
2.11 Algebras
Let A be a ring.

Suppose that B is both a ring and an A-module

where the ring and module additions coincide.

Denote ring multiplication (whether in B

or in A ) by juxtaposition, and scalar

multiplication by elements of A by ·

(in practice both denoted by juxtaposition).
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Call B an A-algebra or algebra ( over A ) if

(∀a ∈ A) (∀b, c ∈ B)

a · (b c) = (a · b) c
[

= b (a · c)
]

needed in the
noncommutative case
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Suppose B is an A-algebra.

Define f : A→ B by

f(a) = a · 1 (a ∈ A)

ring identity
element of B

Then, for all a1, a2 ∈ A ,

f(a1 + a2) = (a1 + a2) · 1

= a1 · 1 + a2 · 1 = f(a1) + f(a2)
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and

f(a1 a2) = (a1 a2) · 1 = a1 · (a2 · 1)

= a1 · (a2 ·
(

1 1)
)

= a1 · (1(a2 · 1))

= (a1 · 1)(a2 · 1) = f(a1) f(a2) ,

which proves f is a ring homomorphism.
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Conversely, let f : A → B be a ring

homomorphism.

Then (by restriction of scalars) B becomes an

A-module by defining

a · b = f(a) b (a ∈ A, b ∈ B) .

Further this turns B into an A-algebra, because

(∀a ∈ A) (∀b, c ∈ B)

a · (bc) = f(a)(bc) = (f(a)b)c = (a · b)c .
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Moreover, these processes, turning an A-algebra

into a ring homomorphism, and vice-versa, undo

each other, so

A-algebras B correspond to pairs

consisting of a ring B and a ring

homomorphism

f : A → B .

Remarks:
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(1) In particular if A = F is a field and

f : A → B is not the zero homomorphism, then

f is injective (an early Proposition), so F can be

identified with its image under f :

(∀a ∈ F ) a ≡ a · 1 .

Thus

a nonzero F -algebra may be thought of as

a ring containing F as a subring.
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(2) If A is any nonzero ring then

f : Z → A where f(n) = n 1

is easily seen to be a ring homomorphism, so A

becomes a Z-algebra.

Observe that

ker f = kZ ∃ k ≥ 0 .

But A is nonzero, so k 6= 1 . We call k the

characteristic of A .
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We can identify

Zk (= Z if k = 0 )

with the subring of A generated by 1 , called the

prime subring of A (though it may have nothing

to do with primes!).

[

If A is a field then all nonzero elements are

invertible, so the prime subring must be a copy of

Z or a copy of Zp for some prime p .
]
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Algebra homomorphisms:

Let f : A → B and g : A → C be ring

homomorphisms, so that

B , C become A-algebras.

Consider a ring homomorphism h : B → C .

Call h an A-algebra homomorphism if

h respects scalar multiplication, that is,

(∀a ∈ A)(∀b ∈ B) h(a ·b) = a ·h(b) .
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Observation: h is an A-algebra

homomorphism iff the following diagram

commutes:

A

B C

f g

h

Proof: (=⇒) If h is an A-algebra homomorphism

then

(∀a ∈ A)(∀b ∈ B) h (f(a) b) = g(a)h(b) ,
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so, in particular, taking b = 1 ,

(∀a ∈ A) h (f(a)) = g(a) ,

that is, h ◦ f = g .

(⇐=) If h ◦ f = g then, for all a ∈ A , b ∈ B

h(a · b) = h
(

f(a) b
)

= h
(

f(a)
)

h(b)

= g(a)h(b) = a · h(b) ,

so h is an A-algebra homomorphism.
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The polynomial ring A[t1, . . . , tn] in n commuting

indeterminates is called the free A-algebra on n

generators because of the following:

Property: A[t1, . . . , tn] is an A-algebra such

that if B is any A-algebra and b1, . . . , bn ∈ B

then the map

ti 7→ bi ∀i

extends uniquely to an A-algebra homomorphism:

A[t1, . . . , tn] → B .
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If p(t1, . . . , tn) ∈ A[t1, . . . , tn] then this

homomorphism is just the evaluation mapping

p(t1, . . . , tn) 7→ p(b1, . . . , bn) .

