3.4 Extended and Contracted ldeals in
Rings of Fractions

Llet A be aring and let S be a multiplicatively
closed subset of A . Throughout this section let

f:A — S1A, a +— a/l.

We study extension and contraction of ideals
with respect to this homomorphism.
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Put
C = {I| T <A and [ = I°°},
the set of contracted ideals of A and
E ={J|J<S'A and J = J},
the set of extended ideals of S™'A .

Consider I << A. Then I may be regarded as an
A-submodule of A, so we may form the module of
fractions S~'I , and make the identification:

STl = {a/s € S'TA|acl, scS}.
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Claim: ¢ = SII.

Proof: I¢ = ( f(I) )ideal

- {Zyz‘f(ﬂfi) nez,y €S A z el (W>}

— { Z (a;/s;) (x;/1) | n€ez’, a; € A,

s, €S, x, el (VZ)}
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Clearly, if a€ I, s€ S then

a/s = (1/s)(a/1) € I°%,
so 71 C I¢.

Conversely, if

n

o =Y (ai/s;) (w:/1) € I°®

1=1

then, putting s = s; ... s, and

tz' — S1...85-15+1...8n (\V/Z) ]
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a =y (a:v /sz-) = >y (a@-:vz-ti /s)

(Z aiaziti> /s

c ST,

since > a;xit; € I. Thus I¢ C S, and the
claim is proved.
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Theorem:
(1) & = {allidealsof S71A}.
(2) If I < A then

In which case,

I = A = INsS #10.
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Theorem continued:

3) C={I<A| (Vsef§) s+1
is not a zero divisor in A/I } .

(4) Prime ideals of S !'A are in a one-one
correspondence with prime ideals of A disjoint
from S, under

P — S'P (V prime ideals P) .

(5) S ! commutes with formation of finite
sums, products, intersections and radicals.
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Proof: (1) Consider J < S7'A. If aeJ

then
a =zx/s (dxreA, sel),

flx) = z/1 = (s/1)(x/s) = (s/1)a € J,
giving x € f1Y(J) = J¢, so that

a = (I/s)(z/1) = (1/s)f(zx) € (J)" = J*°.

Thus J C J  and, of course, reverse set
containment holds, proving all ideals of S™'A are
extended.
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(2) Suppose I << A. Then, forall x € A,

r € I <— 2z € (S7'I)°  (by the Claim)
— z/1 € S7'I
<~ z/1 = a/s (Jael, s€S)

<~ (rs—a)t = 0 (Jael, s,t€S)
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< uxst = at (dae I, s,teS)
<— au € [ (Ju € 95)

(since S is multiplicatively closed)

= :EEU(I:u).

uesS
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Hence

and thus

[ =A < A=|]{:u

uesS

— u = 1lu € 1

&~ INS £90.

(Ju € 5)
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(3) If I <« A then

I ¢ C «— 1

1% <— T DO I°®°
— I D (87

(by the earlier Claim)

= f(S7') C1I
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<

<—

Veel,seS,yeA)

r/s = y/1 —

Veel,seS,yeA)

(FteS) (z—ys)t =

0

y el
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— MueS,ycA yuel — yel
— MueS,yecA
y+Du+I) =1 — y+1=1

— (Vueld) u~+ I is not a zero divisor of A/I,

which proves that (3) holds.
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(4) Let
P, = {P<1<A| P prime , PNS =10},

P, = {Q < S5'A]Q prime},
and
(I)ZP1—>PQ

Pe = S'P  (YPcP).

by
3
[

WTS @ s sensibly defined.
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Let P € P;. Certainly S7'P « S714.

Suppose

a, € StA and afeSP.

WTS «aeS'P o peS'P.

Now

a = a/s, B = b/t (da,be A, s,t€S).
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Then
ab /st = af = c/u (Jce P, ues)

SO
(abu —cst)v = 0 (Jv e ),
yielding
abuv = cstv € P.

