
2.8 Multilinear Mappings and Tensor

Products

Let M1, . . . ,Mr , P be A-modules.

Call a mapping f : M1 × . . . × Mr → P

multilinear if it is linear in each variable, that is,

f( m1 , . . . , mi−1 , ax1 + bx2y , mi , . . . , mr )

= a f( m1 , . . . , mi−1 , x1 , mi , . . . , mr )

+ b f( m1 , . . . , mi−1 , x2 , mi , . . . , mr ) .
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Following through the proof of the main Theorem

on tensor products, using C and D with r-tuples

instead of ordered pairs,

we obtain a tensor product

T = M1 ⊗ . . . ⊗ Mr ,

generated by products

m1 ⊗ . . . ⊗ mr = (m1, . . . ,mr) + D

with the following properties:
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Theorem: There exists a pair (T, g) where T

is an A-module and g : M1 × . . . × Mr → T is

multilinear, such that

( ∀ multilinear f : M1 × . . .Mr → P )

( ∃! module homomorphism f ′ : T → P )

M1 × . . . × Mr T

P

g

f f ′ commutes.
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Theorem continued: Moreover, if (T, g) and

(T ′, g′) are two pairs with this property then

( ∃! isomorphism j : T → T ′ )

M1 × . . . × Mr T

T ′

g

g′ j commutes.
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We list a couple of model “canonical isomorphisms”:

Theorem: Let M , N , P be A-modules.

Then there exist unique isomorphisms extending the

following mappings on generators:

(1) (M ⊗N)⊗P → M ⊗ (N ⊗P ) → M ⊗N ⊗P

(x ⊗ y) ⊗ z 7→ x ⊗ (y ⊗ z) 7→ x ⊗ y ⊗ z ;

(2) (M ⊕ N) ⊗ P → (M ⊗ P ) ⊕ (N ⊗ P )

(x, y) ⊗ z 7→ (x ⊗ z, y ⊗ z) ;
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Proof: We prove (1) and leave

the proof of (2) as an exercise.

Fix z ∈ P and define

Fz : M × N → M ⊗ N ⊗ P

by

Fz(x, y) = x ⊗ y ⊗ z .

Then Fz is linear in the first variable, because of

properties of “triple” tensors:
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Fz(ax1 + bx2, y) = (ax1 + bx2) ⊗ y ⊗ z

= a(x1 ⊗ y ⊗ z) + b(x2 ⊗ y ⊗ z)

= aFz(x1, y) + bFz(x2, y) .

Similarly in the second variable, so

Fz is bilinear.
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Hence there is a unique homomorphism fz such

that the following diagram commutes:

M × N M ⊗ N

M ⊗ N ⊗ P

Fz fz

Now consider a, b ∈ A and z1, z2 ∈ P . We verify

that

faz1+bz2 = afz1 + bfz2 .
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Then, for x ∈ M , y ∈ N ,

faz1+bz2(x ⊗ y) = Faz1+bz2(x, y)

= x ⊗ y ⊗ (az1 + bz2) = a(x ⊗ y ⊗ z1) + b(x ⊗ y ⊗ z2)

= aFz1(x, y) + bFz2(x, y) = afz1(x ⊗ y) + bfz2(x ⊗ y)

=
(

afz1 + bfz2

)

(x ⊗ y) .
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Hence faz1+bz2 and afz1 + bfz2 agree on

generators, so

faz1+bz2 = afz1 + bfz2 .

Now define

H :
(

M ⊗ N
)

× P → M ⊗ N ⊗ P

by, for t ∈ M ⊗ N and z ∈ P ,

H(t, z) = fz(t) .
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Then, since fz is a module homomorphism,

H(at1 + bt2, z) = fz(at1 + bt2) = afz(t1) + bfz(t2)

= aH(t1, z) + bH(t2, z) ,

and, from the previous fact we proved,

H(t, az1 + bz2) = faz1+bz2(t) =
(

afz1 + bfz2

)

(t)

= afz1(t) + bfz2(t)

= aH(t, z1) + bH(t, z2) .
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Hence

H is bilinear,

so there is a unique homomorphism h such that

the following diagram commutes:

(M ⊗ N) × P (M ⊗ N) ⊗ P

M ⊗ N ⊗ P

H h
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yielding

h
(

(x ⊗ y) ⊗ z
)

= H(x ⊗ y, z) = fz(x ⊗ y)

= Fz(x, y)

= x ⊗ y ⊗ z .

Now define

F ′ : M × N × P → (M ⊗ N) ⊗ P

by

F ′(x, y, z) = (x ⊗ y) ⊗ z .
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It is easy to verify that F ′ is multilinear, so there is

a unique homomorphism f ′ such that the following

diagram commutes:

M × N × P M ⊗ N ⊗ P

(M ⊗ N) ⊗ P

F ′ f ′

whence

f ′(x ⊗ y ⊗ z) = F ′(x, y, z) = (x ⊗ y) ⊗ z .
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But h and f ′ undo each other on generators of

M ⊗ N ⊗ P and (M ⊗ N) ⊗ P respectively, so

h◦f ′ = idM⊗N⊗P and f ′
◦h = id(M⊗N)⊗P .

Hence h and f are isomorphims, and clearly h is

unique with the given property.

By a similar argument there is a unique isomorphism:

M⊗(N⊗P ) → M⊗N⊗P x⊗(y⊗z) → x⊗y⊗z

and (1) of the Theorem is proved.
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