2.5 Nakayama's Lemma

We will develop a criterion for a module to be trivial!

$$\phi(M) \subseteq IM.$$

Then ϕ is the root of a **monic** polynomial with **nonleading** coefficients from I .

Proof: Write $M = \langle x_1, \ldots, x_n \rangle$. Observe

$$IM = \left\{ \sum_{j=1}^{m} b_{j} y_{j} \mid m \in \mathbb{Z}^{+}, b_{j} \in I, \right.$$
 $y_{j} \in M \quad (\forall j) \left. \right\}.$

But each member of M is a linear combination of x_1, \ldots, x_n , and I absorbs multiplication by any coefficient from A.

Hence

$$IM = \left\{ \sum_{i=1}^{n} c_i x_i \mid c_i \in I \quad (\forall i) \right\}.$$

In particular, for each $i=1,\ldots,n$, since $\phi(x_i)\in IM$,

$$\phi(x_i) = \sum_{j=1}^n c_{ij} x_j$$

for some $c_{ij} \in I \quad (j = 1, \dots, n)$.

Thus ϕ corresponds to the matrix

$$C = [c_{ij}].$$

Let $\chi(x)$ be the characteristic polynomial of C .

By the Cayley-Hamilton Theorem,

$$\chi(C) = 0$$

the zero matrix,

SO

$$\chi(\phi) = 0$$

the **zero mapping**, when evaluated in the ring $\operatorname{Hom}_A(M,M)$. This proves the Theorem.

Corollary: Let M be a finitely generated A-module and $I \lhd A$ such that IM = M . Then

 $x M = \{0\}$ for some $x \in 1 + I$.

Proof: Let $\phi: M \to M$ be the identity mapping. Then

$$\phi(M) = M = IM,$$

so, by the previous Theorem,

for some $a_1,\ldots,a_n\in I$,

$$\phi^{n} + a_{1} \phi^{n-1} + \dots + a_{n-1} \phi + a_{n} 1 = 0$$

note monic

identity zero mapping mapping

Hence

Put
$$x = 1 + a_1 + \ldots + a_n \in 1 + I$$
.

Thus

$$x M = x \phi(M) = (x\phi)(M) = \{0\},$$

since $x\phi$ is the zero mapping.

Theorem (Nakayama's Lemma):

Let M be a finitely generated A-module and $I \lhd A$ such that $I \subseteq R$ (the Jacobson radical). Then

$$IM = M \Longrightarrow M = \{0\}.$$

First proof: Suppose IM = M.

By the previous Corollary, $\ xM = \{0\}$ for some $x \in 1+I \subseteq 1+R$.

But 1+R consists of units (an early observation about the Jacobson radical), so

$$\{0\} = x^{-1}\{0\} = x^{-1}(xM) = 1M = M.$$

Second proof: Suppose $M \neq \{0\}$.

Let $\{u_1, \ldots, u_n\}$ be a minimal set of generators of M (since M is finitely generated).

If $u_n \in IM$ then

$$u_n = a_1 u_1 + \ldots + a_n u_n$$

for some a_1 , ... , $a_n \in I$, so

$$(1-a_n) u_n = a_1 u_1 + \ldots + a_{n-1} u_{n-1}$$

SO

$$u_n = (1-a_n)^{-1} (a_1 u_1 + \ldots + a_{n-1} u_{n-1})$$

(since $1 - a_n \in 1 + R$ is invertible)

which contradicts the minimality of the generating set.

Hence $u_n \not\in I\ M$, so $I\ M \neq M$, and Nakayama's Lemma is proved.

Corollary: Let M be a finitely generated A-module, N a submodule of M and $I \lhd A$ such that $I \subseteq R$ (the Jacobson radical). Then

$$M = IM + N \implies M = N.$$

Proof: Suppose M = IM + N. Then

$$I(M/N) = \left\{ \sum_{i=1}^{n} a_{i} (m_{i} + N) \mid n \in \mathbb{Z}^{+}, a_{i} \in I, \right.$$

$$\left. m_{i} \in M \quad \forall i \right\}$$

$$= \left\{ \left(\sum_{i=1}^{n} a_{i} m_{i} \right) + N \mid n \in \mathbb{Z}^{+}, a_{i} \in I, \right.$$

$$\left. m_{i} \in M \quad \forall i \right\}$$

$$= (IM + N)/N = M/N.$$

By Nakayama's Lemma,

$$M/N$$
 = zero module,

that is, M = N .

Consider now a local ring $\,A$, with maximal ideal $\,I$, and put

$$F = A/I$$

the **residue field** of A.

Let M be a finitely generated A-module.

Then IM is a submodule of M and

$$I(M/IM) = (IM + IM)/IM = IM/IM,$$

the zero module, so

$$I \subseteq Ann(M/IM)$$

SO

M/IM becomes an A/I-module

M/IM becomes a vector space over $\,F\,$.

Further, M/IM is finitely generated (because M is),

SO

M/IM is finite dimensional.

Theorem: Let x_1 , ..., $x_n \in M$ be such that

$$\{x_1+IM,\ldots,x_n+IM\}$$

is a basis for the vector space $\,M/IM\,$.

Then

$$M = \langle x_1, \ldots, x_n \rangle.$$

Proof: Put $N = \langle x_1, \ldots, x_n \rangle$.

Then

$$M/IM = \langle x_1 + IM, \dots, x_n + IM \rangle$$

$$= F(x_1 + IM) + \dots + F(x_n + IM)$$

$$= \sum_{i=1}^{n} (A/I)(x_i + IM)$$

$$= \sum_{i=1}^{n} A(x_i + IM)$$

Hence

$$M/IM = \left\{ \left(\sum_{i=1}^{n} a_i x_i \right) + IM \mid a_1, \dots, a_n \in A \right\}$$

$$= (N + IM)/IM$$
.

Hence M=N+IM , so M=N , by the previous Corollary.