2.1 Modules and Module
Homomorphisms

The notion of a module arises out of attempts to
do classical linear algebra (vector spaces over fields)
using arbitrary rings of coefficients.

Let A be aring. An A-module is an abelian group
(M, +) together with a map (scalar multiplication)

u:AxM — M, (a,m) — am = u(a,m)
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satisfying the following axioms:

() (Vae A)(Vz,ye M)  alz+y) = ar+ay;
(i) (Va,be A)(Vze M)  (a+b)z = az+bz;
(i) (Va,be A)(Vze M)  (ab)z = a(b):

(iv) (Vxe M) lz = x.
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The notion of a module is closely related to
endomorphism rings of abelian groups:

Consider an abelian group M and put

End (M) = {é: M —M |

¢ is a group homomorphism } |

elements of which are called endomorphisms.

Easy to check:
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End (M) is a (noncommutative) ring with
respect to pointwise addition, that is, for

¢,v € End (M) ,

(0 +¢)(z) = o(x)+(z)  (VrxeM),

and multiplication being composition of
mappings.

Suppose also that M is an A-module.
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Define
0 : A — End (M)

by, for a € A,
0a) : M — M where m—am (¥YmeM).

By Axiom (i), each 6(a) is indeed a group
homomorphism,

and by Axioms (ii), (iii), (iv), 8 preserves addition,
multiplication and identity elements respectively.

Thus § : A — End (M) is aring homomorphism.
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Conversely, let 6 : A — End (M) be a ring
homomorphism.

Define n: AX M — M by
(a,m) +— [0(a)](m) (Vae A,me M) .

Then Axiom (i) holds, because each 6(a) is a group
homomorphism,

and Axioms (ii), (iii), (iv) hold because ¢
preserves addition, multiplication and identity
elements respectively.
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Thus

A-modules correspond to ring
homomorphisms  from A into
endomorphism rings of abelian groups.

Examples:

(1) If I << A then I becomes an A-module by
regarding the ring multiplication, of elements of A
with elements of I, as scalar multiplication.
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In particular, A is an A-module.

(2) If A is a field then A-modules are precisely
vector spaces over A .

(3) All abelian groups are Z-modules (mentioned
in the Overview).

(4) Let A = Flz] where F is a field, and let
M be an A-module.
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Since F' is a subring of A, M is also a
vector space over F'.

Define

a . M — M

By Axioms (i) and (iii),
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Is a linear transformation of M as a

vector space over F'.

by m — axm (YmeM).
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Further, consider
flx) = o+ + ... + 2" € Flx].
Then, by Axioms (ii) and (iii), for each m € M,

fleym = dam+X xem+...+ 2" m
= Am+ Ma(m)+ ...+ A" (m)
= (Aoid +Ma+...+ \a")(m)

= [f(@)](m).

256



Thus

scalar multiplication by f(x) is application
of the linear transformation

fla) : M — M .

Conversely, given any vector space M over a field
F' and any linear transformation o : M — M
one can make M into an F'|z|-module by
defining

f@)m = [f(a)](m)

for me M and f(x) € Flx].
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(5) Let G be any group and F' any field. Form
the (not necessarily commutative) group ring

FIG] = { Zagg g€ G, a,e I,
of finite support }

Consider an F'|G|-module M .
In particular, M is a vector space over F

[ because F' can be identified with a subring of
F|G] under the injection A — A1 (VA e F) |.
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If g € G then define

0(g): M — M by m— gm .

Easy to check that
0 : G — Aut F(M)

where Aut p(M) is the group of invertible linear
transformations from M to M , regarded as a
vector space over F',

and, moreover,
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6 is a group homomorphism, that is, a

group representation.

Conversely, if M is a vector space over a field F',
G is a group and

HZGHAUtF(M>

Is a group representation, then the following is easy

to check:
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by defining
gm = [0(g)](m) (Vg€ G)(Vm e M)

and extending by linearity to arbitrary elements
of F'|G], we obtain a scalar multiplication, with
respect to which M becomes an F|G]-module.

Thus, F|G]-modules  correspond  to
representations of a group G by invertible
linear transformations of a vector space over a

field F'.
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