Module Homomorphisms

A mapping $\,f:M\to N\,$ between $\,A{\operatorname{\mathsf{-modules}}}\,\,M$, $N\,$ is called an

A-module homomorphism

or

A-linear

if it respects addition and scalar multiplication, that is, for $\, x,y \in M \,$ and $\, a \in A \,$

f(x+y) = f(x) + f(y), f(ax) = af(x)

(so f is an abelian group homomorphism which respects the action of the ring).

lf	A	is	а	field	then		an	A-
mo	dule	hom	omo	rphism	is	just	а	linear
transformation.								

Put

 also written Hom (M, N) if A is clear from context.

Define **pointwise** addition and scalar multiplication on Hom (M, N) :

$$\forall f,g \in \operatorname{Hom} (M,N) \quad \forall a \in A$$
$$(f+g)(x) = f(x) + g(x) , \ (af)(x) = af(x) .$$

Routine to check:

under these operations $Hom_A(M, N)$ becomes an A-module.

Induced homomorphisms:

Suppose $M^\prime\,,\ M\,,\ N\,,\ N^\prime\,$ are $\,A\text{-modules}$ and

$$u: M' \to M$$
 , $v: N \to N'$

are A-module homomorphisms.

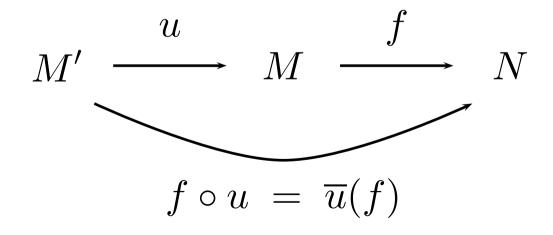
Composition of mappings induces homomorphisms between appropriate Hom modules.

Define

by

$$\overline{u}: \operatorname{Hom} (M, N) \to \operatorname{Hom} (M', N)$$

$$\overline{u}(f) = f \circ u .$$

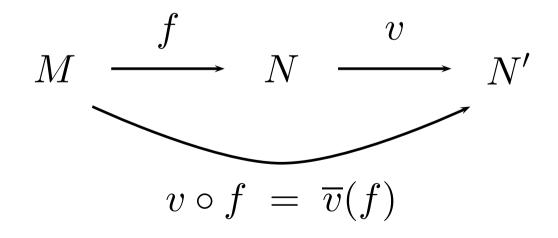


Define

$$\overline{v}: \operatorname{Hom} (M, N) \to \operatorname{Hom} (M, N')$$

by

$$\overline{v}(f) = v \circ f .$$



267

Easy to check:

 \overline{u} , \overline{v} are themselves A-module homomorphisms

and we say that \overline{u} , \overline{v} are **induced** from u , v respectively.

Example: Suppose that A is a field and M', M, N, N' are finite dimensional vector spaces of dimension m', m, n, n' respectively.

Linear transformations may be identified with matrices

SO

$$\begin{array}{rcl} \mathsf{Hom}\;(M,N) &\equiv & \mathsf{Mat}\;(n,m) \\ &= & \{\; n \times m \; \mathsf{matrices}\; \mathsf{over}\; A\; \}\;, \end{array}$$

$$\mathsf{Hom}\;(M',N)\;\;\equiv\;\;\mathsf{Mat}\;(n,m')\;,$$

 $\operatorname{Hom}\,(M,N') \ \equiv \ \operatorname{Mat}\,(n',m) \ .$

Let $u: M' \to M$, $v: N \to N'$ be linear transformations. Regard

$$u$$
 as an $m imes m'$ matrix,

and

$$v$$
 as an $n' \times n$ matrix.

Then the induced homomorphism become simply **pre** and **post**-multiplication respectively by matrices:

$$\overline{u}: \mathsf{Mat}\ (n,m) \ \rightarrow \ \mathsf{Mat}\ (n,m')$$

$$x \mapsto x u;$$

$$\overline{v}: \mathsf{Mat}\ (n,m) \to \mathsf{Mat}\ (n',m)$$

$$x \mapsto v x$$
.

Observation: For any A-module M, Hom $_A(A, M) \cong M$.

Proof: It is routine to check that

$$f \mapsto f(1) \qquad \forall f \in \operatorname{Hom}_A(A, M)$$

is a bijective A-module homomorphism.