# 2.9 Restriction and Extension of Scalars

Let  $f: A \to B$  be a ring homomorphism and let N be a B-module.

We want to exploit f to regard N as an A-module.

Define scalar multiplication by elements of ~A~ by, for  $~a\in A$  ,  $~x\in N$  ,

$$a x = f(a) x$$
.

Because f is a ring homomorphism, it is routine to check that

N becomes an A-module, said to be obtained by **restriction of scalars**.

In particular, since B is a module over itself,

f defines A-module operations on B .

### **Proof:** Let

$$N \;=\; \langle y_1, \dots, y_n 
angle_{B}$$
-module

and

$$B \hspace{.1in} = \hspace{.1in} \langle x_1, \ldots, x_m 
angle \hspace{.1in}$$
A-module

Let 
$$z \in N$$
 . Then

$$z = \sum_{i=1}^n b_i y_i \qquad \exists b_1, \dots, b_n \in B$$
.

But, for each i,

$$b_i = \sum_{j=1}^m f(a_{ij}) x_j \qquad \exists a_{i1}, \dots, a_{im} \in A.$$

462

#### Hence

$$z = \sum_{i} \left( \sum_{j} f(a_{ij}) x_{j} \right) y_{i}$$
$$= \sum_{i,j} f(a_{ij}) (x_{j}y_{i}) = \sum_{i,j} a_{ij} (x_{j}y_{i})$$

where scalar multiplication in the last summation is as an A-module. Thus

$$N \;\;=\;\; \langle \; x_j y_i \;\mid\; 1 \leq j \leq m \;,\;\; 1 \leq i \leq n \; 
angle \, {}_{A ext{-module}} \;.$$

Suppose now that  $f : A \to B$  is a ring homomorphism and

M is an A-module.

By restriction of scalars, B is also an A-module, so we may form

$$M_B = B \otimes_A M$$
.

But  $M_B$  may also be regarded as a B-module.



and extending by linearity.

It is routine to check the module axioms. We call  $M_B$  the *B*-module obtained from *M* by

## extension of scalars.

Check that this action is well-defined: Fix  $b' \in B$  and define  $h: B \times M \rightarrow B \otimes_A M$ by  $h(b,x) = (b'b) \otimes x .$ Then, for  $b_1, b_2 \in B$  ,  $a_1, a_2 \in A$  ,  $x \in M$  ,  $h(a_1 \cdot b_1 + a_2 \cdot b_2, x) = [b'(a_1 \cdot b_1 + a_2 \cdot b_2)] \otimes x$ 

$$= [b'(f(a_1)b_1 + f(a_2)b_2)] \otimes x;$$

$$h(a_1 \cdot b_1 + a_2 \cdot b_2, x) = [f(a_1)b'b_1 + f(a_2)b'b_2] \otimes x$$
$$= [a_1 \cdot b'b_1 + a_2 \cdot b'b_2)] \otimes x$$

$$= a_1((b'b_1)\otimes x) + a_2((b'b_2)\otimes x)$$

$$= a_1h(b_1, x) + a_2h(b_2, x)$$
.

Similarly in the second variable, which verifies that h is bilinear.

Hence we have a commutative diagram for some unique  $h^\prime$  :



If  $b\otimes x$  is a generator of  $B\otimes M$  then

$$h'(b\otimes x) = h(b,x) = b'b\otimes x ,$$

so the action given earlier is sensibly defined.

**Proposition:** Let M be finitely generated as an A-module.

Then  $M_B = B \otimes_A M$  is finitely generated when regarded as a *B*-module.

**Proof:** Let 
$$M = \langle x_1, \ldots, x_n \rangle_{A-\mathsf{module}}$$
 .

Elements of  $M_B$  are sums of elements of the form

 $b\otimes m$  where  $b\in B$  ,  $m\in M$  ,

and

$$m = \sum_{i=1}^{n} c_i x_i \qquad \exists c_i \in A ,$$

$$b\otimes m = b\otimes \left(\sum c_i x_i\right) = \sum c_i (b\otimes x_i)$$

SO

$$= \sum (c_i \cdot b) \otimes x_i = \sum (f(c_i) b) \otimes x_i$$

$$= \sum [f(c_i) b] (1 \otimes x_i) ,$$

470

# $b\otimes m\ \in\ \langle\ 1\otimes x_1\ ,\ \ldots\ ,\ 1\otimes x_n\ angle\ {}_{B ext{-module}}$ Hence

$$M_B \;\;=\;\; \langle\; 1\otimes x_1\;,\;\ldots\;,\; 1\otimes x_n\;
angle_{B}$$
-module ,

so  $M_B$  is finitely generated, and the Proposition proved.