
(⇐=) Suppose conversely, for all A-modules N ,

that

0 −→ Hom (M ′′, N) −→ Hom (M,N) −→ Hom (M ′, N)
v u

is exact.

(i) We show v is surjective:

Put N = M ′′/im v and let f : M ′′ → N be the

natural map.

Observe that v(f) = f ◦ v = 0 , the zero map,

by definition of f ,
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so f = 0 , since v is injective.

But this means M ′′ = im v , that is, v is

surjective.

(ii) We show im u ⊆ ker v :

Put N = M ′′ and let f : M ′′ → N be the

identity mapping. Then

0 = (u ◦ v)(f) = f ◦ v ◦ u = v ◦ u

(since im v = keru ), which proves im u ⊆ ker v .
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(iii) We show ker v ⊆ im u :

Put N = M/im u and let f : M → N be the

natural map.

Certainly u(f) = f ◦u = 0 (by definition of f ).

so f ∈ keru = im v , yielding

f = v(g) = g ◦ v

for some g ∈ Hom (M ′′, N) .
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But ker(g ◦ v) ⊇ ker v , so

im u = ker f = ker(g ◦ v) ⊇ ker v .

Facts (i), (ii), (iii) establish that

M ′ −→ M −→ M ′′ −→ 0
u v

is exact, and (1) of the Theorem is proved.
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Let

0 −→ M ′ −→ M −→ M ′′ −→ 0
u v

f ′ f f ′′

0 −→ N ′ −→ N −→ N ′′ −→ 0

u′ v′

be a commutative diagram of A-modules and

homomorphisms, with exact rows.
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Theorem: With the above, there exists an exact

sequence

0 −→ ker f ′ −→ ker f −→ ker f ′′
u v

d

coker f ′ −→ coker f −→ coker f ′′ −→ 0

u′ v′

for some homomorphism d .
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In the above diagram

u , v denote the restrictions of u , v respectively,

and

u′ , v′ are induced by composites of u′ , v′

respectively with natural maps.

Proof: Define

d : ker f ′′ → coker f ′ = N/im f ′

as follows:
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Let x′′ ∈ ker f ′′ . Then, since v is onto,

x′′ = v(x) ∃ x ∈ M

so

v′(f(x)) = f ′′(v(x)) = f ′′(x′′) = 0 ,

yielding

f(x) ∈ ker v′ = im u′ ,

372



whence

f(x) = u′(y′) ∃ y′ ∈ N ′ .

Now put

d(x′′) = y′ + f ′(M ′) ∈ N ′/im f ′ .

(i) Check that d is well-defined:
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This is a simple exercise, using exactness at M ,

commutativity of the first square and the fact that

u′ is injective.

(ii) Check that d is a module homomorphism:

This follows easily, tracing through the definition of

d and using the fact that each of v , f and u′

are homomorphisms.
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(iii) Check exactness at ker f ′ and coker f ′′ :

This is immediate because u is injective

(restriction of an injective map)

and v′ is surjective (induced by a surjective map).

(iv) Check exactness at ker f :

If x ∈ ker v then x ∈ ker v = im v , so

x = u(x′) ∃ x′ ∈ M ′
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and

u′(f ′(x′)) = f(u(x′)) = f(x) = 0 ,

so

f ′(x′) = 0 (since u′ is injective)

yielding x′ ∈ ker f ′ , whence

x = u(x′) = u(x′) ∈ im u .

Thus ker v ⊆ im u .
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Conversely, if x ∈ im u then

x = u(x′) = u(x′) ∃ x′ ∈ ker f ′

so

f(x) = f(u(x′)) = u′(f ′(x′)) = u′(0) = 0 ,

so

x ∈ ker f ∩ im u = ker f ∩ ker v

so x ∈ ker v . Thus im u = ker v , and equality

holds.
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(v) Check exactness at coker f :

This is left as an exercise.

