2.8 Multilinear Mappings and Tensor
Products

Let My,...,M,, P be A-modules.

Call a mapping f : My x...x M, — P
multilinear if it is linear in each variable, that is,

fCtmy, ..., my_1, axy+bxay, m;, ..., m,)

— af(mla cee oy Myi—1 5, L1, Ty, '°°7m7“)

T bf(m17 cee oy TG, L2 5 TNy .-
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Following through the proof of the main Theorem
on tensor products, using C' and D with r-tuples

instead of ordered pairs,

we obtain a tensor product

T = M| ® ... @ M,

generated by products
m ® ... ® m, = (Mmy,...,my) + D

with the following properties:
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Theorem: There exists a pair (1',g) where T
Isan A-moduleand g: M; x...x M, —T is
multilinear, such that

(V multilinear f : My x...M, — P)
( 3! module homomorphism ' : T — P )

g

X M, T
f\ /f’ commutes.
P

M1><
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Theorem continued: Moreover, if (T,g) and
(T",g") are two pairs with this property then

( 3'isomorphism j : T — T")

g

X M, T
g\ /j commutes.
T/

M1><..
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We list a couple of model “canonical isomorphisms”:

Theorem: Let M, N, P be A-modules.

Then there exist unique isomorphisms extending the
following mappings on generators:

(1) MIN)QP > M®(N®P)— MN®P
(rRYRz — 2R(YR2)— TRYR 2 ;
2) MON)®P - (M®P)® (N ® P)
(2, ) ®2z — (xR 2,yYR 2) ;
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Proof: We prove (1) and leave

the proof of (2) as an exercise.

Fix z € P and define
F.: MxXN — MQNKP

by
Fz,y) = z0yQz.

Then F, is linear in the first variable, because of
properties of “triple” tensors:
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Fz(axl + bCEQa y)

(ax1 + bxe) @ y ® 2

a(r1@Y®z) + bz @y ® 2)

= aFy(x1,y) + bF.(z2,y) .

Similarly in the second variable, so

F. is bilinear.
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Hence there is a unique homomorphism f, such
that the following diagram commutes:

M x N M@ N

AN

MNP

Now consider a,b € A and 21,29 € P . We verify
that

fazl—|—bz2 — ale =+ bfZ2 -
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Then, for xre M, ye N,

fa21+522($ & y) — Fa21+bz2($7 y)
= QYR (a1 +bzn) = a(z@y®z2) + (zO®Y® 2)

= aF, (z,y) + OF.,(z,y) = af,(x®y) + bf.,(x R y)

(ale T bsz)(aj@y) '
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Hence  fu.,14., and af,, + bf., agree on
generators, so

fazl—|—bz2 — ale =+ bfZ2 .

Now define
H: (M®N)xP - MN®P
by, for te M ® N and z € P,

H(tvz) — fz(t)
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Then, since f. is a module homomorphism,

H(at1 —+ btz, Z) — fz(atl —+ th) — CLfZ(t1> —+ bfz(tg)
= aH(t1,z) + bH(ts,2) ,

and, from the previous fact we proved,

H(taazl+bz2> — faZ1+622(t) — (af21 + bfzz) (t)

— ale(t) + bfzg(t)
= aH(t,z1) + bH(t, 29) .
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Hence

H is bilinear,

so there i1s a unique homomorphism h such that
the following diagram commutes:

(M ®N) x (M@ N)® P

H\ ye

MNP
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yielding

h(z®y) @ 2)

H(zr®y,z)
F.(z,y)
= rRXUYR 2.

f(r®@y)

Now define

F'F'ii MxNxP —- (M@N)®P

Flz,y,2) = @®y)®z.
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It is easy to verify that F’ is multilinear, so there is
a unique homomorphism f’ such that the following

diagram commutes:

M x N x P MNP

N

(M®N)® P

whence
flleey®z) = Fl(z,y,z) = (Qy)®=z
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But h and f’ undo each other on generators of
M®N®P and (M ® N)® P respectively, so

hof' = idyensp and floh = Id(ven)ep -

Hence h and f are isomorphims, and clearly h is
unique with the given property.

By a similar argument there is a unique iIsomorphism:
MR(NRP) — MNP  0(yRz) — rQyRz

and (1) of the Theorem is proved.
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