$({\displaystyle \Longleftarrow})$ Suppose conversely, for all $\,A{\text{-modules}}\,\,N$, that

 $0 \longrightarrow \operatorname{Hom} (M'', N) \longrightarrow \operatorname{Hom} (M, N) \longrightarrow \operatorname{Hom} (M', N)$

is exact.

(i) We show v is surjective:

Put N = M''/im v and let $f: M'' \to N$ be the natural map.

Observe that $\,\overline{v}(f)\,=\,f\circ v\,=\,0$, the zero map, by definition of $\,f$,

so f = 0, since \overline{v} is injective.

But this means $M'' = \operatorname{im} v$, that is, v is surjective.

(ii) We show im $u \subseteq \ker v$:

Put N = M'' and let $f: M'' \to N$ be the identity mapping. Then

$$0 = (\overline{u} \circ \overline{v})(f) = f \circ v \circ u = v \circ u$$

(since $\operatorname{im} \overline{v} = \ker \overline{u}$), which proves $\operatorname{im} u \subseteq \ker v$.

(iii) We show
$$\ker v \subseteq \operatorname{im} u$$
:

Put N = M/im u and let $f: M \to N$ be the natural map.

Certainly
$$\overline{u}(f) = f \circ u = 0$$
 (by definition of f).

so $f \in \ker \overline{u} = \operatorname{im} \overline{v}$, yielding

$$f = \overline{v}(g) = g \circ v$$

for some $g \in \operatorname{Hom}\left(M'',N\right)$.

But
$$\ker(g \circ v) \supseteq \ker v$$
, so
 $\operatorname{im} u = \ker f = \ker(g \circ v) \supseteq \ker v$.

is exact, and (1) of the Theorem is proved.

Let

be a commutative diagram of A-modules and homomorphisms, with exact rows.

In the above diagram

 \overline{u} , $\ \overline{v} \$ denote the restrictions of $\ u$, $\ v \$ respectively, and

 \overline{u}' , \overline{v}' are induced by composites of u', v' respectively with natural maps.

Proof: Define

$$d: \ker f'' \to \operatorname{coker} f' = N/\operatorname{im} f'$$

as follows:

Let $x'' \in \ker f''$. Then, since v is onto,

$$x'' = v(x) \qquad \exists x \in M$$

SO

$$v'(f(x)) = f''(v(x)) = f''(x'') = 0,$$

yielding

$$f(x) \in \ker v' = \operatorname{im} u',$$

whence

$$f(x) = u'(y') \qquad \exists y' \in N' .$$

Now put

$$d(x'') = y' + f'(M') \in N'/\text{im } f'$$
.

(i) Check that
$$d$$
 is well-defined:

This is a simple exercise, using exactness at $\,M$, commutativity of the first square and the fact that $u'\,$ is injective.

Check that d is a module homomorphism:

(ii)

This follows easily, tracing through the definition of d and using the fact that each of v, f and u' are homomorphisms.

(iii)

(iv)

Check exactness at $\ker f'$ and $\operatorname{coker} f''$:

This is immediate because $\ \overline{u} \$ is injective

(restriction of an injective map)

and \overline{v}' is surjective (induced by a surjective map).

Check exactness at $\ker f$:

If $x \in \ker \overline{v}$ then $x \in \ker v \ = \ \operatorname{im} v$, so

 $x = u(x') \qquad \exists x' \in M'$

and

$$u'(f'(x')) = f(u(x')) = f(x) = 0$$
,

SO

$$f'(x') = 0$$
 (since u' is injective)

yielding $x' \in \ker f'$, whence

$$x = u(x') = \overline{u}(x') \in \operatorname{im} \overline{u}$$
.

Thus $\ker \overline{v} \subseteq \operatorname{im} \overline{u}$.

Conversely, if $x \in \operatorname{im} \overline{u}$ then

$$x = \overline{u}(x') = u(x') \quad \exists x' \in \ker f'$$

SO

$$f(x) = f(u(x')) = u'(f'(x')) = u'(0) = 0,$$

SO

$$x \in \ker f \cap \operatorname{im} u = \ker f \cap \ker v$$

so $x \in \ker \overline{v}$. Thus $\operatorname{im} \overline{u} = \ker \overline{v}$, and equality holds.

Check exactness at $\operatorname{coker} f$:

This is left as an **exercise**.

(vi) Check exactness at
$$\ker f''$$
:

Suppose $x'' \in \ker d$, so

 $x'' = v(x) \quad \exists x \in M , \quad f(x) = u'(y') \quad \exists y' \in N' ,$

 $\quad \text{and} \quad$

$$f'(M') = d(x'') = y' + f'(M')$$
.

