
2.7 Tensor Products

Let A be a ring and M , N , P be A-modules.

Call a mapping f : M × N → P A-bilinear (or

simply bilinear) if

(i) for all x ∈ M the mapping : N → P defined

by

y 7→ f(x, y) (y ∈ N)

is an A-module homomorphism; and
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(ii) for all y ∈ N the mapping : M → P

defined by

x 7→ f(x, y) (x ∈ M)

is an A-module homomorphism;

Thus f : M × N → P is bilinear iff f is linear

in each coordinate, that is,
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( ∀x1 , x2 , x ∈ M ) ( ∀y1 , y2 , y ∈ N )

( ∀a , b ∈ A )

f(ax1 + bx2, y) = af(x1, y) + bf(x2, y)

and

f(x, ay1 + by2) = af(x, y1) + bf(x, y2) .
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Example: Let A = F be a field,

M = F [x] , N = F [y] , P = F [x, y] ,

polynomial rings regarded as vector spaces over F .

Easy to check:

f : M × N → P where

f(α, β) = αβ

is F -bilinear.
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We will construct an A-module T , called the

tensor product of M , N , denoted

T = M ⊗A N = M ⊗ N

which “contains” M × N (collapsing may occur)

with the property that

A-bilinear mappings : M × N → P

“correspond” to

A-module homomorphisms : T → P .
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Theorem: Let M , N be A-modules. There

exists a pair (T, g) where T is an A-module

and g : M × N → T is A-bilinear, such that

( ∀A-bilinear f : M × N → P )

( ∃! A-module homomorphism f ′ : T → P )

M × N T

P

g

f f ′ commutes.
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Theorem continued: Moreover, if (T, g) and

(T ′, g′) are two pairs with this property then

( ∃! isomorphism j : T → T ′ )

M × N T

T ′

g

g′ j commutes.
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Proof: Existence of (T, g)

Put

C = A(M×N)

≡ { formal linear combinations of elements

of M × N with coefficients from A }

=
{

n
∑

i=1

ai · (xi, yi) | n ≥ 0 ,

ai ∈ A , xi ∈ M , yi ∈ N ∀i
}

.
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Let D be the submodule of C generated by

elements of the following types, where

x , x′ ∈ M , y , y′ ∈ N , a ∈ A :

(x + x′, y) − (x, y) − (x′, y) ;

(x, y + y′) − (x, y) − (x, y′) ;

(ax, y) − a · (x, y) ;

(x, ay) − a · (x, y) .
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Put

T = C/D .

Define g : M × N → T by, for x ∈ M ,

y ∈ N ,

g(x, y) = x ⊗ y = (x, y) + D .

(Thus g is the restriction of the natural map from

C to C/D .)

Need to check that g is A-bilinear.
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If x, x′ ∈ M , y ∈ N , a, b ∈ A then

g(ax + bx′, y) = (ax + bx′) ⊗ y

= (ax + bx′, y) + D

= (ax + bx′, y) −
[

(ax + bx′, y) − (ax, y) − (bx′, y)
]

+ D

[

since (ax + bx′, y) − (ax, y) − (bx′, y) ∈ D
]
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so that

g(ax + bx′, y) = (ax, y) + (bx′, y) + D

= (ax, y) −
[

(ax, y) − a · (x, y)
]

+ (bx′, y) −
[

(bx′, y) − b · (x′, y)
]

+ D

[

since (ax, y) − a · (x, y) ∈ D

and (bx′, y) − b · (x′, y) ∈ D
]
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yielding finally that

g(ax + bx′, y) = a · (x, y) + b · (x′, y) + D

=
(

a · (x, y) + D
)

+
(

b · (x′, y) + D
)

= a ·
(

(x, y) + D
)

+ b ·
(

(x′, y) + D
)

= a · (x ⊗ y) + b · (x′ ⊗ y)

= a · g(x, y) + b · g(x′, y) .
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Similarly one can show that g is linear in the second

variable, which proves

g is A-bilinear.

Now let P be an A-module and f : M ×N → P

be A-bilinear.

Define f : C → P by

f
(

n
∑

i=1

ai · (xi, yi)
)

=

n
∑

i=1

ai f(xi, yi) .
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It is routine to check that f is an A-module

homomorphism.

(We say that f extends f by linearity.)

We check that f vanishes on generators of D .

Let x, x′ ∈ M , y, y′ ∈ N , a ∈ A .

Then, using bilinearity of f ,
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f
(

(x+x′, y) − (x, y) − (x′, y)
)

= f(x + x′, y) − f(x, y) − f(x′, y)

= f(x, y) + f(x′, y) − f(x, y) − f(x′, y) = 0 ;

f
(

(ax, y) − a · (x, y)
)

= f(ax, y) − a f(x, y)

= a f(x, y) − a f(x, y) = 0 ;
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and similarly (in the second variable)

f
(

(x, y + y′) − (x, y) − (x, y′)
)

= 0 ;

and

f
(

(x, ay) − a · (x, y)
)

= 0 .

