
3.4 Extended and Contracted Ideals in

Rings of Fractions

Let A be a ring and let S be a multiplicatively

closed subset of A . Throughout this section let

f : A → S−1A , a 7→ a/1 .

We study extension and contraction of ideals

with respect to this homomorphism.
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Put

C = { I | I � A and I = I e c } ,

the set of contracted ideals of A and

E = { J | J � S−1A and J = J c e } ,

the set of extended ideals of S−1A .

Consider I � A . Then I may be regarded as an

A-submodule of A , so we may form the module of

fractions S−1I , and make the identification:

S−1I ≡ { a/s ∈ S−1A | a ∈ I , s ∈ S } .
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Claim: I e = S−1I .

Proof: I e = 〈 f(I) 〉ideal

=

{ n
∑

i=1

yi f(xi)

∣

∣

∣

∣

n ∈ Z
+ , yi ∈ S−1A , xi ∈ I (∀i)

}

=

{ n
∑

i=1

(ai/si) (xi/1)

∣

∣

∣

∣

n ∈ Z
+ , ai ∈ A ,

si ∈ S , xi ∈ I (∀i)

}

.
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Clearly, if a ∈ I , s ∈ S then

a/s = (1/s) (a/1) ∈ I e ,

so S−1I ⊆ I e .

Conversely, if

α =

n
∑

i=1

(ai/si) (xi/1) ∈ I e

then, putting s = s1 . . . sn and

ti = s1 . . . si−1si+1 . . . sn (∀i) ,
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α =
∑

(

aixi / si

)

=
∑

(

aixiti / s

)

=

(

∑

aixiti

)

/ s

∈ S−1I ,

since
∑

aixiti ∈ I . Thus I e ⊆ S−1I , and the

claim is proved.
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Theorem:

(1) E = { all ideals of S−1A } .

(2) If I � A then

I e c =
⋃

s∈S

(I : s) ,

in which case,

I e c = A ⇐⇒ I ∩ S 6= ∅ .
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Theorem continued:

(3) C = { I � A | (∀s ∈ S) s + I

is not a zero divisor in A/I } .

(4) Prime ideals of S−1A are in a one-one

correspondence with prime ideals of A disjoint

from S , under

P 7→ S−1P (∀ prime ideals P ) .

(5) S−1 commutes with formation of finite

sums, products, intersections and radicals.
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Proof: (1) Consider J � S−1A . If α ∈ J

then

α = x/s (∃x ∈ A , s ∈ S) ,

so

f(x) = x/1 = (s/1)(x/s) = (s/1) α ∈ J ,

giving x ∈ f−1(J) = J c , so that

α = (1/s)(x/1) = (1/s)f(x) ∈ (J c) e = J c e .

Thus J ⊆ J c e , and, of course, reverse set

containment holds, proving all ideals of S−1A are

extended.
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(2) Suppose I � A . Then, for all x ∈ A ,

x ∈ I e c ⇐⇒ x ∈ (S−1I) c (by the Claim)

⇐⇒ x/1 ∈ S−1I

⇐⇒ x/1 = a/s (∃a ∈ I , s ∈ S)

⇐⇒ (xs − a)t = 0 (∃a ∈ I , s, t ∈ S)
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⇐⇒ xst = at (∃a ∈ I , s, t ∈ S)

⇐⇒ xu ∈ I (∃u ∈ S)

(since S is multiplicatively closed)

⇐⇒ x ∈
⋃

u∈S

(I : u) .
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Hence

I e c =
⋃

u∈S

(I : u) ,

and thus

I e c = A ⇐⇒ A =
⋃

u∈S

(I : u)

⇐⇒ u = 1u ∈ I (∃u ∈ S)

⇐⇒ I ∩ S 6= ∅ .
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(3) If I � A then

I ∈ C ⇐⇒ I = I e c ⇐⇒ I ⊇ I e c

⇐⇒ I ⊇ (S−1I) c

(by the earlier Claim)

⇐⇒ f−1(S−1I) ⊆ I
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⇐⇒ (∀x ∈ I , s ∈ S , y ∈ A)

x/s = y/1 =⇒ y ∈ I

⇐⇒ (∀x ∈ I , s ∈ S , y ∈ A)

(∃t ∈ S) (x − ys)t = 0 =⇒ y ∈ I
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⇐⇒ (∀u ∈ S , y ∈ A) yu ∈ I =⇒ y ∈ I

⇐⇒ (∀u ∈ S , y ∈ A)

(y + I)(u + I) = I =⇒ y + I = I

⇐⇒ (∀u ∈ S) u + I is not a zero divisor of A/I ,

which proves that (3) holds.
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(4) Let

P1 = { P � A | P prime , P ∩ S = ∅ } ,

P2 = { Q � S−1A | Q prime } ,

and

Φ : P1 −→ P2

where

Φ(P ) = P e = S−1P (∀P ∈ P1) .

WTS Φ is sensibly defined.
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Let P ∈ P1 . Certainly S−1P � S−1A .

Suppose

α , β ∈ S−1A and α β ∈ S−1P .