Thus $\,y'\,\in\,f'(M')$, so

$$y' = f'(x') \qquad \exists x' \in M'$$

yielding

$$f(x) = u'(y') = u'(f'(x')) = f(u(x')),$$

so $x - u(x') \in \ker f$. Observe now that

$$\overline{v}(x-u(x')) = v(x)-v(u(x'')) = v(x) = x'',$$

proving $\ker d \subseteq \operatorname{im} \overline{v}$.

Conversely, if $x'' \in \operatorname{im} \overline{v}$ then

$$x'' = \overline{v}(x) = v(x) \quad \exists x \in \ker f$$

so
$$f(x) = 0 = u'(0)$$
, so (by definition)
 $d(x'') = 0 + f'(M') = f'(M')$,

proving $x'' \in \ker d$, whence $\operatorname{im} \overline{v} = \ker d$.

This is left as an exercise.

The Theorem is proved.

Exercise: In the earlier diagram with commuting squares and exact rows, find an example in which each of $\ker f' \ , \ \ker f \ , \ \ker f'' \ ,$ $\operatorname{coker} f'$, $\operatorname{coker} f$, $\operatorname{coker} f''$, is not a zero module, and each of \overline{u} , \overline{v} , d , \overline{u}' , \overline{v}' is not a zero homomorphism.

Let \mathcal{C} be a class of A-modules containing the zero module.

Call $\lambda : \mathcal{C} \to \mathbb{Z}$ additive if, for each short exact sequence

$$0 \to M' \to M \to M'' \to 0$$

where $M', M, M'' \in \mathcal{C}$ we have

$$\lambda(M) = \lambda(M') + \lambda(M'') .$$

Note that

$$0 \ \rightarrow \ 0 \ \rightarrow \ 0 \ \rightarrow \ 0 \ \rightarrow \ 0$$

is exact, so $\;\lambda(0)\;=\;\lambda(0)+\lambda(0)$, yielding

$$\lambda(0) = 0$$
 .

Example: Let A = F be a field and C the class of all finite dimensional vector spaces over F.

If
$$f \qquad g$$

 $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$
is exact, then

$$M'' \cong M/\ker g = M/f(M')$$

so (by the Rank-Nullity Theorem)
$$\dim M'' = \dim(M/f(M')) = \dim M - \dim f(M')$$

$$= \dim M - \dim M',$$

which proves $\dim : \mathcal{C} \to \mathbb{Z}$ is additive.

Example: Let C denote the class of all finite abelian groups, regarded as \mathbb{Z} -modules.

Let \mathcal{P} be some given set of primes (possibly all primes). If $A \in \mathcal{C}$ then

$$|A| = \left(\prod_{p \in \mathcal{P}} p^{\alpha_p}\right) q$$

where q is coprime to all elements of \mathcal{P} . Define $\lambda(A) = \sum_{p \in \mathcal{P}} \alpha_p$. Clearly λ is additive. **Example:** Let C denote the class of all finitely generated abelian groups, regarded as \mathbb{Z} -modules.

If $A \in \mathcal{C}$ then $A \cong \mathbb{Z}^n \oplus B$ for some $n \ge 0$ and finite abelian group B.

Define $\lambda(A) = n = \text{torsion free rank}$.

Exercise: Prove λ is additive.

Proposition: Let

$$0 \longrightarrow M_0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} \dots \xrightarrow{f_{n-1}} M_n \longrightarrow 0$$
be exact where all modules and kernels belong to
 \mathcal{C} , and let λ be additive. Then

$$\sum_{i=0}^n (-1)^i \lambda(M_i) = 0.$$

Proof: We have that

is a commutative diagram where

$$N_i = \operatorname{im} f_{i-1} = \operatorname{ker} f_i$$

and $0 \longrightarrow N_i \longrightarrow M_i \longrightarrow N_{i+1} \longrightarrow 0$ is exact for $i = 1, \ldots, n-1$.

Then, noting $\lambda(0) = 0$, $\lambda(M_0) - \lambda(M_1) + \ldots + (-1)^n \lambda(M_n)$

$$= - \left(\lambda(0) - \lambda(M_0) + \lambda(N_1) \right) + \left(\lambda(N_1) - \lambda(M_1) + \lambda(N_2) \right) - \cdots + (-1)^{n-1} \left(\lambda(N_n) - \lambda(M_n) + \lambda(0) \right)$$

= 0.