2.7 Tensor Products
let A bearingand M, N, P be A-modules.

Call a mapping f : M x N — P A-bilinear (or
simply bilinear) if

(i) forall x € M the mapping: N — P defined
by
y = fle,y)  (yeN)

Is an A-module homomorphism; and
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(i) forall y € N the mapping: M — P
defined by

r — flr,y)  (veM)

is an A-module homomorphism;

Thus f : M x N — P s bilinear iff f is linear
In each coordinate, that is,
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(\v/3317$2751j - M)(\v/ylay27y < N)

(Va, b € A)

f(@CEl =+ bZEQ,y) — &f(.fEl, y) T bf(:EQ) y)
and

flx,ayy +by2) = af(z,y1) +bf(x,y2) .
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Example: Let A = F be a field,
M = Flz], N=F[y], P = Flz,y],

polynomial rings regarded as vector spaces over F'.

Easy to check:

f:MxN — P where

fla,B) = af

Is F'-bilinear.

394



We will construct an A-module 7T , called the
tensor product of M , NN, denoted

T = M 4 N = M ® N

which “contains” M x N (collapsing may occur)

with the property that

A-bilinear mappings: M x N — P
“correspond’’ to

A-module homomorphisms : T — P .
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Theorem:
exists a pair (T,g) where T is an A-module
and g: M x N — T is A-bilinear, such that
(VA-bilinear f : M x N — P)
( 3! A-module homomorphism f" : T' — P )

Let M, N be A-modules. There

g
M x N

f\ /f commutes.
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Theorem continued: Moreover, if (T,g) and
(T",g") are two pairs with this property then

( 3'isomorphism j : T — T")

g
M x N

g\ /j commutes.
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Proof: Existence of (7, ¢)

Put

O = A(MXN)

{ formal linear combinations of elements
of M x N with coefficients from A }

— {Za2° xzayz |TLZO,

aiEA,a:iEM,y@-EN VZ}
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Let D be the submodule of (C generated by

elements of the following types, where

v, e M, y,y € N, a € A :

(ZC + xlv y) R (ZC, y) o (.CCI, y) ;
(z,y+y) — (z,y) — (2,9);
(aajay) — a - (Qf,y) ;

(az,ay) — a- (ajay) '

399



Put

T = C/D.

Define ¢ : M xN — T by for z € M,
y € N,

gz, y) = vy = (v,y)+D.

(Thus g is the restriction of the natural map from

C' to C/D.)

Need to check that g is A-bilinear.
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If x,2/ e M, ye N, a,bc A then

glax +bx',y) = (ax+b2') @y
= (ax +b2x',y)+ D

= (ax+ b2 y) — [(azx + b2',y) — (ax,y) — (ba',y)]
+D

since (az + b2’ y) — (ax,y) — (ba',y) € D |
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so that

glax +bx',y) = (az,y) + (br',y) + D

— (aajay> o [(aajay) —a- (Qf,y)}
+ (ba',y) — [(ba',y) — b - (2, y)]
+D

since (az,y) —a-(z,y) € D
and (ba',y) —b-(2,y) € D]
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yielding finally that

glax +bx',y) = a-(z,y)+b-(z',y) + D

(a-(x,y)+D) + (b-(2",y)+ D)
= a-((x,y)+D) +b-((@,y)+D)

= a-(z®y) + b (2'®y)
= a-g(z,y) + b gz y) .
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Similarly one can show that ¢ is linear in the second
variable, which proves

g is A-bilinear.

Now let P be an A-moduleand f: M x N — P
be A-bilinear.

Define f : ¢ — P by

n n

?( Z ai'(%,yz‘)) — Z a; (@i, yi) -

1=1 1=1

404



It is routine to check that f is an A-module
homomorphism.

(We say that f extends f by linearity.)

We check that f wvanishes on generators of D .

let z, 27 e M, yvyy e N, ac A.

Then, using bilinearity of f,
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and similarly (in the second variable)

and

Thus

f((@y+y)—(x,y)—(z,y)) =

f((z,ay)—a-(z,y)) = 0.

O ;

f vanishes on generators of D

SO

f wvanisheson D .
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Thus f induces an A-module homomorphism
f": T =0C/D — P
defined by
flla+D) = f(a) (e C).

We have g

M x N

N\ /f
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This diagram commutes because, for = € M ,
ye N,

(f'og)(z,y)

fg(z,y) = fz®@y)
= f((x,9)+D) = Fflz,y) = flz,9).

Further, f’ is unique with these properties because
the images of the generators of 1T under f’ are
forced by the commutative diagram.
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Uniqueness of (T, g)

Suppose (717,¢") is another pair with the given
property. We have

M x N T

N\

T/

By the properties for (T,g) and (717,g9') we have
the following commuting diagrams:
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(3'7)

(3'5)




so that the following diagrams commute:

g 9
M x N M x N T
N SN e
T
By uniqueness, j'o0j = idy .
Similarly, jo 3" = idy , and it follows that j is

bijective, so 7 is an isomorphism.

The Theorem is proved.
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Note the following rules for manipulating tensors:

(z+2VQy = 20y + 2 Qy

rRy+y) = 0y + 279

ar®y = rRay = alx Y)
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In particular,

r®0 = z®(04+0) = 200 4+ X0,

SO

(Vo e M) r®0 = 0,

and similarly
(Vy € N) O®y = 0,

the zero of M ® N .
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Remarks:

(1) Asan A-module

M®N = (uv | ueM, veN).

Suppose M = (X ), N = (V).

Consider u ® v where wue M, vE N, say
u:Zaiazi, v:ijyj.
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Then

URV = (Zaiﬂfi)@(zbjyj)
= Zaz‘(ﬂfz‘®(zbjyj))

— Z Cl,z'bj (ZCZ @:Uj) .

1,
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This proves

M@N = (z@y | z€X, yeY)

Thus

if M and N are finitely generated, then
sois M & N .
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(2) The notation x ® y is ambiguous.

If M’ , N’ are submodules of M , N respectively
and x € M, ye& N then x®y may have
different properties

as an element of M ® N or as an element of
M & N'.

Example: Take A = 7,

M=z, M =2z, N = N = 12,.
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As an element of M ® N |,

2®1

1+1)e1 = 191) + (181)

= 1®(1+1) = 1®0 = 0.

As an element of M'® N’
2®1 # 0
because of the following:
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Claim: 2Z ® Z- is not the zero module.

Note that
207y = (2®1)

because 2Z = (2), Zy = (1),

sothatif 2®1 = 0 then 2Z ® Z, would be the
zero module, contradicting the Claim.

Proof of the Claim: To help distinguish integers
from elements of Z, write Zo, = {0, 1}.
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Define f:2Z x7Zy — Zy by

flz,y) = (zy/2)
forall x€2z, ye{0,1}.

Then it is routine to check that f is Z-

bilinear (because overline preserves addition and
multiplication).

Hence we have the following commutative diagram
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g

27, X 29 27, Q o,
f\ /f/
L
for some ¢g , f° where f' is a Z-module

homomorphism.

But f is onto and Zy is not the zero module.

Hence 27 ® Zo cannot be the zero module, and the
Claim is proved.
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