : xi) = r(Qi : xi) = Pi ,

by (ii) of the Lemma on page 691, and the Theorem

is proved.
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Note: primary components need not be

unique.

Example: Let A = F [x, y] where F is a field

and put

I = 〈x2 , xy 〉 = x2A + xyA = x(xA + yA) .

Observe that

I = 〈x 〉 ∩ 〈x , y 〉2 (∗)
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and

I = 〈x 〉 ∩ 〈x2 , y 〉 (∗∗)

Certainly 〈x〉 = xA is primary (in fact prime,

since x is prime in A ).

Also 〈x , y 〉 is maximal in A

(case n = 2 in example (3) on page 121)

so 〈x , y 〉2 is primary (by Theorem on page 684).
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Also 〈x2 , y 〉 is primary (by the Example on page

668 with x , y interchanged).

Observe that

r
(

〈x 〉
)

= 〈x 〉

and

r
(

〈x , y 〉2
)

= r
(

〈x2 , y 〉
)

= 〈x , y 〉 .

Thus (∗) and (∗∗) are two different

minimal primary decompositions of I .
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The prime ideals belonging to I are 〈x 〉 and

〈x , y 〉 , and 〈x 〉 ⊂ 〈x , y 〉 , so

〈x 〉 is isolated, and

〈x , y 〉 is embedded.

Nevertheless, the primary ideal 〈x 〉 is common to

both decompositions.

Later we see that primary components whose radicals

are isolated prime ideals are unique.
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Theorem: Let I � A be decomposable, and

let P be a prime ideal of A containing I .

Then P contains an isolated prime ideal

belonging to I .

Corollary: The isolated prime ideals belonging

to a decomposable ideal I are precisely the

minimal elements in the poset of all prime ideals

containing I .
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Proof of the Theorem: Let I =
⋂

i

Qi be a

minimal primary decomposition, and put

Pi = r(Qi) (∀i) .

Then

P = r(P ) ⊇ r(I) =
⋂

i

r(Qi) =
⋂

i

Pi ,

so P ⊇ Pj for some j , by (i) of the Theorem

on page 194, and the proof is complete.
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We next discuss how notions involving primary ideals

interact with taking fractions, and then apply our

results to obtain a second uniqueness theorem.

Lemma: Let S be a multiplicatively closed

subset of A , P a prime ideal and Q a

P -primary ideal. Then

(i) S ∩ P 6= ∅ =⇒ S−1Q = S−1A ;

(ii) S ∩ P = ∅ =⇒ S−1Q is S−1P -

primary and (S−1Q) c = Q .
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Here contraction is with respect to a 7→ a/1 for

a ∈ A .

Proof: (i) If x ∈ S ∩ P then

xn ∈ S ∩ Q (∃n ≥ 1)

so S−1Q contains (1/xn)(xn/1) = 1/1 , so

S−1Q = S−1A .

(ii) Suppose S ∩P = ∅ . By (4) of the Theorem

on page 617,

S−1P is prime,
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and, by (3) of the same Theorem,

Q e c =
⋃

s∈S

(Q : s) .

But, for each s ∈ S , s 6∈ P , so, by (iii) of the

Lemma on page 691,

(Q : s) = Q

so we deduce that

Q e c = Q .
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Also, by the Claim on page 613,

Q e = S−1Q ,

so

(S−1Q) c = Q e c = Q .

Further, since S−1 commutes with taking radicals

(part (5) of the Theorem on page 617),

r(S−1Q) = S−1(r(Q)) = S−1P .

It remains therefore just to check S−1Q is

primary.
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Suppose x, y ∈ A , s, t ∈ S and

(x/s) (y/t) ∈ S−1Q .

Then

(xy)/(st) = z/u (∃z ∈ Q , u ∈ S)

so

(xyu − zst) v = 0 (∃v ∈ S)

so

xyuv = zstv ∈ Q .
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If x ∈ Q then x/s ∈ S−1Q , and we are done.

Suppose x 6∈ Q . Then, since Q is primary,

yn(uv)n = (yuv)n ∈ Q (∃n ≥ 1) .

If yn 6∈ Q then, again since Q is primary,

(uv)mn =
(

(uv)n
)m

∈ Q (∃m ≥ 1) ,

so

(uv)mn ∈ S ∩ Q ⊆ S ∩ P = ∅ ,

which is impossible.

719



Hence yn ∈ Q , so

(y/t)n = yn / tn ∈ S−1Q .

This proves S−1Q is primary, and hence S−1P -

primary. This completes the proof of the Lemma.

Theorem: Primary ideals of A which

avoid S are in a one-one correspondence

with primary ideals in S−1A under the map

Q 7→ S−1Q .
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Proof: Put

P1 = { primary ideals Q of A | Q ∩ S = ∅ }

and

P2 = { primary ideals of S−1A } .

Let

Φ : P1 −→ P2 , Q 7→ S−1Q

Ψ : P2 −→ P1 , I 7→ I c .
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Then Ψ is sensibly defined, because if I ∈ P2

then I c is primary (by the Observation on page

662), and I c ∩ S = ∅

(because if x ∈ I c ∩ S then

1/1 = (1/x)(x/1) ∈ I

so that I = S−1A , contradicting that I 6= S−1A ).

Further, if Q ∈ P1 then S ∩ r(Q) = ∅

(for if x ∈ S ∩ r(Q) then some power of x lies in

S ∩ Q , contradicting that S ∩ Q = ∅ ),
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so that, by part (ii) of the previous Lemma, S−1Q

is primary, so that Φ is sensibly defined, and

ΨΦ(Q) = Ψ(S−1Q) = (S−1Q) c = Q .