Evaluation is onto precisely when b1, . . . , bn
generate B as an A-algebra, in which case we

say that B is finitely generated.

Note: a ring is finitely generated as a ring

iff it is finitely generated as a Z-algebra.
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Tensor product of algebras:

Let B , C be A-algebras via ring homomorphisms

f : A → B , g : A → C .

In particular, ignoring their ring multiplication, B

and C become A-modules, so we may form the

A-module

D = B ⊗A C .

We shall define multiplication on D making

D into a ring and an A-algebra.
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The mapping

φ : B × C ×B × C → B ⊗ C

where

(b, c, b′, c′) 7→ bb′ ⊗ cc′ (b, b′ ∈ B , c, c ∈ C)

is easily checked to be multilinear.

Thus there is a unique A-module homomorphism

ψ which makes the following diagram commute:
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B × C ×B × C B ⊗ C ⊗B ⊗ C

B ⊗ C

φ ψ

Also (exercise), there is a “canonical isomorphism”

θ : (B ⊗ C) ⊗ (B ⊗ C) → B ⊗ C ⊗B ⊗ C

extending the following map on generators:

(b⊗ c) ⊗ (b′ ⊗ c′) 7→ b⊗ c⊗ b′ ⊗ c′ .
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Let

g : (B ⊗ C) × (B ⊗ C) → (B ⊗ C) ⊗ (B ⊗ C)

where

(α, β) 7→ α⊗ β (α, β ∈ B ⊗ C) ,

which is clearly bilinear.

Put

µ = ψ ◦ θ ◦ g

so that the following diagram commutes:
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D ×D =

(B ⊗ C) × (B ⊗ C) (B ⊗ C) ⊗ (B ⊗ C)

B ⊗ C ⊗B ⊗ C

B ⊗ C = D

θ

ψ

g

µ
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Further µ is bilinear (being the composite of a

bilinear map with linear maps).

For b, b′ ∈ B , c, c′ ∈ C ,

µ(b⊗ c , b′ ⊗ c′) = ψ

(

θ
(

g(b⊗ c, b⊗ c′)
)

)

= ψ

(

θ
(

(b⊗ c) ⊗ (b′ ⊗ c′)
)

)

= ψ
(

b⊗ c⊗ b′ ⊗ c′
)

= φ(b, c, b′, c′) = (bb′) ⊗ (cc′) .
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The bilinearity of µ gives

µ

(

∑

i

(bi ⊗ ci) ,
∑

j

(b′j ⊗ c′j)

)

=
∑

i,j

bib
′
j ⊗ cic

′
j .
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It is easy now to check that µ defines a multiplication

on D = B⊗C making D into a ring with identity

element 1 ⊗ 1 . Using juxtaposition, the rule for

multiplication is simply

(

∑

i

(bi ⊗ ci)

)(

∑

i

(b′j ⊗ c′j)

)

=
∑

i,j

bib
′
j ⊗ cic

′
j .
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Define h : A→ D by, for a ∈ A

h(a) = a · (1 ⊗ 1)

= (a · 1) ⊗ 1 = 1 ⊗ (a · 1)

= f(a) ⊗ 1 = 1 ⊗ g(a) .

Clearly h preserves addition and maps 1 to 1⊗1 .
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Further, h preserves multiplication, because, for

a1, a2 ∈ A ,

h(a1a2) = f(a1a2) ⊗ 1 =

(

f(a1)f(a2) ⊗ (1 1)

)

=

(

f(a1) ⊗ 1

)(

f(a2) ⊗ 1

)

= h(a1)h(a2) .

Thus h is a ring homomorphism, with respect to

which D becomes an A-algebra.
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In summary, given A-algebras B and C :

The A-module B ⊗A C becomes an A-

algebra with multiplication which extends

the following multiplication on generators:

(b⊗ c)(b′ ⊗ c) = bb′ ⊗ cc′

for b, b′ ∈ B and c, c′ ∈ C .
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