(vi) Check exactness at ker f ′′ :

Suppose x′′ ∈ ker d , so

x′′ = v(x) ∃ x ∈ M , f(x) = u′(y′) ∃ y′ ∈ N ′ ,
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and

f ′(M ′) = d(x′′) = y′ + f ′(M ′) .

Thus y′ ∈ f ′(M ′) , so

y′ = f ′(x′) ∃ x′ ∈ M ′

yielding

f(x) = u′(y′) = u′(f ′(x′)) = f(u(x′)) ,
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so x − u(x′) ∈ ker f . Observe now that

v(x−u(x′)) = v(x)−v(u(x′′)) = v(x) = x′′ ,

proving ker d ⊆ im v .

Conversely, if x′′ ∈ im v then

x′′ = v(x) = v(x) ∃ x ∈ ker f

380



so f(x) = 0 = u′(0) , so (by definition)

d(x′′) = 0 + f ′(M ′) = f ′(M ′) ,

proving x′′ ∈ ker d , whence im v = ker d .

(vii) Check exactness at coker f ′ :

This is left as an exercise.

The Theorem is proved.
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Exercise: In the earlier diagram with

commuting squares and exact rows, find an

example in which each of

ker f ′ , ker f , ker f ′′ ,

coker f ′ , coker f , coker f ′′ ,

is not a zero module, and each of

u , v , d , u′ , v′

is not a zero homomorphism.
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Let C be a class of A-modules containing the zero

module.

Call λ : C → Z additive if, for each short exact

sequence

0 → M ′ → M → M ′′ → 0

where M ′,M,M ′′ ∈ C we have

λ(M) = λ(M ′) + λ(M ′′) .
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Note that

0 → 0 → 0 → 0 → 0

is exact, so λ(0) = λ(0) + λ(0) , yielding

λ(0) = 0 .

Example: Let A = F be a field and C the

class of all finite dimensional vector spaces over F .
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If

0 −→ M ′ −→ M −→ M ′′ −→ 0
f g

is exact, then

M ′′ ∼= M/ ker g = M/f(M ′)

so (by the Rank-Nullity Theorem)

dimM ′′ = dim(M/f(M ′)) = dimM − dim f(M ′)

= dimM − dimM ′ ,

which proves dim : C → Z is additive.
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Example: Let C denote the class of all finite

abelian groups, regarded as Z-modules.

Let P be some given set of primes (possibly all

primes). If A ∈ C then

|A| =
(

∏

p∈P

pαp

)

q

where q is coprime to all elements of P .

Define λ(A) =
∑

p∈P αp .

Clearly λ is additive.
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Example: Let C denote the class of all finitely

generated abelian groups, regarded as Z-modules.

If A ∈ C then A ∼= Z
n ⊕ B for some n ≥ 0

and finite abelian group B .

Define λ(A) = n = torsion free rank .

Exercise: Prove λ is additive.
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Proposition: Let

0 −→ M0 −→ M1 −→ . . . −→ Mn −→ 0
f0 f1 fn−1

be exact where all modules and kernels belong to

C , and let λ be additive. Then

n
∑

i=0

(−1)i λ(Mi) = 0 .
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Proof: We have that

0 0 0 · · · 0 0 0

0 N1 N2 · · · Nn 0

0 M0 M1 · · · Mn−1 Mn 0

is a commutative diagram where

Ni = im fi−1 = ker fi

and 0 −→ Ni −→ Mi −→ Ni+1 −→ 0

is exact for i = 1 , . . . , n − 1 .
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Then, noting λ(0) = 0 ,

λ(M0) − λ(M1) + . . . + (−1)n λ(Mn)

= −
(

λ(0) − λ(M0) + λ(N1)
)

+
(

λ(N1) − λ(M1) + λ(N2)
)

− · · ·

+ (−1)n−1
(

λ(Nn) − λ(Mn) + λ(0)
)

= 0 .
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