
3.1 Rings of Fractions

Let A be a ring.

Call a subset S of A multiplicatively closed if

(i) 1 ∈ S ;

(ii) (∀x, y ∈ S) xy ∈ S .

For example, if A is an integral domain

then A\{0} is multiplicatively closed.
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More generally, if P is a prime ideal of A

then

A\P is multiplicatively closed.

Let S be a multiplicatively closed subset of A .

Define a relation ≡ on

A × S = { (a, s) | a ∈ A, s ∈ S }

as follows:
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for a, b ∈ A , s, t ∈ S ,

(a, s) ≡ (b, t)

iff (∃u ∈ S) (at − bs)u = 0 .

Claim: ≡ is an equivalence relation.

Proof: Clearly ≡ is reflexive and symmetric.

Suppose (a, s) ≡ (b, t) ≡ (c, u) .
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Then, for some v, w ∈ S

(at − bs)v = 0 = (bu − ct)w ,

so

atv − bsv = 0

buw − ctw = 0

so

atv(uw) − bsv(uw) = 0

−ctw(sv) + buw(sv) = 0
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so

au(tvw) − cs(tvw) = (au − cs)(tvw) = 0 ,

But tvw ∈ S , since S is multiplicatively closed,

so (a, s) ≡ (c, u) , which proves ≡ is transitive.

If a ∈ A and s ∈ S then write

a/s = equivalence class of (a, s) .
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Put

S−1A = { a/s | a ∈ A , s ∈ S }

and define addition and multiplication on S−1A by

(a/s) + (b/t) = (at + bs) / st

(a/s) (b/t) = ab /st .
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We check that multiplication is well-defined:

Suppose

(a1, s1) ≡ (a2, s2) and (b1, t1) ≡ (b2, t2) .

Then, for some u, v ∈ S ,

(a1s2 − a2s1)u = 0 and (b1t2 − b2t1)v = 0 .

WTS (a1b1, s1t1) ≡ (a2b2, s2t2) .
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[

(a1b1)(s2t2) − (a2b2)(s1t1)
]

uv

= (a1b1)(s2t2)(uv) − (a2b2)(s1t1)(uv)

− (a2s1)(b1t2)(uv) + (a2s1)(b1t2)(uv)

= (a1s2 − a2s1)u(b1t2v) + (b1t2 − b2t1)v(a2s1u)

= 0 + 0 = 0 .
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Thus

(a1b1, s1t1) ≡ (a2b2, s2t2) ,

which verifies that multiplication is well-defined.

Exercise: Prove that addition in S−1A is

well-defined.

It is now routine to check that S−1A is a ring

with identity 1 = s/s (∀s ∈ S) .
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We call S−1A the ring of fractions of A with

respect to S .

If A is an integral domain and S = A\{0}

then

S−1A is the familiar field of fractions of A .

Let f : A → S−1A where f(x) = x/1 .

Clearly f is a ring homomorphism.
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Observation: If A is an integral domain and S

any multiplicatively closed subset not containing

0 then

f is injective.

Proof: Suppose A is an integral domain, 0 6∈

S ⊆ A , and S multiplicatively closed.

Let x1, x2 ∈ A such that x1/1 = x2/1 .
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Then (x1, 1) ≡ (x2, 1) , so

(x1 − x2)u = 0 (∃u ∈ S) ,

yielding x1 − x2 = 0 , since A is an integral

domain and u 6= 0 .

Thus x1 = x2 , proving f is injective.

If A is not an integral domain then f need not be

injective:
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Exercise: Let A = Z6 ,

S1 = { 1, 2, 4 } S2 = { 1, 3 } .

Then S1 and S2 are multiplicatively closed.

Verify that

S−1
1 Z6

∼= Z3 , S−1
2 Z6

∼= Z2

(so certainly, in both cases, f is not injective).

S−1A has the following universal property:
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Theorem: Let g : A → B be a ring

homomorphism such that g(s) is a unit in B

for each s ∈ S .

Then there is a unique homomorphism h such

that

A S−1A

B

f

g h commutes.
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Proof: Define h : S−1A → B by

h(a/s) = g(a) g(s)−1 (a ∈ A , s ∈ S) .

WTS h is well defined.

Suppose a/s = a′/s′ so (a, s) ≡ (a′, s′) , so

(as′ − a′s)t = 0 (∃t ∈ S) .
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Thus

0 = g(0) = g
(

(as′ − a′s)t
)

=
[

g(a)g(s′) − g(a′)g(s)
]

g(t) ,

so, since g(t) is a unit in B ,

g(a)g(s′) − g(a′)g(s) = 0 ,

so

g(a)g(s′) = g(a′)g(s) ,
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yielding, since g(s), g(s′) are units in B ,

g(a) g(s)−1 = g(a′) g(s′)−1 .

This proves h is well-defined.

