Under finite generation assumptions, S^{-1} commutes with other operations involving ideals.

Proof: If $a \in Ann(M)$, $m \in M$ and $s, t \in S$

then am = 0, so

$$(a/s)(m/t) = am / st = 0 / st = 0$$
,

which proves $S^{-1}(\operatorname{Ann}(M)) \subseteq \operatorname{Ann}(S^{-1}M)$.

Suppose conversely that $\ a \in A$, $\ s \in S$ and $a/s \in {\rm Ann} \ (S^{-1}M)$.

Let the generators of M be m_1, \ldots, m_n .

Then, for
$$i = 1, \ldots, n$$
,
 $(a/s)(m_i/1) = am_i/s = 0/1$,
so
 $t_i am_i = 0$ $(\exists t_i \in S)$.

Put

$$t = t_1 \dots t_n ,$$

SO

$$(at)m_i = 0$$
 $(\forall i = 1, ..., m)$.
Hence $at \in Ann(M)$

(since
$$m_1$$
 , \ldots , m_n generate M),

(noting $t \in S$),

SO

SO

Ann
$$(S^{-1}M) \subseteq S^{-1}(Ann (M))$$
,

 $a/s = at / st \in S^{-1}(Ann (M))$

whence equality holds.

Exercise: Find a multiplicatively closed subset S of a ring A and an A-module M such that

$$S^{-1}(\operatorname{Ann}(M)) \subset \operatorname{Ann}(S^{-1}M)$$

Corollary: Let N, P be submodules of an A-module M, and suppose P is finitely generated. Then

$$S^{-1}(N:P) = (S^{-1}N:S^{-1}P).$$

Proof: By the previous Proposition,

$$S^{-1}(N:P) = S^{-1}\left(Ann(N+P/N)\right)$$

$$= \operatorname{Ann} \left(S^{-1} (N + P / N) \right)$$

But, by (3) of the Theorem on page 572,

$$S^{-1}(N+P / N) \cong S^{-1}(N+P) / S^{-1}N$$

as $S^{-1}A$ -modules, so have the same annihilators.

By (1) of the same Theorem, $S^{-1}(N+P) = (S^{-1}N) + (S^{-1}P)$,

SO

$$S^{-1}(N:P) = \operatorname{Ann}\left(S^{-1}(N+P) / S^{-1}N\right)$$

$$= \operatorname{Ann} \left((S^{-1}N) + (S^{-1}P) / S^{-1}N \right)$$

$$= (S^{-1}N : S^{-1}P).$$

We finish with an application of the theory of fractions:

Theorem: Let $f: A \to B$ be a ring homomorphism and P a prime ideal of A. Then

 $P\;$ is the contraction of a prime ideal of $\;B\;$

iff P is contracted, that is,

$$P^{\text{ec}} = P$$

Proof: (\Longrightarrow) is obvious. (\Leftarrow) Suppose $P^{ec} = P$, and put $S = \{ f(a) \mid a \in A \setminus P \}.$

Then S is multiplicatively closed in B since $A \backslash P$ is multiplicatively closed in A .

If $\alpha \in P^{\,\mathrm{e}}\cap S$ then $\alpha = f(a)$ for some $a \in A \backslash P$, so

$$a \in f^{-1}(P^{e}) = P^{ec} = P,$$

a contradiction. Hence

$$P^{\mathsf{e}} \cap S = \emptyset .$$

By the last part of (2) of the Theorem on page 616,

$$S^{-1}(P^{\mathsf{e}}) \neq S^{-1}B ,$$

SO

 $S^{-1}(P^{e}) \subseteq M$ ($\exists maximal M \triangleleft S^{-1}B$).

Put
$$Q = \{ b \in B \mid b/1 \in M \}$$
.

Then Q is prime, being the preimage of a maximal ideal with respect to a ring homomorphism.

Certainly $\ Q \ \supseteq P^{\, \mathrm{e}}$, so

$$Q^{\mathsf{c}} \supseteq P^{\mathsf{ec}} = P$$
.

If $Q \cap S \neq \emptyset$ then, again by (2) of the same Theorem,

$$S^{-1}B = S^{-1}Q \subseteq M \subseteq S^{-1}B,$$

so $S^{-1}B = M$, a contradiction.

Hence

$$Q \cap S = \emptyset ,$$

SO

$$Q^{\,\mathsf{c}} \;=\; f^{-1}(Q) \;\subseteq\; P \;,$$

$$Q^{\,\mathsf{c}} = P \;,$$

and the Theorem is proved.