2.11 Algebras
Let A be a ring.

Suppose that B is both a ring and an A-module
where the ring and module additions coincide.

Denote ring multiplication (whether in B
or in A ) by juxtaposition, and scalar
multiplication by elements of A by -

(in practice both denoted by juxtaposition).
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Call B an A-algebra or algebra ( over A ) if

(Va € A) (Vb,c € B)

needed In the
noncommutative case

498



Suppose B is an A-algebra.
Define f: A— B by

fla) = a-1 (a € A)

ring identity
element of B

Then, for all a1,a9 € A,

f(a1+a2) — (a1+a2)-1
— a1°1 —|—Cl2'1 — f(a1)+f(a2)
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and

flaras) = (a1az)-1 = ay-(ay-1)
— aj - (az y (1 1)) — aj - (1(&2 y 1))
= (a1-1)(a2-1) = fla) f(a2),

which proves f is a ring homomorphism.
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Conversely, let f : A — B be a ring
homomorphism.

Then (by restriction of scalars) B becomes an
A-module by defining

a-b = f(a)b (ae A, be B) .
Further this turns B into an A-algebra, because

(Va € A) (Vb,c € B)

a-(bc) = fla)(bc) = (f(a)b)c = (a-Db)c.
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Moreover, these processes, turning an
into a ring homomorphism, and vice-versa, undo

each other, so

A-algebra

correspond to pairs

A-algebras B
consisting of a ring B
homomorphism

f:A— B.

and a

ring

Remarks:
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(1) In particular if A = F is a field and
f:A— B is not the zero homomorphism, then
f is injective (an early Proposition), so F' can be
identified with its image under f:

il
S
p—

(Va € F) a

Thus

a nonzero F'-algebra may be thought of as
a ring containing F' as a subring.
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(2) If A is any nonzero ring then
f:z— A where f(n) = nl

Is easily seen to be a ring homomorphism, so A
becomes a Z-algebra.

Observe that

ker f = kZ 3k >0.

But A is nonzero, so kK # 1. We call k£ the
characteristic of A .
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We can identify
Zr (=2 if k=0)

with the subring of A generated by 1, called the

prime subring of A (though it may have nothing
to do with primes!).

[ If A is a field then all nonzero elements are
invertible, so the prime subring must be a copy of
Z or a copy of Z, for some prime p. |
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Algebra homomorphismes:
let f: A —- B and g : A — C be ring
homomorphisms, so that

B, C' become A-algebras.

Consider a ring homomorphism h: B — C .

Call h an A-algebra homomorphism if
h respects scalar multiplication, that is,

(Vac A)(¥bc B)  h(a-b) = a-hd).
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Observation: h is an  A-algebra
homomorphism iff the following diagram
commutes:

f/\gc

h

Proof: (=) If h isan A-algebra homomorphism
then

(Vac A)(Vbe B)  h(f(a)b) = gla)h(b),



so, in particular, taking b = 1,

(Va € A) h(f(a)) = g(a),

thatis, hof = g.
(<=) If hof = g then, forall ac A, be B

h(a-b) = h(f(a)b) = h(f(a))h(b)

= gla)h(b) = a-h(b),

so h is an A-algebra homomorphism.

508



The polynomial ring Alty,...,t,] in n commuting
indeterminates is called the free A-algebra on n
generators because of the following:

Property: Alty,...,t,] is an A-algebra such
that if B is any A-algebra and by,...,b, € B
then the map

extends uniquely to an A-algebra homomorphism:
A[tl,...,tn] — B .
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|f p(tl, s ,tn) c A[tl, . ,tn] then this
homomorphism is just the evaluation mapping

p(tl,...,tn) — p(bl,,bn) .

Evaluation i1s onto precisely when bq,...,b,
generate B as an A-algebra, in which case we
say that B is finitely generated.

Note: a ring is finitely generated as a ring
iff it is finitely generated as a Z-algebra.
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Tensor product of algebras:

Llet B, C be A-algebras via ring homomorphisms
f:A— B : g: A— C.

In particular, ignoring their ring multiplication, B
and C' become A-modules, so we may form the
A-module

D = B,uC.

We shall define multiplication on D making
D into a ring and an A-algebra.
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The mapping
» : BxCxBx(C — BC
where
(b,c,b', ) — b ® cc (b, € B, ¢c,ce ()

Is easily checked to be multilinear.

Thus there is a unique A-module homomorphism
1> which makes the following diagram commute:
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Bx(CxBxC B(CRB®C

o\,

B®C

Also (exercise), there is a “canonical isomorphism”
f:( BC)®(B(C) - BRIC®B®C

extending the following map on generators:

bRc)@ B @) —» bcecb .
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Let
g: (BC)x(B(C) - (Br(C)® (B O)
where
(a,8) —m a®pB (a,6€eB®C),

which is clearly bilinear.

Put
= dobog

so that the following diagram commutes:
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DxD = g

(BC)x (B®(C) —— (B®C)® (B®C)
6

7 BC®B®C
(0

B®C = D
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Further g is bilinear (being the composite of a
bilinear map with linear maps).

For bV €¢ B, ¢,d € C,

nbc, bed) = ¢(9(g(b®c,b®c’)))

w(e((b Rc)® ('@ c’))>

= Pbecabed) = ¢bcl,d) = ) ().
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The bilinearity of 1 gives

u(Zb@cz ,Zb’@c)
2 J

be' ®cc
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It is easy now to check that 11 defines a multiplication
on D = B®C making D into a ring with identity
element 1 ® 1 . Using juxtaposition, the rule for
multiplication is simply

(Z(bi ® cz-)> (Z(b; ® c;.)>

7 ')

1,
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Define h: A— D by, for a € A

hia) = a-(1®1)

(a-1)®1 = 1®(a-1)

= fla)®1l = 1®g(a).

Clearly h preserves addition and maps 1 to 1®1 .
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Further, h preserves multiplication, because, for
al,a26514,

h(alag)

flaa o1 = (fa)fe)e )

(f(al) & 1) (f(az) & 1) = h(a1)h(as) .

Thus h is a ring homomorphism, with respect to
which D becomes an A-algebra.
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In summary, given A-algebras B and C':

The A-module B®4C becomes an A-
algebra with multiplication which extends
the following multiplication on generators:

bc) (b ®@c) = bb®cd

for b € B and ¢, € C .
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