2.6 Exact Sequences

Let A be a ring. A sequence (possibly infinite in one or both directions)

$$\cdots \longrightarrow M_{i-1} \longrightarrow M_i \longrightarrow M_{i+1} \longrightarrow \cdots$$

of A-modules and A-module homomorphisms is called **exact at** M_i if

$$\operatorname{im} f_{i-1} = \operatorname{ker} f_i ,$$

and **exact** if it is exact at M_j for all j.

Notation: Write
$$0 = \{0\}$$
.

Then for any module M there are unique module homomorphisms

$$0 \longrightarrow M$$
, $0 \mapsto 0$

and

$$M \longrightarrow 0, \quad m \mapsto 0 \qquad \forall m \in M$$

in each case called the **zero homomorphism**, also denoted by 0.

Special cases:

$$\begin{array}{cccc} (1) & & f \\ 0 & \longrightarrow & M' & \longrightarrow & M \end{array}$$

is exact iff $0 = \ker f$ iff f is injective.

$$\begin{array}{cccc} (2) & g \\ & M' \longrightarrow M \longrightarrow 0 \end{array}$$

(3)

is exact iff $\lim g = \ker 0 = M$ iff g is surjective.

is exact iff f is injective, g is surjective and

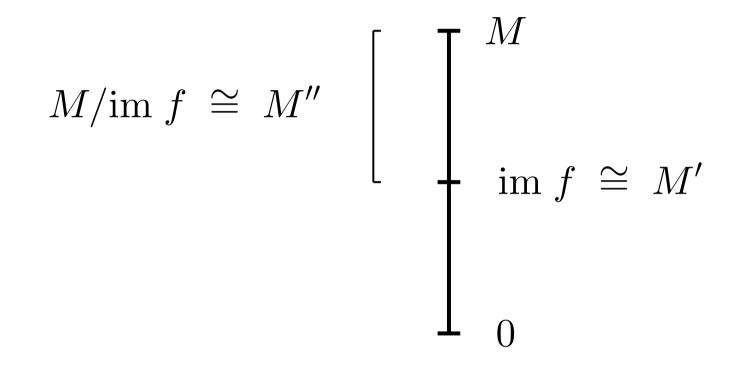
 $\operatorname{im} f = \operatorname{ker} g$,

so that, by the Fundamental Homomorphism Theorem,

$$\operatorname{coker} f = M/\operatorname{im} f = M/\operatorname{ker} g \cong M''$$

so that we can think of

$$M$$
 as an **extension** of $M' \cong \operatorname{im} f$ by M'' .



Type (3) is called a **short exact sequence**.

Exact sequences stretching infinitely in both directions are called **long**.

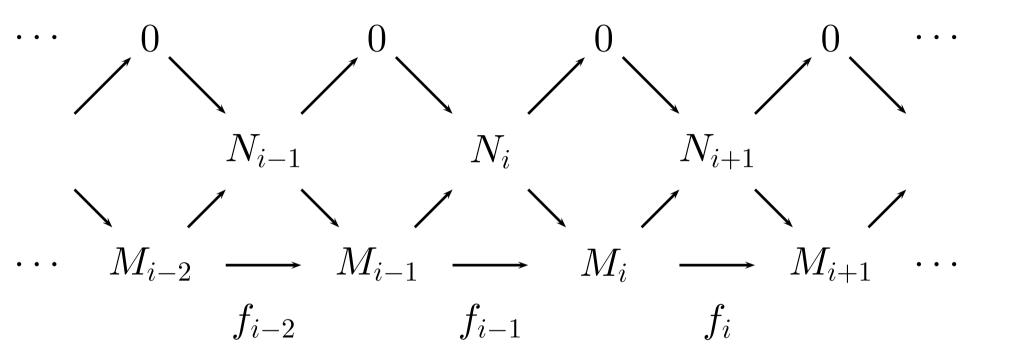
Suppose

is long exact.

Put

 $N_{j+1} = \inf f_j = \ker f_{j+1} \quad (\forall j) .$

Then we have the following diagram of mappings:



where every square or triangle of mappings commutes, and

$$0 \longrightarrow N_i \longrightarrow M_i \longrightarrow N_{i+1} \longrightarrow 0$$

is short exact for each i.

Conversely, if we have a diagram of mappings with the above property then the lower chain of module homomorphisms is long exact.

