
Consider an ideal J of A and an A-module M .

Define the product

JM =
{

n
∑

i=1

ai xi | n ∈ Z
+ , ai ∈ J ,

xi ∈ M (∀i)
}

.

Easy to check:

JM is an A-submodule of M .
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Consider now two submodules N and P of M .

Define

(N : P ) = { a ∈ A | aP ⊆ N }

(analogous to an ideal quotient).

Easy to check:

(N : P ) � A .
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Write

Ann (M) = ({0} : M)

= { a ∈ A | aM = {0} }

= { a ∈ A | ax = 0 (∀x ∈ M) } ,

called the annihilator of M .

Thus

Ann (M) � A .
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Consider an ideal J of A such that

J ⊆ Ann (M) .

Then M becomes an A/J-module by

defining

(J + a) x = a x (∀a ∈ A, x ∈ M) .
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This is well-defined because if

J + a = J + a0

then a0 − a ∈ Ann (M) ,

so that, for x ∈ M ,

a x = a x + 0 = a x + (a0 − a) x = a0 x .

It is routine to verify the module axioms.
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Call an A-module M faithful if

Ann (M) = {0} .

Always then,

M is faithful as an A/J-module when we

put J = Ann (M) ,
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because

{

J + a | a ∈ A and (J + a) M = {0}
}

=
{

J + a | a ∈ A and a M = {0}
}

=
{

J + a | a ∈ Ann (M)
}

= Ann (M)/J = J/J .
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Reason for terminology:

if M is a faithful A-module then

θ : A → End (M)

a 7→ θ(a) : x 7→ ax

is a faithful (that is, one-one) ring

homomorphism.

because ker θ = Ann (M) = {0} .
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Easy Exercises: Let N , P be submodules

of an A-module M . Verify that

(i) Ann (N + P ) = Ann (N) ∩ Ann (P ) ;

(ii) (N : P ) = Ann
(

(N + P )/N
)

,

where (N + P )/N is regarded as an A-

submodule of M/N .
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If x ∈ M then write

Ax = { ax | a ∈ A } = 〈x〉 .

If X ⊆ M then call X a set of generators for

M if

M = 〈X〉 =
〈

⋃

x∈X

Ax
〉

=
∑

x∈X

Ax ,

so that every element of M can be expressed as a

linear combination

a1 x1 + . . . + an xn
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for some n ≥ 1 and some a1, . . . , an ∈ A ,

x1, . . . , xn ∈ X .

If M = 〈X〉 for some finite set X then we say

that M is finitely generated.

Note that expressions of module elements

as linear combinations of generators need

not be unique, even when the generating

set is minimal.

299



Example: Regarded as a Z-module (over itself)

Z = 〈 2 , 3 〉

and {2, 3} is a minimal generating set, yet

1 = (−1)2 + (1)3 = (2)2 + (−1)3

so uniqueness of expressions fails.
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Direct sum and product

Consider a family { Mi | i ∈ I } of A-modules.

Define the direct product

∏

i∈I

Mi = { (xi)i∈I | xi ∈ Mi ∀i }

which is easily seen to be an A-module with respect

to coordinatewise operations.
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Define the direct sum

⊕

i∈I

Mi = { α ∈
∏

Mi | α has finite support } ,

which is a submodule of
∏

Mi , with equality (in

the case that each Mi is nonzero) iff I is finite.

We give a criterion for deciding when a given

A-module is isomorphic to the direct sum

of some of its submodules.
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Suppose now that { Mi | i ∈ I } is a family of

submodules of an A-module M .

Call M the internal direct sum of the

family if

(i) M =
∑

i∈I

Mi ; and

(ii) For all j ∈ I ,

Mj ∩
(

∑

i6=j

Mi

)

= {0} .
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Exercise: Verify that TFAE:

(i) M is the internal direct sum of the

family {Mi | i ∈ I} .

(ii) Each m ∈ M can be expressed

uniquely as

m =
∑

i∈I

mi

where mi ∈ Mi for each i only finitely

many of which are nonzero.
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It is common then to write

“ M =
⊕

i∈I

Mi ”

because of the following:

Corollary: An internal direct sum is

isomorphic to the external direct sum.

Proof: If M is the internal direct sum of

{ Mi | i ∈ I } then

m 7→ (mi)i∈I (m ∈ M)
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where m =
∑

i∈I

mi (for mi ∈ Mi for each i )

is a mapping: M →
⊕

i∈I

Mi ,

which is well-defined by part (ii) of the Exercise,

and clearly one-one, onto and homomorphic.
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Connection between module and ring direct

sums:

Let A1, . . . , An be rings and form the ring direct

sum

A = A1 ⊕ . . . ⊕ An .

For i = 1 , . . . , n put

Bi = { (a1, . . . , an) ∈ A | aj = 0 if j 6= i } .
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For each i it is easy to see that

Bi � A

so that Bi may be regarded as an A-module, and

Bi
∼= Ai

ring isomorphic
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Also easy to see:

A =

n
∑

i=1

Bi ,

and, for j ∈ {1, . . . , n} ,

Bj ∩
∑

i6=j

Bi = { (0, . . . , 0) } .
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Thus

A =
⊕n

i=1 Bi

internal direct sum of modules

This process can be reversed.
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Suppose now that A is the internal direct sum of

ideals B1 , . . . , Bn regarded as A-modules. Then

1 = e1 + . . . + en

for unique ei ∈ Bi .

If b ∈ Bi then

b = 1 b = (e1 + . . . + en) b

= e1 b + . . . + ei b + . . . + en b ,

so, by uniqueness of linear combinations, ei b = b .
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Thus

For each i , Bi is a ring with identity ei .

(Note: Bi is not a subring of A unless it is the

only nontrivial ideal in the list.)

Then

A ∼=

n
⊕

i=1

Bi

both as a direct sum of A-modules and as a direct

sum of rings.
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The very last assertion follows because

θ : a 7→ (b1, . . . , bn) where a = b1 + . . . + bn

preserves ring multiplication:

if a = b1 + . . . + bn , a′ = b′1 + . . . + b′n then

a a′ = b1 b′1 + . . . + bn b′n

since bib
′
j ∈ Bi ∩ Bj = {0} if i 6= j ,
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so that

θ(a a′) = ( b1b
′
1 , . . . , bnb

′
n )

= (b1, . . . , bn)(b
′
1, . . . , b

′
n)

= θ(a)θ(a′) .
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