Exercises: Let $I_1, I_2 \triangleleft A$ and $J_1, J_2 \triangleleft$ B. Verify that (i) $(I_1 + I_2)^{\mathsf{e}} = I_1^{\mathsf{e}} + I_2^{\mathsf{e}}$, $(J_1+J_2)^{\mathsf{c}} \ \supseteq \ J_1^{\mathsf{c}}+J_2^{\mathsf{c}}$; (ii) $(I_1\cap I_2)^{\mathsf{e}} \subseteq I_1^{\mathsf{e}}\cap I_2^{\mathsf{e}}$, $(J_1 \cap J_2)^{c} = J_1^{c} \cap J_2^{c};$ (iii) $(I_1I_2)^{\mathsf{e}} = I_1^{\mathsf{e}}I_2^{\mathsf{e}}$, $(J_1J_2)^{\mathsf{c}} \supseteq J_1^{\mathsf{c}}J_2^{\mathsf{c}}$;

Exercises continued: Let
$$I_1, I_2 \triangleleft A$$

and $J_1, J_2 \triangleleft B$. Verify that
(iv) $(I_1 : I_2)^e \subseteq (I_1^e : I_2^e)$,
 $(J_1 : J_2)^c \subseteq (J_1^c : J_2^c)$;
(v) $r(I_1)^e \subseteq r(I_1^e)$,
 $r(J_1)^c = r(J_1^c)$;
and find examples which for which the set
containments in (i) – (v) are proper.

Observation: Let $f : A \to B$ be a ring homomorphism, $I \triangleleft A$ and $J \triangleleft B$. Then (i) $I \subseteq I^{ec}$ and $J \supseteq J^{ce}$; (ii) $J^{c} = J^{cec}$ and $I^{e} = I^{ece}$.

Proof: (i) Observe that

$$I^{\rm ec} = f^{-1} \big(\langle f(I) \rangle \big)$$

$$\supseteq f^{-1}(f(I)) \supseteq I$$
,

 $\quad \text{and} \quad$

$$J^{ce} = \langle f(f^{-1}(J)) \rangle$$

 $\subseteq \langle J \rangle = J.$

(ii) By (i) we see that

$$J^{c} \subseteq (J^{c})^{ec} = (J^{ce})^{c} \subseteq J^{c}$$
,
so $J^{c} = J^{cec}$. Similarly $I^{e} = I^{ece}$.

Call an ideal I of A contracted if $I=J^{\rm c}$ for some ideal J of B .

Call an ideal J of B **extended** if $J = I^{e}$ for some ideal I of A.

Put

$$\mathcal{C} = \{ \text{ contracted ideals in } A \},$$

$$\mathcal{E} = \{ \text{ extended ideals in } B \}$$
 .

Then

Proposition: $\mathcal{C} = \{ K \triangleleft A \mid K^{\mathsf{ec}} = K \},\$ $\mathcal{E} = \{ L \triangleleft B \mid L^{ce} = L \},\$ and $K \mapsto K^{\mathsf{e}} \quad (K \in \mathcal{C})$ defines a bijection from \mathcal{C} to \mathcal{E} whose inverse is $L \mapsto L^{\mathsf{c}} \quad (L \in \mathcal{E}) .$

Proof: If $K \in \mathcal{C}$ then $K = L^{c}$ for some $L \lhd B$, so

$$K^{\mathsf{ec}} = L^{\mathsf{cec}} = L^{\mathsf{c}} = K .$$

Thus

$$\mathcal{C} \subseteq \{ K \lhd A \mid K^{\mathsf{ec}} = K \}.$$

Reverse set containment is obvious, so the sets are equal. A similar observation applies to \mathcal{E} .

It is immediate then that extension and contraction are mutually inverse bijections from \mathcal{C} to \mathcal{E} and \mathcal{E} to \mathcal{C} respectively.

Exercise: Verify that

(i) ${\ensuremath{\mathcal E}}$ is closed under sum and product of ideals; and

(ii) C is closed under intersection, forming ideal quotients and taking radicals.