2.4 Finitely Generated and Free Modules

Let A be a nonzero ring and M an A-module.

Observation: If $M\cong A$ as A-modules then M may be regarded as a ring which is isomorphic to A .

Proof: Let $\theta : M \to A$ be an *A*-module isomorphism.

Define multiplication \cdot on M by, for $m_1, m_2 \in M$:

The ring axioms are easily verified. For example, if $x,y,z\in M$ then

$$(x \cdot y) \cdot z = \theta(\theta(x) y) z$$
$$= (\theta(x)\theta(y)) z$$

since θ preserves scalar multiplication = $\theta(x)(\theta(y) z)$ = $x \cdot (y \cdot z)$.

The ring identity element of M is $\theta^{-1}(1)$.

But θ also becomes a \mathbf{ring} isomorphism, since for all $m_1,m_2\in M$,

$$heta(m_1 \cdot m_2) \;\; = \;\; heta(heta(m_1) \; m_2)$$

$$= \theta(m_1)\theta(m_2) ,$$

since θ preserves scalar multiplication.

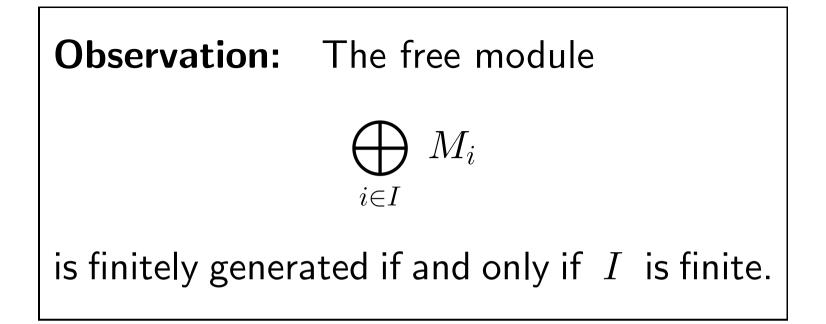
An *A*-module is called **free** if it is module isomorphic to

 $\rightarrow M_i$ $i \in I$

for some family $\{ M_i \mid i \in I \}$ of A-modules, each M_i being module isomorphic to A.

Such a free module may also be denoted by

 $A^{(I)}$.



Proof: (\Longrightarrow) is left as an **exercise**.

 (\Longleftarrow) Suppose I is finite. For each $i\in I$, let 1_i denote the identity element of M_i , regarded as ring isomorphic to A , so

$$M_i = A 1_i$$

and put

$$M'_i = \{ (x_j)_{j \in I} \mid x_j = 0 \quad \forall j \neq i \}$$

$$\mathbf{e}_i = (y_j)_{j \in I}$$

where

 $\quad \text{and} \quad$

$$y_j = \begin{cases} 0 & \text{if } j \neq i \\ 1_i & \text{if } j = i \end{cases}$$

Then

$$\bigoplus_{i \in I} M_i = \sum_{i \in I} M'_i = \sum_{i \in I} A \mathbf{e}_i$$
$$= \langle \mathbf{e}_i \mid i \in I \rangle,$$

generated by the finite set $\{\mathbf{e}_i \mid i \in I\}$.

Thus a finitely generated free A-module is isomorphic to

$$A^n = A \oplus \ldots \oplus A$$

(with n summands), for some n.

Convention: $A^0 = \{0\}$, the zero module.

323

The word "free" is justified by the following:

Proof: (\Longrightarrow) Suppose that M is generated by x_1, \ldots, x_n .

Define $\phi: A^n \to M$ by

$$(a_1,\ldots,a_n) \mapsto a_1x_1 + \ldots + a_nx_n$$

Clearly ϕ preserves addition and scalar multiplication, and ϕ is onto because

$$M = \langle x_1, \ldots, x_n \rangle.$$

Therefore

$$M \cong A^n / \ker \phi ,$$

which is a quotient of A^n .

 (\Leftarrow) Suppose $\phi: A^n \to M$ is an onto module homomorphism.

But $A^n = \langle x_1, \ldots, x_n \rangle$, for some x_1, \ldots, x_n by the earlier Observation, so if $m \in M$ then, for some $\lambda_1, \ldots, \lambda_n \in A$,

$$m = \phi(\lambda_1 x_1 + \ldots + \lambda_n x_n)$$

= $\lambda_1 \phi(x_1) + \ldots + \lambda_n \phi(x_n)$,

proving

$$M = \langle \phi(x_1), \ldots, \phi(x_n) \rangle,$$

so M is finitely generated.