If I ∈ P2 then I = I c e , since all ideals of

S−1A are extended (see page 616), so

ΦΨ(I) = S−1(I c) = I c e = I ,

since extension is the same as application of S−1

(see page 613).
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Hence Φ and Ψ undo each other, so, in particular,

Φ is a bijection and the Theorem is proved.

Notation: If J � A , write

S(J) = J e c = { a ∈ A | a/1 ∈ S−1J } .

Hence, if Q � A is primary and Q ∩ S = ∅
then, from the previous proof:

S(Q) = ΨΦ(Q) = Q .
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In what follows, S is a multiplicatively closed

subset of A and I � A has a minimal primary

decomposition

I =
⋂

i

Qi ,

and we put Pi = r(Qi) (∀i) . We suppose

further that the ideals have been arranged so that,

for some m where 1 ≤ m ≤ n ,

S ∩ Pi = ∅ (∀i = 1, . . . ,m) ;

S ∩ Pj 6= ∅ (∀j = m + 1, . . . , n) .
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Theorem: We have the following minimal

primary decompositions:

S−1I =

m
⋂

i=1

S−1Qi

and

S(I) =

m
⋂

i=1

Qi .

Proof: Observe that
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S−1I =

n
⋂

i=1

S−1Qi =

m
⋂

i=1

S−1Qi (∗)

since S−1 commutes with intersection, and since

S−1Qj = S−1A for j ≥ m + 1 by part (i) of the

previous Lemma.

But also

S−1Qi is S−1Pi-primary

for all i = 1, . . . ,m , by part (ii) of that Lemma,

and further
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S−1P1 , . . . , S−1Pm are distinct,

since P1 , . . . , Pm are distinct prime ideals which

avoid S (applying part (iv) of the Theorem on page

617).

Hence, contracting both sides of (∗) ,

S(I) = (S−1I) c =

m
⋂

i=1

(S−1Qi)
c
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so

S(I) =

m
⋂

i=1

S(Qi) =

m
⋂

i=1

Qi (∗∗)

since the “operator” S fixes each Qi .

Certainly (∗∗) is a minimal primary decomposition.

If, for some i ∈ { 1 , . . . , m } ,

S−1Qi ⊇
⋂

j 6=i , 1≤j≤m

S−1Qj
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then

Qi =
(

S−1Qi

) c
⊇

⋂

j 6=i , 1≤j≤m

(

S−1Qj

) c

=
⋂

j 6=i , 1≤j≤m

Qj ,

which contradicts the minimality of (∗∗) .

Hence (∗) is also a minimal primary decomposition,

and the Theorem is proved.
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Consider a decomposable ideal I and put

Π = { prime ideals belonging to I } .

Call a subset Γ of Π isolated if

(∀P ∈ Γ) (∀P ′ ∈ Π)

P ′ ⊆ P =⇒ P ′ ∈ Γ (†)

In particular,
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if P ∈ Π is isolated then {P } is isolated.

Suppose Γ is isolated and put

S = A \
(

⋃

P∈Γ

P
)

=
⋂

P∈Γ

(

A\P
)

.

Then S is multiplicatively closed (being the
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intersection of multiplicatively closed subsets).

For each P ′ ∈ Π , clearly

P ′ ∈ Γ =⇒ P ′ ∩ S = ∅ ,

and further, by (†) ,

P ′ 6∈ Γ =⇒ (∀P ∈ Γ) P ′ 6⊆ P ,

so, by part (ii) of the Theorem on page 195,
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P ′ 6∈ Γ =⇒ P ′ 6⊆
⋃

P∈Γ

P =⇒ P ′ ∩ S 6= ∅ .

Thus

P ′ ∈ Γ ⇐⇒ P ′ ∩ S = ∅ (‡)

We can now deduce another uniqueness theorem.
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Let I be decomposable and P1 , . . . , Pn be the

prime ideals belonging to I

(which by the First Uniqueness Theorem are

independent of the decomposition).

Suppose m ≤ n and Γ = { P1 , . . . , Pm } is

isolated.
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Second Uniqueness Theorem: For any

two minimal primary decompositions

I =

n
⋂

i=1

Qi =

n
⋂

i=1

Q′
i

where r(Qi) = r(Q′
i) = Pi (∀i)

we have
m
⋂

i=1

Qi =

m
⋂

i=1

Q′
i .
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Proof: By (‡) applied to

S = A \ (P1 ∪ . . . ∪ Pm)

we have, for each i = 1, . . . , n ,

Pi ∩ S = ∅ ⇐⇒ i ≤ m ,

so, by the previous Theorem,

m
⋂

i=1

Qi = S(I) =

m
⋂

i=1

Q′
i ,

and we are done.

737



Call a primary component Q of a primary

decomposition isolated if r(Q) is isolated,

(in which case { r(Q) } is isolated),

and embedded otherwise.

Thus, taking m = 1 in the previous Theorem, we

get

Corollary: The isolated primary components

of a primary decomposition of a given ideal are

unique.
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Example: Put A = F [x, y] where F is a field.

Then

〈 x2 , xy 〉 = 〈x 〉 ∩ 〈x , y 〉2

= 〈x 〉 ∩ 〈x2 , y 〉

are minimal primary decompositions, and because

〈x 〉 is isolated, the corollary predicts that it must

be common to both.
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