
2.1 Modules and Module

Homomorphisms

The notion of a module arises out of attempts to

do classical linear algebra (vector spaces over fields)

using arbitrary rings of coefficients.

Let A be a ring. An A-module is an abelian group

(M,+) together with a map (scalar multiplication)

µ : A×M → M , (a,m) 7→ am ≡ µ(a,m)
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satisfying the following axioms:

(i) (∀a ∈ A)(∀x, y ∈M) a(x+y) = ax+ay ;

(ii) (∀a, b ∈ A)(∀x ∈M) (a+b)x = ax+bx ;

(iii) (∀a, b ∈ A)(∀x ∈M) (ab)x = a(bx) ;

(iv) (∀x ∈M) 1x = x .
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The notion of a module is closely related to

endomorphism rings of abelian groups:

Consider an abelian group M and put

End (M) = { φ : M →M |

φ is a group homomorphism } ,

elements of which are called endomorphisms.

Easy to check:
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End (M) is a (noncommutative) ring with

respect to pointwise addition, that is, for

φ, ψ ∈ End (M) ,

(φ+ ψ)(x) = φ(x) + ψ(x) (∀x ∈M) ,

and multiplication being composition of

mappings.

Suppose also that M is an A-module.
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Define

θ : A → End (M)

by, for a ∈ A ,

θ(a) : M → M where m 7→ am (∀m ∈M) .

By Axiom (i), each θ(a) is indeed a group

homomorphism,

and by Axioms (ii), (iii), (iv), θ preserves addition,

multiplication and identity elements respectively.

Thus θ : A → End (M) is a ring homomorphism.
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Conversely, let θ : A → End (M) be a ring

homomorphism.

Define µ : A×M →M by

(a,m) 7→ [θ(a)](m) (∀a ∈ A,m ∈M) .

Then Axiom (i) holds, because each θ(a) is a group

homomorphism,

and Axioms (ii), (iii), (iv) hold because θ

preserves addition, multiplication and identity

elements respectively.
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Thus

A-modules correspond to ring

homomorphisms from A into

endomorphism rings of abelian groups.

Examples:

(1) If I � A then I becomes an A-module by

regarding the ring multiplication, of elements of A

with elements of I , as scalar multiplication.
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In particular, A is an A-module.

(2) If A is a field then A-modules are precisely

vector spaces over A .

(3) All abelian groups are Z-modules (mentioned

in the Overview).

(4) Let A = F [x] where F is a field, and let

M be an A-module.
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Since F is a subring of A , M is also a

vector space over F .

Define

α : M → M by m 7→ xm (∀m ∈M) .

By Axioms (i) and (iii),

α is a linear transformation of M as a

vector space over F .
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Further, consider

f(x) = λ0 + λ1x + . . . + λnx
n ∈ F [x] .

Then, by Axioms (ii) and (iii), for each m ∈M ,

f(x) m = λ0 m+ λ1x m+ . . .+ λnx
n m

= λ0 m+ λ1α(m) + . . .+ λnα
n(m)

=
(

λ0 id + λ1α+ . . .+ λnα
n
)

(m)

=
[

f(α)
]

(m) .
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Thus

scalar multiplication by f(x) is application

of the linear transformation

f(α) : M →M .

Conversely, given any vector space M over a field

F and any linear transformation α : M → M ,

one can make M into an F [x]-module by

defining

f(x) m =
[

f(α)
]

(m)

for m ∈M and f(x) ∈ F [x] .
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(5) Let G be any group and F any field. Form

the (not necessarily commutative) group ring

F [G] =
{

∑

αg g | g ∈ G , αg ∈ F ,

of finite support
}

.

Consider an F [G]-module M .

In particular, M is a vector space over F
[

because F can be identified with a subring of

F [G] under the injection λ 7→ λ 1 (∀λ ∈ F )
]

.
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If g ∈ G then define

θ(g) : M →M by m 7→ gm .

Easy to check that

θ : G → Aut F(M)

where Aut F(M) is the group of invertible linear

transformations from M to M , regarded as a

vector space over F ,

and, moreover,
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θ is a group homomorphism, that is, a

group representation.

Conversely, if M is a vector space over a field F ,

G is a group and

θ : G→ Aut F(M)

is a group representation, then the following is easy

to check:
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by defining

gm =
[

θ(g)
]

(m) (∀g ∈ G)(∀m ∈M)

and extending by linearity to arbitrary elements

of F [G] , we obtain a scalar multiplication, with

respect to which M becomes an F [G]-module.

Thus, F [G]-modules correspond to

representations of a group G by invertible

linear transformations of a vector space over a

field F .
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