3.1 Rings of Fractions

Let A be a ring.

Call a subset S of A multiplicatively closed if (i) $1 \in S$; (ii) $(\forall x, y \in S)$ $xy \in S$.

For example, if A is an integral domain then $A \setminus \{0\}$ is multiplicatively closed.

More generally, if P is a prime ideal of A then $A \backslash P \ \ \text{is multiplicatively closed}.$

Let S be a multiplicatively closed subset of A . Define a relation $\equiv\,$ on

$$A \times S = \{ (a, s) \mid a \in A, s \in S \}$$

as follows:

for $a,b\in A$, $s,t\in S$,

$$(a,s) \equiv (b,t)$$

iff $(\exists u \in S)$ $(at-bs)u = 0$.

Claim: \equiv is an equivalence relation.

Proof: Clearly \equiv is reflexive and symmetric. Suppose $(a,s) \equiv (b,t) \equiv (c,u)$. Then, for some $v, w \in S$

$$(at-bs)v = 0 = (bu-ct)w,$$

SO

$$atv - bsv = 0$$

$$buw - ctw = 0$$

SO

$$atv(uw) - bsv(uw) = 0$$
$$-ctw(sv) + buw(sv) = 0$$

$$au(tvw) - cs(tvw) = (au - cs)(tvw) = 0,$$

But $tvw \in S$, since S is multiplicatively closed, so $(a,s) \equiv (c,u)$, which proves \equiv is transitive.

If $a \in A$ and $s \in S$ then write

$$a/s =$$
 equivalence class of (a, s) .

Put

$$S^{-1}A = \{ a/s \mid a \in A, s \in S \}$$

and define addition and multiplication on $S^{-1}A$ by

$$(a/s) + (b/t) = (at + bs) / st$$

 $(a/s) (b/t) = ab / st$.

527

We check that multiplication is well-defined:

Suppose

 $(a_1, s_1) \equiv (a_2, s_2)$ and $(b_1, t_1) \equiv (b_2, t_2)$. Then, for some $u, v \in S$, $(a_1s_2 - a_2s_1)u = 0$ and $(b_1t_2 - b_2t_1)v = 0$. WTS $(a_1b_1, s_1t_1) \equiv (a_2b_2, s_2t_2)$.

$$[(a_1b_1)(s_2t_2) - (a_2b_2)(s_1t_1)]uv$$

$$= (a_1b_1)(s_2t_2)(uv) - (a_2b_2)(s_1t_1)(uv) - (a_2s_1)(b_1t_2)(uv) + (a_2s_1)(b_1t_2)(uv)$$

$$= (a_1s_2 - a_2s_1)u(b_1t_2v) + (b_1t_2 - b_2t_1)v(a_2s_1u)$$

= 0 + 0 = 0.

Thus

$$(a_1b_1, s_1t_1) \equiv (a_2b_2, s_2t_2),$$

which verifies that multiplication is well-defined.

Exercise: Prove that addition in $S^{-1}A$ is well-defined.

It is now routine to check that $S^{-1}A$ is a ring with identity $1~=~s/s~~~(\forall s\in S)$.

We call $S^{-1}A\,$ the ring of fractions of $\,A\,$ with respect to $\,S\,$.

If A is an integral domain and $~S~=~A\backslash\{0\}$ then

 $S^{-1} A \;$ is the familiar field of fractions of $\; A$.

Let $f: A \to S^{-1}A$ where f(x) = x/1.

Clearly f is a ring homomorphism.

Observation: If A is an integral domain and S any multiplicatively closed subset not containing 0 then

f is injective.

Proof: Suppose A is an integral domain, $0 \notin S \subseteq A$, and S multiplicatively closed.

Let $x_1, x_2 \in A$ such that $x_1/1 = x_2/1$.

Then
$$(x_1,1) \equiv (x_2,1)$$
 , so $(x_1-x_2)u = 0 \quad (\exists u \in S) \; ,$

yielding $x_1 - x_2 = 0$, since A is an integral domain and $u \neq 0$.

Thus $x_1 = x_2$, proving f is injective.

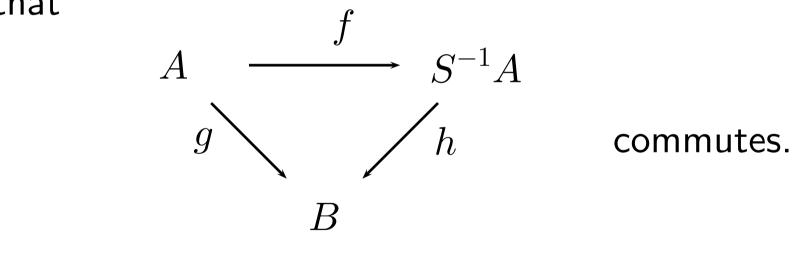
If A is not an integral domain then f need not be injective:

Exercise: Let $A = \mathbb{Z}_6$, $S_1 = \{ 1, 2, 4 \}$ $S_2 = \{ 1, 3 \}.$ Then S_1 and S_2 are multiplicatively closed. Verify that $S_1^{-1}\mathbb{Z}_6 \cong \mathbb{Z}_3, \quad S_2^{-1}\mathbb{Z}_6 \cong \mathbb{Z}_2$ (so certainly, in both cases, f is not injective).

