(<) Suppose conversely, for all A-modules N,
that

U U
0 — Hom (M",N) — Hom (M, N) — Hom (M', N)

IS exact.

() We show v is surjective:

Put N = M"/imv andlet f: M" — N be the
natural map.

Observe that ©(f) = fowv = 0, the zero map,
by definition of f,
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so f = 0, since U is injective.

But this means M"” = imwv , thatis, v is
surjective.
(ii) We show im u C kerw :

Put N = M"” andlet f: M"”" — N be the
identity mapping. Then

0 = (uow)(f) = fovou = vou

(since im v = kerw ), which proves im u C kerwv.
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(iii) We show kerv C im u :

Put N = M/imu andlet f: M — N be the
natural map.

Certainly u(f) = fou = 0 (by definition of f).
so fekeru = im v, yielding
f =1v(g) = gov

for some g € Hom (M",N) .
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But ker(gowv) O kerw, so

imu = ker f = ker(gov) DO kerwv.

Facts (i), (ii), (iii) establish that

U v
M — M — M' — 0

is exact, and (1) of the Theorem is proved.
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et
U v

0O — M — M — M — 0
JREINT

0 — N — N — N' — 0

/ /
U (v

be a commutative diagram of A-modules and
homomorphisms, with exact rows.
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Theorem: With the above, there exists an exact
sequence

) v
0 — ker f’ — ker f — ker f”

~ R

coker f' — coker f — coker ¥ — 0

—/ —/
u (V)

for some homomorphism d .
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In the above diagram

u, U denote the restrictions of u, v respectively,
and

—/ —/ /

u , U are induced by composites of u' , w
respectively with natural maps.

Proof: Define
d: ker f — coker f/ = N/im f’

as follows:
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Let " € ker f” . Then, since v is onto,
" = v(x) dJrxe M
SO

V(f(z) = f(u(x)) = f(") =0,
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whence

Now put

d(z") = ¢ + f(M') € N'/im f".

(i)

Check that d is well-defined:
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This I1s a simple exercise, using exactness at M |

commutativity of the first square and the fact that

u' is injective.

(ii)) | Check that d is a module homomorphism:

This follows easily, tracing through the definition of
d and using the fact that each of v, f and 4/
are homomorphisms.
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(iii) Check exactness at ker f' and coker f”:

This is Immediate because w Is injective
(restriction of an injective map)

and ¥’ is surjective (induced by a surjective map).

(iv) Check exactness at ker f :

If £ € kerv then £z € kerv = im v, so

r = u(x) Ja' e M’
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and

SO
fl(z') =0 (since u’ is injective)

yielding x’ € ker f’, whence
r = u(z) = ulz) € im7w.

Thus kerv C imu.

376



Conversely, if = € im uw then

r = u(r) = u(x) 7 2’ € ker f’

r € kerf "imu = kerf N kerv

so x € kerv. Thus imw = kerv, and equality
holds.
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(v) Check exactness at coker f :

This i1s left as an exercise.

(vi) Check exactness at ker f” :

Suppose x” € kerd, so

" = wvx) FJzxeM , f(r)=d{)



and




so x —u(x’) € ker f. Observe now that

v(z—u(z)) = v(@)-v(u(’) = v(z) = 2",

proving kerd C im v .

Conversely, if 2" € im v then
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so f(x) = 0 =4/(0), so (by definition)
d(a") = 0+ f(M') = f(M),

proving z” € kerd , whence imv = kerd .

(vii) Check exactness at coker f':

This is left as an exercise.

The Theorem Is proved.
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Exercise: In the earlier diagram with
commuting squares and exact rows, find an
example in which each of

ker f' , ker f , ker f" ,

coker f' , coker f , coker f" .

IS not a zero module, and each of
u, v,d,u , v

IS not a zero homomorphism.
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Let C be a class of A-modules containing the zero
module.

Call AM:C — 2z additive if, for each short exact
sequence

0O - M — M —-— M'" - 0

where M', M, M" € C we have
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Note that
0O -0 —0—0—20

is exact, so A(0) = A(0) + A(0) , yielding

A0) = 0.

Example: Let A = F be a field and C the
class of all finite dimensional vector spaces over F'.
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|f f g
0O —- M — M — M'" — 0

s exact, then
M" = M/kerg = M/f(M')
so (by the Rank-Nullity Theorem)

dim M" = dim(M/f(M")) = dim M — dim f(M')
= dim M — dim M’

which proves dim : C — Z is additive.
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Example: Let C denote the class of all finite
abelian groups, regarded as Z-modules.

Let P be some given set of primes (possibly all
primes). If A € C then

Al = (] »™)q
pEP
where ¢ is coprime to all elements of P .
Define A(A) = > p ;.
Clearly A is additive.
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Example: Let C denote the class of all finitely
generated abelian groups, regarded as Z-modules.

f A € C then A = 7" & B for some n >0
and finite abelian group B .

Define A\(A) = n = torsion free rank .

Exercise: Prove )\ is additive.
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Proposition:

0—>M0%M1%...

be exact where all modules and kernels belong to
C, and let A be additive. Then

fo

Let

fi

fn—l

— M, — 0
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Proof: We have that

N /N SN/ / \ / \ /
0 Ny Ny C
N/ N /N N\ / \ /
0 — My — My — - My, 11— M, — 0
Is a commutative diagram where

N’i = 1m f,,;_l = kerfi

and 0—>NZ%MZ—>NZ+1—>O

sexactfor 1 =1, ... ,n—1.
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Then, noting A(0) = 0,
AMMy) — MMy) + ... + (—1)" AM(M,)
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