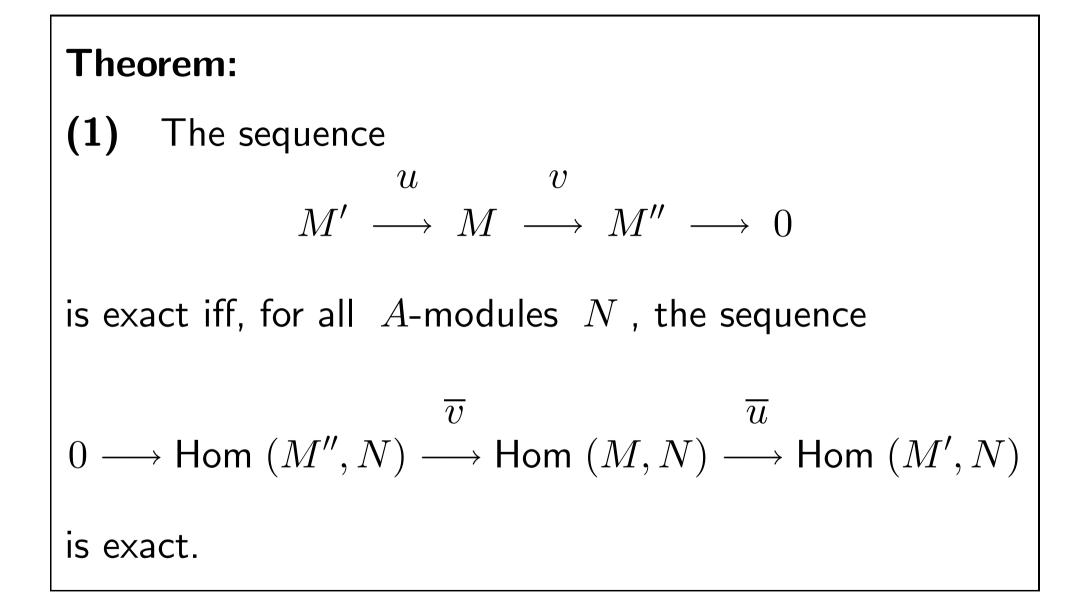
Recall that if M, N are A-modules then

 $\operatorname{Hom}_{A}(M,N) = \operatorname{Hom}(M,N)$

 $= \{ A \text{-module homomorphisms} : M \to N \},\$

becomes an A-module with respect to pointwise addition and scalar multiplication.

We prove a result linking exactness to the operators Hom (M, -) : $X \mapsto \text{Hom } (M, X)$ and Hom (-, N) : $X \mapsto \text{Hom} (X, N)$.



Note that, for all M, N, Hom $(M,0) \cong$ Hom $(0,N) \cong 0$.

Proof: We will prove (1) and leave the proof of (2) as an **exercise**.

 $(\Longrightarrow) Suppose that$ $<math display="block">\begin{array}{c} u & v \\ M' \longrightarrow M \longrightarrow M'' \longrightarrow 0 \end{array}$

is exact and let N be any A-module.

(i) We show
$$\overline{v}$$
 is injective:

Suppose $f,g \in \operatorname{Hom}\left(M'',N\right)$ and

$$f \circ v = \overline{v}(f) = \overline{v}(g) = g \circ v$$
.

If $x \in M''$ then x = v(y) for some $y \in M$ (since v is surjective)

SO

$$f(x) = f(v(y)) = (f \circ v)(y) = (g \circ v)(y) = g(x)$$
.
Thus $f = g$, which proves \overline{v} is injective.

(ii) We show
$$\ker \overline{u} \subseteq \operatorname{im} \overline{v}$$
:

Suppose
$$f \in \ker \overline{u}$$
, so $f \circ u = \overline{u}(f) = 0$.

Define $g: M'' \to N$ by, for $x \in M''$,

$$g(x) = f(y)$$

where x = v(y) for some $y \in M$ (again since v is surjective).

Then g is sensibly defined, because if $v(y) = v(y_0)$ then

$$0 = v(y) - v(y_0) = v(y - y_0)$$

so $y - y_0 \in \ker v = \operatorname{im} u$,

so that

$$y - y_0 = u(z)$$

for some $\ z \ \in M'$, yielding

 $f(y) = f(y-y_0) + f(y_0) = f(u(z)) + f(y_0) = f(y_0)$

(since $f \circ u = 0$).

It is immediate that q is a module homomorphism (since f is), so $g \in \text{Hom}(M'', N)$. But, if $y \in M$ then $[\overline{v}(q)](y) = (q \circ v)(y) = q(v(y)) = f(y)$ (by definition of g). Hence $\overline{v}(g) = f$, so

 $f \in \operatorname{im} \overline{v}$,

proving that $\ker \overline{u} \subseteq \operatorname{im} \overline{v}$.

(iii) We show
$$\operatorname{im} \overline{v} \subseteq \operatorname{ker} \overline{u}$$
:

Suppose $f = \overline{v}(g) \in \operatorname{im} \overline{v}$.

If $z \in M'$ then

$$[\overline{u}(f)](z) = [\overline{u}(\overline{v}(g)](z) = (g \circ v \circ u)(z)$$
$$= g(v(u(z))) = g(0) = 0$$

(since $\operatorname{im} u = \operatorname{ker} v$).

Thus $\overline{u}(f) = 0$, so $f \in \ker \overline{u}$, so $\operatorname{im} \overline{v} \subseteq \ker \overline{u}$.

Facts (i), (ii), (iii) together establish that

$$0 \longrightarrow \mathsf{Hom}\; (M'', N) \longrightarrow \mathsf{Hom}\; (M, N) \longrightarrow \mathsf{Hom}\; (M', N)$$

is exact.