
3.2 Modules of Fractions

Let A be a ring, S a multiplicatively closed subset

of A , and M an A-module.

Define a relation ≡ on

M × S = { (m, s) | m ∈ M, s ∈ S }

by, for m,m′ ∈ M , s, s′ ∈ S ,
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(m, s) ≡ (m′, s′)

iff (∃t ∈ S) t(sm′ − s′m) = 0 .

As before it is straightforward to check that

≡ is an equivalence relation.
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If m ∈ M and s ∈ S then write

m/s = equivalence class of (m, s) .

and put

S−1M = { m/s | m ∈ M , s ∈ S } .
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Define addition and scalar multiplication on S−1M

by, for m,m′ ∈ M , s, s′ ∈ S , a ∈ A , t ∈ S ,

(m/s) + (m′/s′) = (sm′ + s′m) / ss′

(a/t) (m/s) = am /ts .

member of S−1A .
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Exercise: Prove that addition and scalar

multiplication are well-defined.

It is now routine to check that

S−1M is an S−1A-module, referred to as the

module of fractions with respect to S .

Since the mapping a 7→ a/1 is a ring

homomorphism: A → S−1A , by restriction of

scalars we have
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S−1M is an A-module with scalar multiplication

(∀a ∈ A , m ∈ M , s ∈ S)

a · (m/s) = (a/1)(m/s) = am/s .

The mapping: M → S−1M , x 7→ x/1 is an

A-module homomorphism and injective iff

(∀x ∈ M , x 6= 0 ) Ann (Ax) ∩ S = ∅ .
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Some notation: Let M be an A-module.

(1) Write

MP = S−1M

if S = A\P where P is a prime ideal of A .

(2) Write

Mx = S−1M

if S = { xn | n ≥ 0 } for some x ∈ A .

562



Think of S−1 as an “operator” which

manufactures S−1A-modules from A-modules.

Also S−1 “operates” on module homomorphisms.

Let u : M → N be an A-module homomorphism.

Define

S−1u : S−1M → S−1N by

m/s 7→ u(m)/s (m ∈ M , s ∈ S) .
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It is routine to check that S−1u is well-defined. We

check S−1 preserves addition:

(S−1u)
(

m1/s1 + m2/s2

)

= (S−1u)
(

s2m1 + s1m2 / s1s2

)

= u(s2m1 + s1m2) / s1s2 =
[

s2 u(m1) + s1u(m2)
]

/ s1s2

= u(m1)/s1 + u(m2)/s2 = (S−1u)
(

m1/s1) + (S−1u)
(

m2/s2).

Similarly S−1 preserves scalar multiplication.
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Hence

S−1u is an S−1A-module homomorphism

(and also, by restriction of scalars, an A-module

homomorphism).

Further, if

u

M1 −→ M2

v

−→ M3

are A-module homomorphisms, then,
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for all x ∈ M1 , s ∈ S ,
[

S−1(v ◦ u)
]

(x/s) = (v ◦ u)(x) / s = v(u(x)) / s

= (S−1v)
(

(S−1u)(x/s)
)

= [(S−1v) ◦ (S−1u)
]

(x/s) ,

which shows

S−1(v ◦ u) = (S−1v) ◦ (S−1u) .

(We call S−1 a functor.)
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Theorem: Suppose

f

M ′ −→ M

g

−→ M ′′

is exact at M . Then

S−1f

S−1M ′ −→ S−1M

S−1g

−→ S−1M ′′

is exact at S−1M .

(We call S−1 an exact functor.)
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Proof: We have g ◦ f = 0 the zero

homomorphism, so

(S−1g)◦(S−1f) = S−1(g◦f) = S−1(0) = 0 ,

which proves im (S−1f) ⊆ ker(S−1g) .

Suppose m/s ∈ ker(S−1g) , so g(m)/s is the

zero of S−1M ′′ . Hence (g(m), s) ≡ (0, 1) , so

0 = t g(m) = g(tm) (∃t ∈ S) ,

yielding tm ∈ ker g = im f .
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Hence

tm = f(m′) (∃m′ ∈ M ′) ,

whence

(S−1f)(m′ / st) = f(m′) / st = tm/ ts = m/s ,

proving m/s ∈ im (S−1f) .

Thus ker(S−1g) ⊇ im (S−1f) , completing the

proof of exactness at S−1M .
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In particular, if M ′ is a submodule of M then

0 → M ′ → M

is exact (where the mapping on the right is the

inclusion embedding), so, by the Theorem,

0 = S−10 → S−1M ′ → S−1M

is exact, so that

inclusion induces an embedding of S−1M ′

in S−1M .

