Proof: (1. implies 2.)

If A is a field and $\{0\} \neq I \lhd A$ then $a \in I$ for some $a \neq 0$, so a is a unit, so $I \supseteq aA = A$, yielding I = A. (2. implies 3.)

Suppose the only ideals of A are $\{0\}$ and A, and let $f: A \to B$ be a ring homomorphism **onto** a nonzero ring B.

Certainly ker
$$f \neq A$$
. But
ker $f \lhd A$
so ker $f - \{0\}$ from which it follows that f i

so ker $f = \{0\}$, from which it follows that f is injective.

Exercise: A ring homomorphism is injective iff its kernel is trivial.

(3. implies 1.)

Suppose that 3. holds and let $x \in A$ where x is **not** a unit.

Then $xA \neq A$, and $xA \lhd A$ so A/xA is not the zero ring.

By 3., the natural map $: A \rightarrow A/xA$ is injective, so its kernel is trivial, that is,

$$xA = \{0\}.$$

In particular,

$$x = x \cdot 1 = 0.$$

This proves all nonzero elements are units, so A is a field, and the proof of the Proposition is complete.

Prime and maximal ideals:

An ideal P of A is called **prime** if $P \neq A$ and

 $(\forall x, y \in A) \qquad xy \in P \implies x \in P \text{ or } y \in P .$

Observation: Let $P \lhd A \neq \{0\}$. Then P is prime iff A/P is an integral domain. **Proof:** (\Longrightarrow) Suppose *P* is prime, and let P + x be a zero-divisor in A/P, that is,

$$P = (P+x)(P+y) = P+xy$$

for some $y \not\in P$. Then $xy \in P$, so

 $x \in P$ (because P is prime and $y \notin P$),

yielding P + x = P, the zero of A/P.

 (\Leftarrow) Proof is left as an exercise.

Corollary: If A is a nonzero ring then $\{0\}$ is a prime ideal of A iff A is an integral domain.

Example: The prime ideals of \mathbb{Z} are $\{0\}$ and $p\mathbb{Z}$ where p is a prime number.

Exercise: Verify that if p is prime and $p\mathbb{Z} \subseteq I \lhd \mathbb{Z}$ then $I = p\mathbb{Z}$ or $I = \mathbb{Z}$.

58

An ideal M of A is called **maximal** if $M \neq A$ and there is no ideal I of A such that

$$M \subset I \subset A$$

(proper set containment).

Observation: Let $M \lhd A \neq \{0\}$. Then M is maximal iff A/M is a field.

Proof: Observe that M is maximal

the only ideals of A/M are A/M and M/M (by the Proposition on page 38)

A/M is a field (by the Proposition on page 51).

Corollary: All maximal ideals are prime.

However, prime ideals need not be maximal,

e.g. $\{0\}$ is a prime ideal of \mathbb{Z} which is not maximal.

The property of being prime is preserved under taking preimages with respect to a homomorphism:

Observation: Let $f: A \to B$ be a ring homomorphism and Q be a prime ideal of B. Then $f^{-1}(Q) = \{ x \in A \mid f(x) \in Q \}$

is a prime ideal of $\,A$.

Proof: $A \xrightarrow{f} B \xrightarrow{\phi} B/Q$

where ϕ is the natural map. Then

$$\ker \left(\phi \circ f\right) \ = \ \left\{ \ x \in A \mid f(x) \in Q \ \right\} \ = \ f^{-1}(Q) \ ,$$
 so

$$A/f^{-1}(Q) = A/\ker(\phi \circ f)$$

$$\cong$$
 subring of B/Q

(by the Fundamental Homomorphism Theorem).

But B/Q is an integral domain (since Q is prime),

so also $A/f^{-1}(Q)$ is an integral domain

(since subrings of integral domains are clearly integral domains).

Hence $f^{-1}(Q)$ is a prime ideal of A , and the proof is complete.

Note: Preimages of maximal ideals need not be maximal.

e.g. Let $f: \mathbb{Z} \to \mathbb{Q}$ be the identity injection. Then $\{0\} = f^{-1}(\{0\})$ is not maximal in \mathbb{Z} , yet $\{0\}$ is maximal in \mathbb{Q} .

We will discuss the existence of maximal ideals, after first digressing briefly on **Zorn's Lemma**.