2.3 Operations on Submodules

Let M be an A-module. If $X\subseteq M$, put

 $\langle X \rangle = \text{submodule of } M \text{ generated by } X$

 $= \bigcap \{ \text{ submodules of } M \text{ containing } X \} ,$

with usual conventions such as

$$\langle x_1, \dots, x_n \rangle = \langle \{x_1, \dots, x_n\} \rangle$$
.

Define the **sum** of a family $\{M_i \mid i \in I\}$ of submodules of M as for ideals of a ring:

$$\sum_{i \in I} M_i = \{ \sum_{i \in I} x_i \mid x_i \in M_i \ (orall i \in I), ext{ and }$$
 only finitely many x_i are nonzero $\}$

Easy to check:

$$\sum_{i \in I} M_i = \left\langle \bigcup_{i \in I} M_i \right\rangle.$$

As for ideals of a ring,

the set of submodules of M forms a complete lattice with respect to \subseteq where

g.l.b. = intersection,

l.u.b. = sum.

Isomorphism Theorems:

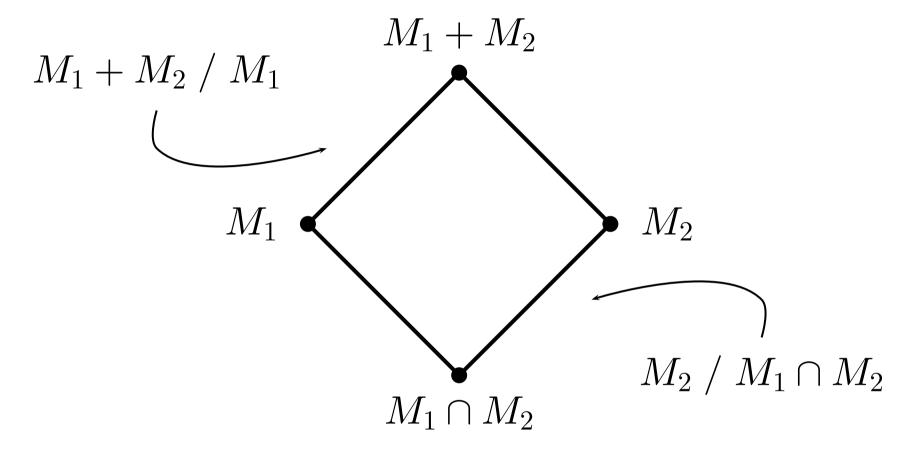
(i) If $L\supseteq M\supseteq N$ are a chain of A-submodules, then

$$(L/N)/(M/N) \cong L/M$$
.

(ii) If M_1 , M_2 are submodules of an $A{\operatorname{\mathsf{-module}}}\ M$ then

$$(M_1 + M_2)/M_1 \cong M_2 / M_1 \cap M_2$$
.

Visualize (ii) thus:



"opposite sides" represent isomorphic quotient modules

Proof of (i): Let $L\supseteq M\supseteq N$ be a chain of A-submodules. Consider the natural surjective map

$$\phi: L \to L/M$$
.

Because $N\subseteq M=\ker\phi$ we get an induced surjective homomorphism

$$\overline{\phi} : L/N \to L/M$$

whose kernel is $\,M/N\,$.

By the Fundamental Homomorphism Theorem for modules,

$$(L/N)/(M/N) = (L/N)/\ker \overline{\phi} \cong L/M$$
.

Proof of (ii): Let M_1 , M_2 be submodules of an A-module M. Define

$$\theta : M_2 \to (M_1 + M_2)/M_1 \text{ by } x \mapsto x + M_1.$$

which is easily seen to be a surjective module homomorphism with kernel $M_1 \cap M_2$.

Hence, again by the Fundamental Homomorphism Theorem,

$$M_1 + M_2 / M_1 \cong M_2 / \ker \theta$$

$$= M_2 / M_1 \cap M_2 ,$$

and (ii) is proved.