But P is prime and u,v € P, so either

a € P or be P,
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which proves
o =a/s € S'P or [ =b/t € S'P.

Thus S™'P is prime, so that ® is sensibly defined.

WTS & is one-one.

Suppose P, P, € P; and ®(P) = &),
that is,
S7'P = S'P.
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If £ € P, then
r/1l = y/s (Jye Py, s€8),

SO
(xs —y)t = 0 (It € 9)
yielding
xst = yt € Py

whence x € P, (since s,t & P, ). This shows
P, C P, and similarly P, C P;, whence equality.
Thus @ is one-one.
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WTS & is onto.

Suppose () € Ps, so
Q° = f(Q) < A

Is prime, being the preimage of a prime ideal by a
ring homomorphism.

By (1), Q¢ = Q. If se@°NS then
1/1 = (1/s)(s/1) = (1/s)f(s) € Q° = Q,

so Q = S 'A, contradicting that Q is prime.
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Hence QNS = 0, so
Q" € P

and
Q) = Q* = Q.

Thus @ is onto, and the proof of (4) is complete.

(5) Let I, I, € A. Then, by earlier exercises,

S L+L) = (L+1)¢ = I+ 17

S_lll =+ S_1[2 9
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and

SHLL) = (LL) = ItLf

= (S7'I)(S7'L) .

Further, regarding I, , I as A-modules,
SHLNL) = (ST'LH)N(S™'L),

by a recently proved theorem.
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Suppose I <1 A . Then, by an early exercise,

SThr(I) = [r(D]° C r(I® = r(S7).

If a € r(S™'I) then

" € ST (In > 1)

so that, writing @ = a/s (da€ A, s€S§),

a" /s" = b/t (Fbe I)(Tt € 5)
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SO
(a"t — bs")u = 0 (Ju € 5)

(atw)” = (a"tu)(t" ") = (bs"u)t" "t e T,
so atu € r([l) and
a = a/s = (atu)/(stu) € S (r(I)) .

Thus r(S7'I) C S7*(r(I)) , so equality holds,
finally completing the proof of the Theorem.
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Corollary:  The nilradical of S™!A s
S—IN where N is the nilradical of A .

Proof: By (5) of the previous Theorem,

STIN = S7Hr({0})) = r(STH{o0})

= r({0/1}),
which is the nilradical of S™1A .
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Corollary: Let P be a prime ideal of A .

Then the prime ideals of the local ring Ap are
In a one-one correspondence with the prime ideals
of A contained in P .

Proof: By part (4) of the previous Theorem this
correspondence arises, because

an ideal avoids S = A\P
iff

the ideal I1s contained in P .
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These considerations tell us that

constructing Ap focuses attention on
prime ideals contained in P .

On the other hand

constructing A/P focuses attention on
prime ideals containing P .
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Suppose also that () isa primeidealand P O () .

To focus attention on prime ideals between P and
() suggests contructing the hybrid

STA/STIQ =2 TY(A/Q) e ()

(isomorphism proved below)

where S = A\P and T = (A/Q)\(P/Q) .
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In particular, it P = () then
S7'Q = {z/s | zeP,scS}

is the unique maximal ideal of Ap = S~'A and
T = { nonzero elements of A/P },

so (%) becomes
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residue field of Ap

= tield of fractions of the integral domain

AP

Proof of (x): Let ¢:S51'A — T 1A/Q)

where

a/s — a+Q/s+Q (ac A, sef).

It is easy to check that ¢ is a well-defined, onto
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ring homomorphism.
Clearly S71Q C ker¢ .
Suppose a/s € ker¢ . Then

a+Q/s+Q = Q/1+Q,

SO

(a+Qt+Q) =Q (3Ftes).

Hence

Q = at+ Q) yielding at € () .
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But Q isprimeand t € P O ().
Thus a € @, so

a/s € SQ ,
which proves ker¢p = S™!Q) .

The result (%) now follows by the Fundamental
Homomorphism Theorem.
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