WTS α ∈ S−1P or β ∈ S−1P .

Now

α = a/s , β = b/t (∃a, b ∈ A , s, t ∈ S) .
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Then

ab / st = αβ = c/u (∃c ∈ P , u ∈ S) ,

so

(abu − cst)v = 0 (∃v ∈ S) ,

yielding

abuv = cstv ∈ P .

But P is prime and u , v 6∈ P , so either

a ∈ P or b ∈ P ,
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which proves

α = a/s ∈ S−1P or β = b/t ∈ S−1P .

Thus S−1P is prime, so that Φ is sensibly defined.

WTS Φ is one-one.

Suppose P1 , P2 ∈ P1 and Φ(P1) = Φ(P2) ,

that is,

S−1P1 = S−1P2 .
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If x ∈ P1 then

x/1 = y/s (∃y ∈ P2 , s ∈ S) ,

so

(xs − y)t = 0 (∃t ∈ S)

yielding

xst = yt ∈ P2

whence x ∈ P2 (since s, t 6∈ P2 ). This shows

P1 ⊆ P2 and similarly P2 ⊆ P1 , whence equality.

Thus Φ is one-one.
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WTS Φ is onto.

Suppose Q ∈ P2 , so

Q c = f−1(Q) � A

is prime, being the preimage of a prime ideal by a

ring homomorphism.

By (1), Q c e = Q . If s ∈ Q c ∩ S then

1/1 = (1/s)(s/1) = (1/s)f(s) ∈ Q c e = Q ,

so Q = S−1A , contradicting that Q is prime.
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Hence Q c ∩ S = ∅ , so

Q c ∈ P1

and

Φ(Q c) = Q c e = Q .

Thus Φ is onto, and the proof of (4) is complete.

(5) Let I1 , I2 ∈ A . Then, by earlier exercises,

S−1(I1 + I2) = (I1 + I2)
e = I e

1 + I e
2

= S−1I1 + S−1I2 ,
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and

S−1(I1 I2) = (I1 I2)
e = I e

1 I e
2

= (S−1I1) (S−1I2) .

Further, regarding I1 , I2 as A-modules,

S−1(I1 ∩ I2) = (S−1I1) ∩ (S−1I2) ,

by a recently proved theorem.
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Suppose I � A . Then, by an early exercise,

S−1 r(I) =
[

r(I)
] e

⊆ r(I e) = r(S−1I) .

If α ∈ r(S−1I) then

αn ∈ S−1I (∃n ≥ 1)

so that, writing α = a/s (∃a ∈ A , s ∈ S) ,

an /sn = b/t (∃b ∈ I)(∃t ∈ S)
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so

(ant − bsn)u = 0 (∃u ∈ S)

so

(atu)n = (antu)(tn−1un−1) = (bsnu)tn−1un−1 ∈ I ,

so atu ∈ r(I) and

α = a/s = (atu)/(stu) ∈ S−1
(

r(I)
)

.

Thus r(S−1I) ⊆ S−1
(

r(I)
)

, so equality holds,

finally completing the proof of the Theorem.
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Corollary: The nilradical of S−1A is

S−1N where N is the nilradical of A .

Proof: By (5) of the previous Theorem,

S−1N = S−1
(

r({0})
)

= r(S−1{0})

= r({0/1}) ,

which is the nilradical of S−1A .
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Corollary: Let P be a prime ideal of A .

Then the prime ideals of the local ring AP are

in a one-one correspondence with the prime ideals

of A contained in P .

Proof: By part (4) of the previous Theorem this

correspondence arises, because

an ideal avoids S = A\P

iff

the ideal is contained in P .
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These considerations tell us that

constructing AP focuses attention on

prime ideals contained in P .

On the other hand

constructing A/P focuses attention on

prime ideals containing P .
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Suppose also that Q is a prime ideal and P ⊇ Q .

To focus attention on prime ideals between P and

Q suggests contructing the hybrid

S−1A / S−1Q ∼= T−1
(

A/Q) · · · (∗)

(isomorphism proved below)

where S = A\P and T = (A/Q)\(P/Q) .
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In particular, if P = Q then

S−1Q = { x/s | x ∈ P , s ∈ S }

is the unique maximal ideal of AP = S−1A and

T = { nonzero elements of A/P } ,

so (∗) becomes
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residue field of AP

∼= field of fractions of the integral domain

A/P .

Proof of (∗) : Let φ : S−1A −→ T−1(A/Q)

where

a/s 7→ a + Q / s + Q (a ∈ A , s ∈ S) .

It is easy to check that φ is a well-defined, onto
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ring homomorphism.

Clearly S−1Q ⊆ ker φ .

Suppose a/s ∈ ker φ . Then

a + Q / s + Q = Q / 1 + Q ,

so

(a + Q)(t + Q) = Q (∃t ∈ S) .

Hence

Q = at + Q yielding at ∈ Q .
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But Q is prime and t 6∈ P ⊇ Q .

Thus a ∈ Q , so

a/s ∈ S−1Q ,

which proves ker φ = S−1Q .

The result (∗) now follows by the Fundamental

Homomorphism Theorem.
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