570



Thus we may regard S−1M ′ as a submodule of

S−1M , identifying each

x/s in S−1M ′

with

x/s in S−1M .

With this identification we can prove that formation

of fractions “commutes” with formation of sums,

finite intersections and quotients:
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Theorem: Let N and P be submodules of

an A-module M . Then

(1) S−1(N + P ) = (S−1N) + (S−1P ) ;

(2) S−1(N ∩ P ) = (S−1N) ∩ (S−1P ) ;

(3) S−1(M/N) ∼= (S−1M)/(S−1N)

(as S−1A-modules).
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Proof: (1) Clearly S−1N , S−1P ⊆ S−1(N + P ) ,

so S−1N + S−1P ⊆ S−1(N + P ) ,

since S−1(N + P ) is a submodule of S−1M .

Also S−1(N + P ) = { (x + y)/s | x ∈ N , y ∈ P , s ∈ S }

= { x/s + y/s | x ∈ N , y ∈ P , s ∈ S }

⊆ S−1N + S−1P , whence equality holds.
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(2) Clearly N ∩ P ⊆ N , P , so

S−1(N ∩ P ) ⊆ S−1N , S−1P ,

so

S−1(N ∩ P ) ⊆ S−1N ∩ S−1P .

Suppose α ∈ (S−1N) ∩ (S−1P ) , so

α = x/s = y/t

for some x ∈ N , y ∈ P , s, t ∈ S .

Then

u(sy − tx) = 0 (∃u ∈ S)
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so

usy = utx ∈ N ∩ P .

Hence

α = x/s = (ut)x / (ut)s ∈ S−1(N ∩ P ) .

Thus

(S−1N) ∩ (S−1P ) ⊆ S−1(N ∩ P ) ,

whence equality holds.
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(3) Observe that

0 → N → M → M/N → 0

is exact, where the second mapping is inclusion,

and the third mapping is natural. By the previous

Theorem,

0 → S−1N → S−1M → S−1(M/N) → 0

is exact, whence

S−1(M/N) ∼= S−1M / S−1N .
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Theorem: Let M be an A-module. Then

S−1M ∼= S−1A ⊗A M

as S−1A-modules, under the unique isomorphism

f : S−1A ⊗A M → S−1M

with the property that

(a/s) ⊗ m 7→ am / s . . . (∗)
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Proof: Easy to see

f ′ : S−1A × M → S−1M , (a/s, m) 7→ am / s

is A-bilinear, so there is a unique A-module

homomorphism f making the following diagram

commute yielding the rule (∗) :

S−1A × M S−1A ⊗ M

S−1M

f ′ f
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It remains to check f is bijective and

preserves scalar multiplication by S−1A .

Certainly f is onto because

(∀m ∈ M , s ∈ S) m/s = f(1/s ⊗ m) .

Before proving f is one-one, we prove:

Claim:

S−1A⊗M = { 1/s⊗m | s ∈ S , m ∈ M } .
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Let

α =

n
∑

i=1

(ai/si) ⊗ mi ∈ S−1A ⊗ M .

Put

s = s1 . . . sn

and

ti = s1 . . . si−1si+1 . . . sn

for each i = 1, . . . , n .

Then
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α =
∑

(

aiti/s
)

⊗ mi =
∑

[

(

aiti/1
)(

1/s
)

]

⊗ mi

=
∑

(

aiti/1
)

[

(

1/s
)

⊗ mi

]

=
∑

(aiti) ·

[

(

1/s
)

⊗ mi

]

=
∑

(1/s) ⊗ (aitimi) = 1/s ⊗ m ,

where m =
∑

aitimi , proving the Claim.
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We now prove that f is one-one.

Suppose α ∈ ker f . Then, by the Claim,

α = 1/s ⊗ m (∃s ∈ S)(∃m ∈ M) ,

so

0 = f(α) = f(1/s ⊗ m) = m/s .

Thus (m, s) ≡ (0, 1) so

tm = 0 for some t ∈ S .

Hence
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α = 1/s ⊗ m = t/ts ⊗ m

=
[(

t/1
)(

1/st
)]

⊗ m =
(

t/1
)[

1/st ⊗ m
]

= t ·
[

1/st ⊗ m
]

= 1/st ⊗ (tm)

= 1/st ⊗ 0 = 0 .

Hence ker f = {0} , so f is one-one.

583



That f preserves scalar multiplication by elements

of S−1A follows from the following Lemma, whose

proof is left as an exercise. This completes the proof

that f is an S−1A-module isomorphism.

Lemma: Let f : M1 → M2 be an A-module

homomorphism, where M1 and M2 are S−1A-

modules, regarded as A-modules by restriction of

scalars.

Then f is also an S−1A-module homomorphism.
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