 $S^{-1}A$ has the following universal property:

Theorem: Let $g: A \to B$ be a ring homomorphism such that g(s) is a unit in B for each $s \in S$.

Then there is a unique homomorphism h such that



Proof: Define $h: S^{-1}A \rightarrow B$ by

$$h(a/s) = g(a) g(s)^{-1}$$
 $(a \in A, s \in S)$.

WTS h is well defined.

Suppose
$$a/s = a'/s'$$
 so $(a, s) \equiv (a', s')$, so
 $(as' - a's)t = 0$ $(\exists t \in S)$.

Thus

$$0 = g(0) = g((as' - a's)t)$$

= $[g(a)g(s') - g(a')g(s)]g(t)$,
so, since $g(t)$ is a unit in B ,
 $g(a)g(s') - g(a')g(s) = 0$,

SO

$$g(a)g(s') = g(a')g(s) ,$$

537

yielding, since $\,g(s),g(s')\,$ are units in $\,B$,

$$g(a) g(s)^{-1} = g(a') g(s')^{-1}$$
.

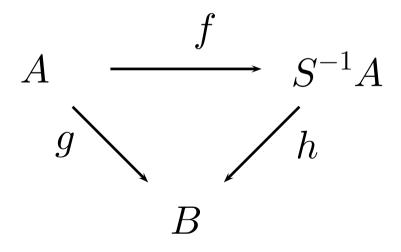
This proves h is well-defined.

It is routine now to check that h is a ring homomorphism.

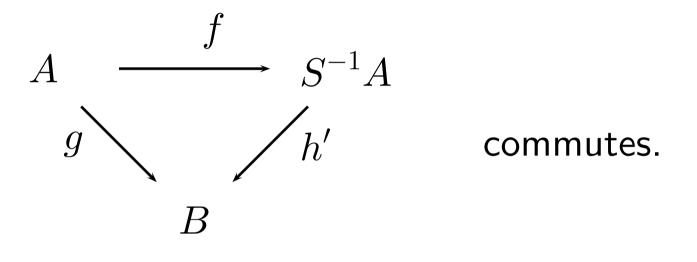
Further, if $a \in A$ then

$$(h \circ f)(a) = h(a/1) = g(a)g(1)^{-1} = g(a) ,$$

so that the following diagram commutes:



Suppose also that $h': S^{-1}A \to B$ is a ring homomorphism such that



Then

$$h'(a/s) = h'(a/1 \cdot 1/s) = h'(a/1) h'(1/s)$$
.

540

But 1/s is a unit in $S^{-1}A\,$ with inverse $\,s/1$, so that $\,h'(1/s)\,$ is a unit in $\,B\,$ and

$$h'(1/s) = [h'(s/1)]^{-1}$$

Hence

$$h'(a/s) = h'(a/1) \left[h'(s/1) \right]^{-1}$$

= $h'(f(a)) \left[h'(f(s)) \right]^{-1} = g(a)g(s)^{-1} = h(a/s)$.

This proves h' = h, and so h is unique with the required properties.

Observe that $S^{-1}A$ and

$$f: A \to S^{-1}A, \quad a \mapsto a/1$$

have the following properties:

(1) $s \in S$ implies f(s) is a unit in $S^{-1}A$ (because s/1 has inverse 1/s);

(2)
$$f(a) = 0$$
 implies $as = 0$ $(\exists s \in S)$
(because the zero in $S^{-1}A$ is $0/1$);

(3) every element of $S^{-1}A$ has the form

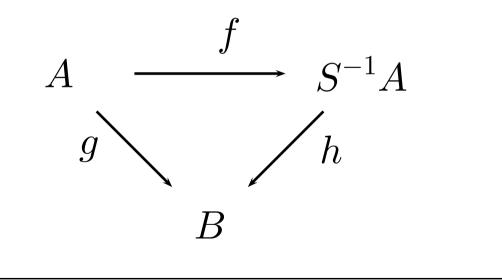
$$f(a)f(s)^{-1} \qquad (\exists a \in A)(\exists s \in S)$$

(because $a/s = a/1 \cdot 1/s$).