It is routine now to check that h is a ring

homomorphism.
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Further, if a ∈ A then

(h ◦ f)(a) = h(a/1) = g(a)g(1)−1 = g(a) ,

so that the following diagram commutes:

A S−1A

B

f

g h
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Suppose also that h′ : S−1A → B is a ring

homomorphism such that

A S−1A

B

f

g h′ commutes.

Then

h′(a/s) = h′(a/1 · 1/s) = h′(a/1) h′(1/s) .
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But 1/s is a unit in S−1A with inverse s/1 , so

that h′(1/s) is a unit in B and

h′(1/s) =
[

h′(s/1)
]−1

.

Hence

h′(a/s) = h′(a/1)
[

h′(s/1)
]−1

= h′(f(a))
[

h′(f(s))
]−1

= g(a)g(s)−1 = h(a/s) .

This proves h′ = h , and so h is unique with the

required properties.
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Observe that S−1A and

f : A → S−1A , a 7→ a/1

have the following properties:

(1) s ∈ S implies f(s) is a unit in S−1A

(because s/1 has inverse 1/s );

(2) f(a) = 0 implies as = 0 (∃s ∈ S)

(because the zero in S−1A is 0/1 );
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(3) every element of S−1A has the form

f(a)f(s)−1 (∃a ∈ A)(∃s ∈ S)

(because a/s = a/1 · 1/s ).

Conversely, properties (1), (2), (3) characterize

S−1A up to isomorphism:
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Corollary: Let g : A → B be a ring

homomorphism such that properties (1), (2)

and (3) hold with g replacing f and B

replacing S−1A .

Then there is a unique isomorphism h

such that the following diagram commutes:

A S−1A

B

f

g h
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Proof: By (1) and the previous Theorem, there is a

unique homomorphism h : S−1A → B such that

A S−1A

B

f

g h commutes.

Further, from the proof,

h(a/s) = g(a) g(s)−1 (a ∈ A , s ∈ S) .

By (3), h is onto.
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If a/s ∈ ker h for some a ∈ A , s ∈ S , then

0 = h(a/s) = g(a) g(s)−1 ,

so that g(a) = 0 g(s) = 0 , yielding, by (2),

at = 0 (∃t ∈ S) ,

whence (a, s) ≡ (0, 1) , that is, a/s = 0 in

S−1A .

Thus h is one-one, so h is an isomorphism.
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Examples:

(1) Let P be a prime ideal of A , and put

S = A\P ,

which is multiplicatively closed. Form

AP = S−1A ,

and put

M = { a/s ∈ Ap | a ∈ P } .
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Claim: AP is a local ring with unique

maximal ideal M .

The process of passing from A to AP is called

localization at P .

e.g. If A = Z and P = pZ where p is a prime

integer, then localization at P produces

AP = { a/b | a, b ∈ Z , p 6 | b } .
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Proof of Claim: We first prove

(∗)
(∀b ∈ A) (∀t ∈ S)

b/t ∈ M =⇒ b ∈ P

Suppose

b/t = a/s

where b ∈ A , a ∈ P and s, t ∈ S . Then

(at − bs)u = 0 (∃u ∈ S)
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so

at − bs ∈ P

since P is prime, 0 ∈ P and u 6∈ P .

Hence

bs = at − (at − bs) ∈ P .

But s 6∈ P , so b ∈ P , and (∗) is proved.

By (∗), certainly 1 = 1/1 6∈ M (since 1 6∈ P )

so M 6= AP .
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It is easy to check that M � AP .

Further, if b ∈ A , t ∈ S and b/t 6∈ M ,

then, by definition of M , b 6∈ P , so b ∈ S ,

yielding

t/b ∈ AP ,

whence b/t is a unit of AP .

By (i) of an early Proposition (on page 105), AP is

local with unique maximal ideal M .
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Examples (continued):

(2) S−1A is the zero ring iff 0 ∈ S .

Proof: (⇐=) If 0 ∈ S then, for all a, b ∈ A ,

s, t ∈ S ,

a/s = b/t

since

(at − bs)0 = 0 ,

so that all elements of S−1A are equal.

552



(=⇒) If S−1A contains only one element then

(0, 1) ≡ (1, 1)

so that

0 = (0 · 1 − 1 · 1)t = −t (∃t ∈ S)

so that 0 = t ∈ S .
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(3) Let x ∈ A and put

S = { xn | n ≥ 0 } (where x0 = 1) .

Then S is multiplicatively closed, so we may form

Ax = S−1A .

e.g. If A = Z and 0 6= x ∈ Z then

Ax = { rational numbers in reduced form

whose denominators divide a power of x } .

554



(4) Let I be an ideal of a ring A and put

S = 1 + I = { 1 + x | x ∈ I } .

Then S is easily seen to be multiplicatively closed,

so we may form S−1A .

e.g. If A = Z and I = 6Z then

S−1A = { rational numbers in reduced form whose

denominators divide some integer

congruent to 1 mod 6 } .
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