Thus

f vanishes on generators of D

so

f vanishes on D .
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Thus f induces an A-module homomorphism

f ′ : T = C/D → P

defined by

f ′(α + D) = f(α) (α ∈ C) .

We have

M × N T

P

g

f f ′
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This diagram commutes because, for x ∈ M ,

y ∈ N ,

(f ′ ◦ g)(x, y) = f ′(g(x, y)) = f ′(x ⊗ y)

= f ′
(

(x, y) + D
)

= f(x, y) = f(x, y) .

Further, f ′ is unique with these properties because

the images of the generators of T under f ′ are

forced by the commutative diagram.
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Uniqueness of (T, g)

Suppose (T ′, g′) is another pair with the given

property. We have

M × N T

T ′

g

g′

By the properties for (T, g) and (T ′, g′) we have

the following commuting diagrams:
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M × N T

T ′

g

g′ j

(∃! j)

M × N T

T ′

g

g′ j′

(∃! j′)

Hence g = j′ ◦ g′ = j′ ◦ (j ◦ g) = (j′ ◦ j) ◦ g ,
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so that the following diagrams commute:

M × N T

T

g

g j′ ◦ j

M × N T

T

g

g idT

By uniqueness, j′ ◦ j = idT .

Similarly, j ◦ j′ = idT ′ , and it follows that j is

bijective, so j is an isomorphism.

The Theorem is proved.
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Note the following rules for manipulating tensors:

(x + x′) ⊗ y = x ⊗ y + x′ ⊗ y

x ⊗ (y + y′) = x ⊗ y + x ⊗ y′

ax ⊗ y = x ⊗ ay = a(x ⊗ y)
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In particular,

x ⊗ 0 = x ⊗ (0 + 0) = x ⊗ 0 + x ⊗ 0 ,

so

(∀x ∈ M) x ⊗ 0 = 0 ,

and similarly

(∀y ∈ N) 0 ⊗ y = 0 ,

the zero of M ⊗ N .
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Remarks:

(1) As an A-module

M ⊗ N = 〈 u ⊗ v | u ∈ M , v ∈ N 〉 .

Suppose M = 〈X 〉 , N = 〈Y 〉 .

Consider u ⊗ v where u ∈ M , v ∈ N , say

u =
∑

aixi , v =
∑

bjyj .

415



Then

u ⊗ v =
(

∑

aixi

)

⊗
(

∑

bjyj

)

=
∑

i

ai

(

xi ⊗
(

∑

j

bjyj

) )

=
∑

i,j

aibj (xi ⊗ yj) .
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This proves

M ⊗ N = 〈 x ⊗ y | x ∈ X , y ∈ Y 〉

Thus

if M and N are finitely generated, then

so is M ⊗ N .
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(2) The notation x ⊗ y is ambiguous.

If M ′ , N ′ are submodules of M , N respectively

and x ∈ M ′ , y ∈ N ′ then x ⊗ y may have

different properties

as an element of M ⊗ N or as an element of

M ′ ⊗ N ′ .

Example: Take A = Z ,

M = Z , M ′ = 2Z , N = N ′ = Z2 .
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As an element of M ⊗ N ,

2 ⊗ 1 = (1 + 1) ⊗ 1 = (1 ⊗ 1) + (1 ⊗ 1)

= 1 ⊗ (1 + 1) = 1 ⊗ 0 = 0 .

As an element of M ′ ⊗ N ′ ,

2 ⊗ 1 6= 0

because of the following:
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Claim: 2Z ⊗ Z2 is not the zero module.

Note that

2Z ⊗ Z2 = 〈 2 ⊗ 1 〉

because 2Z = 〈 2 〉 , Z2 = 〈 1 〉 ,

so that if 2 ⊗ 1 = 0 then 2Z ⊗ Z2 would be the

zero module, contradicting the Claim.

Proof of the Claim: To help distinguish integers

from elements of Z2 write Z2 = { 0 , 1 } .
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Define f : 2Z × Z2 → Z2 by

f(x, y) = (xy/2)

for all x ∈ 2Z , y ∈ { 0, 1 } .

Then it is routine to check that f is Z-

bilinear (because overline preserves addition and

multiplication).

Hence we have the following commutative diagram
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2Z × Z2 2Z ⊗ Z2

Z2

g

f f ′

for some g , f ′ where f ′ is a Z-module

homomorphism.

But f is onto and Z2 is not the zero module.

Hence 2Z⊗ Z2 cannot be the zero module, and the

Claim is proved.
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