2.5 Nakayama’s Lemma

We will develop a criterion for a module to be triviall

Theorem: Llet M  be a finitely
generated A-module, I < A and
¢ € Hom 4(M, M) such that

o(M) C I M.

Then ¢ is the root of a monic polynomial
with nonleading coefficients from I .
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Proof: Write M = (21, ... ,x, ). Observe
IM = { Y bjy | mez", bel,
j=1
y; € M (V]) }.

But each member of M is a linear combination of
xi1, ..., T, ,and I absorbs multiplication by any
coefficient from A .
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Hence
1=1

In particular, for each i =1,...,n, since ¢(x;) €
1M,
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Thus ¢ corresponds to the matrix
C — [Cf,;j] .

Let x(z) be the characteristic polynomial of C' .

By the Cayley-Hamilton Theorem,
x(C) = 0
the zero matrix,
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SO

x(¢) = 0

the zero mapping, when evaluated in the ring
Hom 4(M, M) . This proves the Theorem.

Corollary: Let M be a finitely generated
A-module and I < A such that IM =
M . Then

r M = {0} forsome ze€l1-+1.
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Proof: Let ¢ : M — M be the identity mapping.

Then
o(M) = M = I M,

so, by the previous Theorem,

for some aq,...,a, € 1,

" + "+ o+ a1+ a,l = 0
| oy

note monic identity Zero
mapping mapping
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Hence

(1 +a + ... +a,)9p = 0.

| ' |

identity element | zero
of A element Mapping
of 1

Put « = 1 +a + ... +a, €1+ I.
Thus

M = zoM) = (z¢) (M) = {0},
since x¢@ Is the zero mapping.
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Theorem (Nakayama’s Lemma):

Let M be a finitely generated A-module
and I < A such that I C R (the
Jacobson radical). Then

IM = M = M = {0}.

First proof: Suppose I M = M .

By the previous Corollary, zM = {0} for some
xrel+1 C 1+R.
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But 1+ R consists of units

(an early observation about the Jacobson radical),

SO

0} = 27'{0} = 27 (M) = 1M = M.

Second proof: Suppose M # {0} .

Let { w1, ..., u, } bea minimal set of generators
of M (since M is finitely generated).

335



If w,, € IM then

U, = a1U1 + ... + a, Uy
for some a1, ..., a, € I, so
(1—ay)u, = aru + ... + Gp_1 Up_q
SO
U, = (1—ay) P (arur + ... + Gp1 Up_1)

(since 1 —a, € 14 R is invertible)

which contradicts the minimality of the generating
set.
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Hence w, ¢ I M ,so I M # M , and Nakayama's
Lemma Is proved.

Corollary:
A-module,

Let M be a finitely generated
N a submodule of M and

I < A suchthat I C R (the Jacobson
radical). Then
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Proof: Suppose M = IM + N . Then

I(M/N) = {» a(m+N)|nez", a €1,
1=1

n

= {(D_am)+N |nez", a €1,
i=1

— (IM+N)/N = M/N .

338



By Nakayama's Lemma,
M/N = zero module,

thatis, Ml = N .

Consider now a local ring A , with maximal ideal
I , and put

F = A/l
the residue field of A .

Let M be a finitely generated A-module.
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Then IM is a submodule of M and

I(M/IM) = (IM+IM)/IM = IM/IM,

the zero module, so

SO

I C Ann (M/IM)

M /IM becomes an A/I-module
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SO

M/IM becomes a vector space over F'.

Further, M/IM is finitely generated
(because M is),

SO

M /IM is finite dimensional.
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Theorem: let x;, ..., x, € M be
such that

{axy+IM, ..., z,+1IM}

is a basis for the vector space M /IM .
Then

M = (x1, ..., x,).
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Proof: Put N = (xz;, ..., x,).

Then

M/IM = {(xi+IM, ..., z,+IM)
= F(x1;+IM) + ... + F(x, +1M)
= > (A/I)(w;i+ IM)

1=1

1=1
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Hence

n

M/IM = { (Y ax) +IM |a,...,a, € A}

1=1

(N +1IM)/IM .

Hence M = N+ IM b so M = N, by the
previous Corollary.
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