1.1 Rings and ldeals

A ring A is aset with + , e such that

(1)
(2)
(3)

(A,+) is an abelian group;
(A, ) is a semigroup;

e distributes over + on both sides.
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In this course all rings A are commutative, that is,

(4) (Vz,yc€ A) zey = yex

and have an identity element 1 (easily seen to
be unique)

(5) (A1 € A)(Vzx € A) lex = xel = .
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If 1=0 then A = {0} (easy to see),
called the zero ring.

Multiplication will be denoted by juxtaposition, and
simple facts used without comment, such as

(Vz,y € A)
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Call a subset S of aring A a subring if

(i)
(ii)

1e€S5;
(Vz,y € S)

x+y, xy, —x € 5.

Condition (ii) is easily seen to be equivalent to

(iiy

(Vz,y € S)

x—y,xy €85.
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Note: In other contexts authors replace
the condition 1 € S by S # (0 (which is
not equivalent!).

Examples:

(1) Z is the only subring of Z .

(2) 7 is a subring of Q, which is a subring of R,

which is a subring of C.
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(3) z[i] = {a+bi | abez} (i=+-1),
the ring of Gaussian integers is a subring of C.
(4) z, = {0,1,....n—1}

with addition and multiplication mod n.
(Alternatively Z, may be defined to be the quotient

ring Z/nZ , defined below).
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(5) R any ring, x an indeterminate. Put
Rl[z]] = {ag+arz+asx*+... |ag,ai,... € R},

the set of formal power series over R , which
becomes a ring under addition and multiplication of
power series. Important subring:

Rlx] = {apy+ a1z +...4a,z" | n>0,
ag,a,...,a, € R},

the ring of polynomials over R .
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Call a mapping f: A — B (where A and B are
rings) a ring homomorphism if

(@) f() =1;
(b) (Vx,y € A)

flx+y) = f(z)+ fy)

and

fley) = flx)f(y),
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in which case the following are easily checked:

(i)

(ii)
(i)
(iv)

hom's.

f(0) =0;
(Ve e d) fl-z) = —f(z);
f(A) = f(@) |z € A}, the

image of f is a subring of B ;

Composites of ring hom’'s are ring
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An isomorphism is a bijective homomorphism, say
f: A— B, in which case we write

A >~ B or f.AXB.

It is easy to check that

= Is an equivalence relation.
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A nonempty subset I of aring A
ideal, written 1 < A | if

Is called an

i) (Vx,yel) x4y, —xz€l

| clearly equivalent to

(i (Voyel) z—yel |;

(i) (Veel)(VyeA) zyel.
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In particular I is an additive subgroup of A, so

we can form the quotient group
A/l = {I+4+a | acA}l,

the group of cosets of I,

with addition defined by, for a,b € A,

(I4+a) + I+b) = I+(a+0b).
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Further A/I forms a ring by defining, for a,b € A,

(I+a)(I+b) = I + (ab).

Verification of the ring axioms s
straightforward.

— only tricky bit is first checking multiplication is
well-defined:
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f I+a = I+a and I+b = I+ then
a—a , b=V €1,
SO

ab — a't/ ab—ab + ab' — a't’

alb—0) + (a—ad)V/ € I,

vielding I +ab = I+ d't.
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We call A/I a quotient ring.
The mapping

p:A—A/l, xz—I1+zx

Is clearly a surjective ring homomorphism, called the
natural map, whose kernel is

kerp = {xecA| I+ =1} = 1.

"hus all ideals are kernels of ring homomorphisms.
"he converse is easy to check, so
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kernels of ring homomorphisms with domain
A are precisely ideals of A .

The following important result is easy to verify:

Fundamental Homomorphism Theorem:

f f: A — B is a ring homomorphism
with kernel I and image C' then

Al = C.
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Proposition: let [ << A and ¢: A —
A/I be the natural map. Then

(i) ideals J of A/I have the form

T = JJI = {I+j|jeJ}
forsome J suchthat I C J < A;
(i) ¢! is an inclusion-preserving bijection

between ideals of A/I and ideals of A
containing [ .
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Example: The ring
Z, = {0,1,....n—1}

with mod n arithmetic is isomorphic to Z/nZ :

follows from the Fundamental Homomorphism
Theorem, by observing that the mapping f :7Z —
Z., Where

f(z) = remainder after dividing z by n

Is a ring homomorphism with image Z, and kernel
n .
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Example: Z/9Z = 7y has ideals
7/97 , 37/97, 97/9Z

(corresponding under the isomorphism to the ideals
Ly , {0,3,6}, {O} of Zg)

which correspond under ¢! to
7. 37. 9z

respectively, a complete list of ideals of Z which
contain 9% .
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Zero-divisors, nilpotent elements and units:

Let A be aring.

Call x € A a zero divisor if
(Jye A) y#0 and zy=0.
Examples:

2 iIs a zero divisor in Zqy4 .

5,7 are zero divisors in Zss .
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A nonzero ring in which 0 is the only zero
divisor is called an integral domain.

Examples: 7, Z[i], Q, R, C.

We can construct many more because of the
following easily verified result:

Proposition: It R is an integral domain
then the polynomial ring R|x] is also.
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Corollary: If R is an integral domain
then the polynomial ring R|zi,...,x,] in
n commuting indeterminates is also.

Call x € A nilpotent if

' = 0 forsomen>0.
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All nilpotent elements in a nonzero ring are zero
divisors, but not necessarily conversely.

Example: 2-3 = 0 in Zg, so 2 is a zero divisor,
but

2 1f n is odd
2" =
4 if nis even

so 2 1Is not nilpotent in Zg .
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Call z € A aunit if

xy = 1 forsomeye A,

In which case it Is easy to see that y Is unique, and

we write y = 271

It Is routine to check that

the units of A form an abelian group under
multiplication.
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Examples:

(1) The units of Z are +1.

(2) The units of Z[i| are +1,+7 .

(3) If z €7, then x isaunitiff x and n are

coprime as integers. Thus

all nonzero elements of Z, are units iff n
IS a prime.
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A field is a nonzero ring in which all nonzero
elements are units.

Examples: Q@, R, C and Z,, where p is a

prime, are fields.

It is easy to check that

all fields are integral domains.
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Not all integral domains are fields (e.g. Z).

However integral domains are closely related to fields
by the construction of fields of fractions described

in Part 3.

A principal ideal

some . € A,

P = Ax =

P of A is an ideal

generated by a single element, that is, for

tA ={ax|acA}.
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Note that

Al = A, and A0 = {0}.

Clearly, for x € A,

x isauntiff Ax = A.




Proposition: Let A be nonzero. TFAE

1. A is a field.

2. The only ideals of A are {0} and A.

3. Every homomorphism of A onto a nonzero
ring 1s Injective.
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