3.2 Modules of Fractions

Let A bearing, S a multiplicatively closed subset
of A, and M an A-module.

Define a relation = on
MxS ={(m,s)|meM, se€S5}

by, for mm' e M, s,s €85,
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(m,s) = (m,s)

iff (3t €.9) t(sm'—s'm) = 0.

As before it is straightforward to check that

= Is an equivalence relation.
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If m & M and s €S then write

m/s = equivalence class of (m,s) .

and put

SM = {m/s| meM,scS}.
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Define addition and scalar multiplication on S™'M
by, for mm' e M, s,sse€ S, ae A, te S,

(m/s) + (m'/s") = (sm'+s'm)/ss

(a/t) (m/s) = am [ts .

member of S~ 'A .

559



Exercise: Prove that addition and scalar
multiplication are well-defined.

It Is now routine to check that

S—IM is an S 'A-module, referred to as the
module of fractions with respect to 5 .

Since the mapping a +— a/1 is a ring
homomorphism: A — S 'A |, by restriction of
scalars we have
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S—IM is an A-module with scalar multiplication

Vae A, meM, seb)

a- (m/s) = (a/l)(m/s) = am/s.

The mapping: M — S 'M, x — x/1 is an
A-module homomorphism and injective iff

NVeeM,x#0) Ann(Ax)NS = 0.
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Some notation: Let M be an A-module.

(1) Write
Mp = S™'M
if S = A\P where P is a prime ideal of A.

(2) Write
M, = ST'M
if S ={2" | n>0} forsome z€ A.
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Think of S™' as an ‘“operator” which
manufactures S~ !A-modules from A-modules.

Also S~! ‘“operates’ on module homomorphisms.

let w: M — N bean A-module homomorphism.
Define

Sty STIM — STIN by

m/s +— u(m)/s (meM, self).
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It is routine to check that S~ 'u is well-defined. We
check S™! preserves addition:

D (m1/51 + m2/52) = (S 'u) (52m1 + s1mo / 5152)
= u(Somq + s1my2) / $189 = [32 u(mq) + 81?1,(77?/2)} / 8189

= u(mq)/s1 + u(ma)/s2 = (S u)(mi/s1) + (S~ u) (ma/s2).

Similarly S™! preserves scalar multiplication.
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Hence

S~lu is an S™!A-module homomorphism

(and also, by restriction of scalars, an A-module
homomorphism).

Further, if

U v
My — My — M3

are A-module homomorphisms, then,
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forall e M, s&€§,

S wouw)(x/s) = (vou)a)/s =

= (S ((S W) (e/s)) = [(Sv)e

which shows

(We call S~! a functor.)
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Theorem: Suppose

f g
M — M — M"”

Is exact at M . Then

S1f S
STIM' — STIM — SLM”

is exact at S~ M .

(We call S~! an exact functor.)
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Proof: We have go f = 0 the zero
homomorphism, so

(S7'g)o(S7'f) = S Hgof) = SH(0) = 0,
which proves im (S7'f) C ker(S1g).

Suppose m/s € ker(Slg), so g(m)/s is the
zero of S~'M" . Hence (g(m),s) = (0,1), so

0 = tg(m) = g(tm) (I e€S5),

yielding tm € kerg = im f .
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Hence

whence

(ST N)m' [ st) = f(m)) /st = tm[ts = m/s,
proving m/s € im (S™1f) .
Thus ker(S~'g) D im (S7'f), completing the

proof of exactness at S™'M .
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In particular, if M’ is a submodule of M then
0 - M — M

is exact (where the mapping on the right is the
inclusion embedding), so, by the Theorem,

0=S50— S 'M — S 'Mm

Is exact, so that

inclusion induces an embedding of S~'M’
in ST1M
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hus we may regard S~'M’ as a submodule of
S—IM |, identifying each

r/s in STIM’
with
r/s in STIM .

With this identification we can prove that formation
of fractions “commutes’ with formation of sums,
finite intersections and quotients:
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Theorem: Let N and P be submodules of
an A-module M . Then

1) SY(N+P) = (S7IN) + (571P);
(2) S YNNP) = (S'N)n (81P);

3) S(M/N) = (SM)/(S'N)
(as S~'A-modules).
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Proof: (1) Clearly S™'!N, S7'P C S YN + P),
so STIN + 7P C STHN+P),
since S™H(N + P) is a submodule of S™'M .

Also SS'(N+P) = {(z+y)/s|zreN,ye P, seS}
= {x/s+y/s| zreN,yeP,6 secS}

SN + S7'P,  whence equality holds.

I
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(2) Clearly NNnP C N, P, so
S NnP) C S'N,S'P,

SO

S NNnP) C S'NnsS'p.

Suppose a € (STIN)N(S71P), so

a = x/s = y/t
forsome re N, ye P, s,tels.

Then
u(sy —tx) = 0 (Ju € 5)
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SO
usy = utr € NNP.

Hence

o = x/s = (ut)x / (ut)s € STH{NNP).

hus
(ST'N) n (7'P) € STY{NNP),
whence equality holds.
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(3) Observe that
0O - N —-> M — M/N — 0

Is exact, where the second mapping is inclusion,
and the third mapping is natural. By the previous
Theorem,

0 - S'N - S'M - SHM/N) - 0
Is exact, whence

S7(M/N) = S 'M/S'N.
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Theorem: Let M be an A-module. Then
STIM = ST'A @4 M
as S !'A-modules, under the unique isomorphism
f:S'"As M - S M
with the property that

(a/s)@m +— am /s oo (%)
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Proof: Easy to see
fle STAxM — S'M, (a/s,m) — am/s

s A-bilinear, so there is a unique A-module
homomorphism f making the following diagram
commute yielding the rule (x) :

STtAx M SlAe M
f\ /f
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It remains to check f is bijective and
preserves scalar multiplication by S™'A .

Certainly f is onto because
(Vme M, seb) m/s = f(1/s ® m) .

Before proving f is one-one, we prove:

Claim:

STAM = {1/s@m | s€S, meM}.

579



Let

1=1
Put
S = S1...5,
and
tz — S51...5,-15i4+1..-5p
foreach 1 =1,...,n.

Then
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= Z (1/s) ® (at;m;) = 1/s ® m,

where m = ) a;t;m; , proving the Claim.
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We now prove that f is one-one.

Suppose « € ker f . Then, by the Claim,
a=1/s ® m (s € S)(dm e M) ,
SO
0 = fla) = f(1/s ® m) = m/s.
Thus (m,s) = (0,1) so

tm =0 forsome t€S.

Hence
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a = 1/s @® m = t/ts ® m

(t/1)(1/st)] ® m = (¢/1)[1/st ® m]

t-|1/st @ m| = 1/st ® (tm)

= 1/st ® 0 = 0.

Hence ker f = {0}, so f is one-one.
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That f preserves scalar multiplication by elements
of ST1A follows from the following Lemma, whose
proof is left as an exercise. This completes the proof
that f isan S~ !'A-module isomorphism.

Lemma: Let f:M; — M, bean A-module
homomorphism, where M; and M, are S !'A-
modules, regarded as A-modules by restriction of

scalars.

Then f isalsoan S™'A-module homomorphism.
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