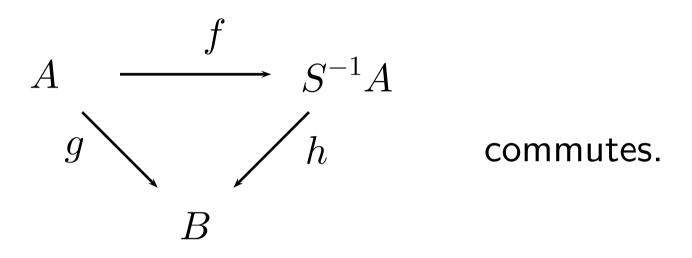
Conversely, properties (1), (2), (3) characterize $S^{-1}A$ up to isomorphism:

Corollary: Let $g: A \to B$ be a ring homomorphism such that properties (1), (2) and (3) hold with g replacing f and B replacing $S^{-1}A$.

Then there is a unique **isomorphism** h such that the following diagram commutes:



Proof: By (1) and the previous Theorem, there is a unique homomorphism $h: S^{-1}A \rightarrow B$ such that



Further, from the proof,

$$h(a/s) = g(a) g(s)^{-1}$$
 $(a \in A, s \in S).$

By (3), h is onto.

If $a/s \in \ker h$ for some $a \in A$, $s \in S$, then $0 = h(a/s) = q(a) q(s)^{-1}$, so that g(a) = 0 g(s) = 0, yielding, by (2), $at = 0 \qquad (\exists t \in S) ,$ whence $(a,s) \equiv (0,1)$, that is, a/s = 0 in $S^{-1}A$.

Thus h is one-one, so h is an isomorphism.

Examples:

(1) Let P be a prime ideal of A, and put

$$S = A \backslash P ,$$

which is multiplicatively closed. Form

$$A_P = S^{-1}A,$$

and put

$$M = \{ a/s \in A_p \mid a \in P \}.$$

Claim: A_P is a local ring with unique maximal ideal M.

The process of passing from A to A_P is called **localization at** P.

e.g. If $A = \mathbb{Z}$ and $P = p\mathbb{Z}$ where p is a prime integer, then localization at P produces

$$A_P = \{ a/b \mid a, b \in \mathbb{Z}, p \not\mid b \}.$$

Proof of Claim: We first prove

(*)
$$(\forall b \in A) \ (\forall t \in S)$$
$$b/t \in M \implies b \in P$$

Suppose

$$b/t = a/s$$

where $b \in A$, $a \in P$ and $s,t \in S$. Then

$$(at - bs)u = 0 \qquad (\exists u \in S)$$

SO

$$at - bs \in P$$

since P is prime, $0 \in P$ and $u \notin P$.

Hence

$$bs = at - (at - bs) \in P.$$

But $s \notin P$, so $b \in P$, and (*) is proved. By (*), certainly $1 = 1/1 \notin M$ (since $1 \notin P$) so $M \neq A_P$. It is easy to check that $M \triangleleft A_P$.

Further, if $b \in A$, $t \in S$ and $b/t \notin M$,

then, by definition of $M\,,\ b\not\in P$, so $\ b\in S$, yielding

$$t/b \in A_P$$
,

whence b/t is a unit of A_P .

By (i) of an early Proposition (on page 105), A_P is local with unique maximal ideal M.

Examples (continued):

(2) $S^{-1}A$ is the zero ring iff $0 \in S$.

Proof: () If $0 \in S$ then, for all $a, b \in A$, $s, t \in S$,

$$a/s = b/t$$

since

$$(at-bs)0 = 0,$$

so that all elements of $S^{-1}A$ are equal.

$$(\Longrightarrow)$$
 If $S^{-1}A$ contains only one element then
$$(0,1)\ \equiv\ (1,1)$$

so that

SO

$$0 = (0 \cdot 1 - 1 \cdot 1)t = -t \quad (\exists t \in S)$$

that $0 = t \in S$.

(3) Let $x \in A$ and put $S = \{ x^n \mid n \ge 0 \}$ (where $x^0 = 1$). Then S is multiplicatively closed, so we may form

$$A_x = S^{-1}A .$$

e.g. If
$$A = \mathbb{Z}$$
 and $0 \neq x \in \mathbb{Z}$ then

 $A_x = \{ \text{ rational numbers in reduced form} \ whose denominators divide a power of } x \}$.

(4) Let I be an ideal of a ring A and put

$$S = 1 + I = \{ 1 + x \mid x \in I \}.$$

Then S is easily seen to be multiplicatively closed, so we may form $\,S^{-1}A$.

e.g. If
$$A = \mathbb{Z}$$
 and $I = 6\mathbb{Z}$ then

 $S^{-1}A = \{ \text{ rational numbers in reduced form whose}$ denominators divide some integer

congruent to $1 \mod 6$.