2.8 Multilinear Mappings and Tensor Products

Let M_1, \ldots, M_r , P be A-modules.

Call a mapping $f : M_1 \times \ldots \times M_r \rightarrow P$ multilinear if it is linear in each variable, that is,

$$\begin{aligned} f(m_1, \ldots, m_{i-1}, ax_1 + bx_2y, m_i, \ldots, m_r) \\ &= a f(m_1, \ldots, m_{i-1}, x_1, m_i, \ldots, m_r) \\ &+ b f(m_1, \ldots, m_{i-1}, x_2, m_i, \ldots, m_r) \end{aligned}$$

Following through the proof of the main Theorem on tensor products, using C and D with r-tuples instead of ordered pairs,

we obtain a tensor product

$$T = M_1 \otimes \ldots \otimes M_r$$
,

generated by products

$$m_1 \otimes \ldots \otimes m_r = (m_1, \ldots, m_r) + D$$

with the following properties:

Theorem: There exists a pair (T, g) where T is an A-module and $g: M_1 \times \ldots \times M_r \to T$ is multilinear, such that $(\forall \text{ multilinear } f : M_1 \times \ldots M_r \rightarrow P)$ $(\exists ! \text{ module homomorphism } f' : T \rightarrow P)$ $M_1 \times \ldots \times M_r \longrightarrow T$ f' commutes. P

Theorem: Let M, N, P be A-modules. Then there exist unique isomorphisms extending the following mappings on generators:

(1)
$$(M \otimes N) \otimes P \to M \otimes (N \otimes P) \to M \otimes N \otimes P$$

 $(x \otimes y) \otimes z \mapsto x \otimes (y \otimes z) \mapsto x \otimes y \otimes z;$
(2) $(M \oplus N) \otimes P \to (M \otimes P) \oplus (N \otimes P)$
 $(x, y) \otimes z \mapsto (x \otimes z, y \otimes z);$

Proof: We prove (1) and leave

the proof of (2) as an exercise.

Fix $z \in P$ and define

 $F_z : M \times N \to M \otimes N \otimes P$

by

$$F_z(x,y) = x \otimes y \otimes z$$
.

Then F_z is linear in the first variable, because of properties of "triple" tensors:

$$F_z(ax_1 + bx_2, y) = (ax_1 + bx_2) \otimes y \otimes z$$

$$= a(x_1 \otimes y \otimes z) + b(x_2 \otimes y \otimes z)$$

$$= aF_z(x_1, y) + bF_z(x_2, y).$$

Similarly in the second variable, so

 F_z is bilinear.

Hence there is a unique homomorphism f_z such that the following diagram commutes:

Now consider $a, b \in A$ and $z_1, z_2 \in P$. We verify that

$$f_{az_1+bz_2} = af_{z_1} + bf_{z_2}$$
.

Then, for $x \in M$, $y \in N$, $f_{az_1+bz_2}(x \otimes y) = F_{az_1+bz_2}(x,y)$

 $= x \otimes y \otimes (az_1 + bz_2) = a(x \otimes y \otimes z_1) + b(x \otimes y \otimes z_2)$

 $= aF_{z_1}(x,y) + bF_{z_2}(x,y) = af_{z_1}(x \otimes y) + bf_{z_2}(x \otimes y)$

 $= (af_{z_1} + bf_{z_2})(x \otimes y) .$

452

Hence $f_{az_1+bz_2}$ and af_{z_1} + bf_{z_2} agree on generators, so

$$f_{az_1+bz_2} = af_{z_1} + bf_{z_2}$$
.

Now define

 $H : (M \otimes N) \times P \rightarrow M \otimes N \otimes P$ by, for $t \in M \otimes N$ and $z \in P$, $H(t, z) = f_z(t)$. Then, since f_z is a module homomorphism,

$$H(at_1 + bt_2, z) = f_z(at_1 + bt_2) = af_z(t_1) + bf_z(t_2)$$

= $aH(t_1, z) + bH(t_2, z)$,

and, from the previous fact we proved,

$$H(t, az_1 + bz_2) = f_{az_1 + bz_2}(t) = (af_{z_1} + bf_{z_2})(t)$$

= $af_{z_1}(t) + bf_{z_2}(t)$
= $aH(t, z_1) + bH(t, z_2)$.

Hence

H is bilinear,

so there is a unique homomorphism h such that the following diagram commutes:

$$(M \otimes N) \times P \longrightarrow (M \otimes N) \otimes P$$
$$H \swarrow f$$
$$h$$
$$M \otimes N \otimes P$$

yielding

$h((x \otimes y) \otimes z) = H(x \otimes y, z) = f_z(x \otimes y)$ $= F_z(x, y)$ $= x \otimes y \otimes z.$

Now define

by

$$F' : M \times N \times P \rightarrow (M \otimes N) \otimes P$$

 $F'(x, y, z) = (x \otimes y) \otimes z.$

It is easy to verify that F' is multilinear, so there is a unique homomorphism f' such that the following diagram commutes:

whence

$$f'(x \otimes y \otimes z) = F'(x, y, z) = (x \otimes y) \otimes z$$
.

But h and f' undo each other on generators of $M\otimes N\otimes P$ and $(M\otimes N)\otimes P$ respectively, so

 $h \circ f' = \operatorname{id}_{M \otimes N \otimes P}$ and $f' \circ h = \operatorname{id}_{(M \otimes N) \otimes P}$.

Hence h and f are isomorphims, and clearly h is unique with the given property.

By a similar argument there is a unique isomorphism:

 $M \otimes (N \otimes P) \rightarrow M \otimes N \otimes P \qquad x \otimes (y \otimes z) \rightarrow x \otimes y \otimes z$

and (1) of the Theorem is proved.