
3.3 Some Properties of Localization

Let A be a ring.

If M is an A-module and P a prime ideal of A ,

recall the notation

AP = S−1A , MP = S−1M

where S = A\P .
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Special Case of the Previous Theorem:

Let P be a prime ideal of A and M , N be

A-modules. Then

MP ⊗AP
NP

∼=
(

M ⊗A N
)

P

as AP -modules.

This follows because (putting S = A\P )

MP ⊗AP
NP = S−1M ⊗S−1A S−1N

∼= S−1(M ⊗A N) =
(

M ⊗A N
)

P
.
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Call a property P involving rings, modules

or homomorphisms “local”

if the property holds whenever every

“localized” version of the property holds.

In the next two results we will prove, respectively

that “being trivial” is a local property of modules,

and

“being injective/surjective” is a local property of

module homomorphisms.
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Theorem: Let M be an A-module. Then

TFAE:

(i) M = 0 ;

(ii) MP = 0 for all prime ideals P ;

(iii) MQ = 0 for all maximal ideals Q .

Proof: (i) =⇒ (ii) =⇒ (iii) is obvious, so it

remains only to prove (iii) =⇒ (i).
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Suppose that (iii) holds and M is not the zero

module. Hence

(∃x ∈ M) x 6= 0 .

Now

Ann (x) = { a ∈ A | ax = 0 } � A

and certainly Ann (x) 6= A , since 1 6∈ Ann (x) .

Hence

Ann (x) ⊆ Q

for some maximal ideal Q of A .
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But (iii) holds, so MQ = 0 . In particular,

x/1 is zero in MQ , so (x, 1) ≡ (0, 1) .

Hence

0 = u(1 · x − 1 · 0) = ux (∃u ∈ A\Q)

so

u ∈ Ann (x) ⊆ Q ,

contradicting that u 6∈ Q .

Thus M = 0 , so (i) holds, and the Theorem is

proved.
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Theorem: Let φ : M → N be an A-module

homomorphism, and write φP = S−1φ where

S = A\P for a prime ideal P of A .

Then TFAE:

(i) φ is injective [surjective];

(ii) φP is injective [surjective] for all prime ideals

P ;

(iii) φQ is injective [surjective] for all maximal

ideals Q .
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Proof: We prove the injective case.

(i) =⇒ (ii): If φ is injective then

0 −→

φ

M −→ N

is exact, so, for each prime ideal P ,

0 −→

φP

MP −→ NP

is exact, by an earlier theorem, whence φP is

injective.
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(ii) =⇒ (iii) is obvious.

(iii) =⇒ (i): Suppose (iii) holds, and put

M ′ = ker φ .

Then

0 −→ M ′ −→

φ

M −→ N

is exact, where the second mapping is inclusion.

608



For each maximal ideal Q of A ,

0 −→ M ′
Q −→

φQ

MQ −→ NQ

is exact, by an earlier theorem, so

M ′
Q

∼= ker φQ = 0 ,

by (iii), since φQ is injective.

609



By the previous Theorem in this section,

M ′ = 0 ,

which proves φ is injective, and (i) holds.

The surjective case is left as an exercise.

(Hint: reverse arrows in the previous argument, and

use the image instead of the kernel.)
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