
1.1 Rings and Ideals

A ring A is a set with + , • such that

(1) (A, +) is an abelian group;

(2) (A, •) is a semigroup;

(3) • distributes over + on both sides.
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In this course all rings A are commutative, that is,

(4) (∀x, y ∈ A) x • y = y • x

and have an identity element 1 (easily seen to

be unique)

(5) (∃1 ∈ A)(∀x ∈ A) 1•x = x•1 = x .
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If 1 = 0 then A = {0} (easy to see),

called the zero ring.

Multiplication will be denoted by juxtaposition, and

simple facts used without comment, such as

(∀x, y ∈ A)

x 0 = 0 ,

(−x)y = x(−y) = −(xy) ,

(−x)(−y) = xy .
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Call a subset S of a ring A a subring if

(i) 1 ∈ S ;

(ii) (∀x, y ∈ S) x+y , xy , −x ∈ S .

Condition (ii) is easily seen to be equivalent to

(ii)′ (∀x, y ∈ S) x − y , xy ∈ S .
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Note: In other contexts authors replace

the condition 1 ∈ S by S 6= ∅ (which is

not equivalent!).

Examples:

(1) Z is the only subring of Z .

(2) Z is a subring of Q , which is a subring of R ,

which is a subring of C .
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(3) Z[i] = { a + bi | a, b ∈ Z } (i =
√
−1) ,

the ring of Gaussian integers is a subring of C .

(4) Zn = { 0, 1, . . . , n − 1 }

with addition and multiplication mod n .

(Alternatively Zn may be defined to be the quotient

ring Z/nZ , defined below).
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(5) R any ring, x an indeterminate. Put

R[[x]] = {a0+a1x+a2x
2+ . . . | a0, a1, . . . ∈ R } ,

the set of formal power series over R , which

becomes a ring under addition and multiplication of

power series. Important subring:

R[x] = {a0 + a1x + . . .+anx
n | n ≥ 0 ,

a0, a1, . . . , an ∈ R } ,

the ring of polynomials over R .
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Call a mapping f : A → B (where A and B are

rings) a ring homomorphism if

(a) f(1) = 1 ;

(b) (∀x, y ∈ A)

f(x + y) = f(x) + f(y)

and

f(xy) = f(x)f(y) ,
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in which case the following are easily checked:

(i) f(0) = 0 ;

(ii) (∀x ∈ A) f(−x) = −f(x) ;

(iii) f(A) = {f(x) | x ∈ A} , the

image of f is a subring of B ;

(iv) Composites of ring hom’s are ring

hom’s.
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An isomorphism is a bijective homomorphism, say

f : A → B , in which case we write

A ∼= B or f : A ∼= B .

It is easy to check that

∼= is an equivalence relation.
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A nonempty subset I of a ring A is called an

ideal, written I � A , if

(i) (∀x, y ∈ I) x + y , −x ∈ I

[

clearly equivalent to

(i)′ (∀x, y ∈ I) x − y ∈ I
]

;

(ii) (∀x ∈ I)(∀y ∈ A) xy ∈ I .
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In particular I is an additive subgroup of A , so

we can form the quotient group

A/I = { I + a | a ∈ A } ,

the group of cosets of I ,

with addition defined by, for a, b ∈ A ,

(I + a) + (I + b) = I + (a + b) .
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Further A/I forms a ring by defining, for a, b ∈ A ,

(I + a) (I + b) = I + (a b) .

Verification of the ring axioms is

straightforward.

— only tricky bit is first checking multiplication is

well-defined:
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If I + a = I + a′ and I + b = I + b′ then

a − a′ , b − b′ ∈ I ,

so

ab − a′b′ = ab − ab′ + ab′ − a′b′

= a(b − b′) + (a − a′)b′ ∈ I ,

yielding I + ab = I + a′b′ .
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We call A/I a quotient ring.

The mapping

φ : A → A/I , x 7→ I + x

is clearly a surjective ring homomorphism, called the

natural map, whose kernel is

kerφ = { x ∈ A | I + x = I } = I .

Thus all ideals are kernels of ring homomorphisms.

The converse is easy to check, so
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kernels of ring homomorphisms with domain

A are precisely ideals of A .

The following important result is easy to verify:

Fundamental Homomorphism Theorem:

If f : A → B is a ring homomorphism

with kernel I and image C then

A/I ∼= C .
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Proposition: Let I � A and φ : A →
A/I be the natural map. Then

(i) ideals J of A/I have the form

J = J/I = { I + j | j ∈ J }

for some J such that I ⊆ J � A ;

(ii) φ−1 is an inclusion-preserving bijection

between ideals of A/I and ideals of A

containing I .
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Example: The ring

Zn = { 0, 1, . . . , n − 1 }

with mod n arithmetic is isomorphic to Z/nZ :

follows from the Fundamental Homomorphism

Theorem, by observing that the mapping f : Z →
Zn where

f(z) = remainder after dividing z by n

is a ring homomorphism with image Zn and kernel

nZ .
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Example: Z/9Z ∼= Z9 has ideals

Z/9Z , 3Z/9Z , 9Z/9Z

(corresponding under the isomorphism to the ideals

Z9 , {0, 3, 6} , {0} of Z9 )

which correspond under φ−1 to

Z , 3Z , 9Z

respectively, a complete list of ideals of Z which

contain 9Z .
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Zero-divisors, nilpotent elements and units:

Let A be a ring.

Call x ∈ A a zero divisor if

(∃y ∈ A) y 6= 0 and xy = 0 .

Examples:

2 is a zero divisor in Z14 .

5, 7 are zero divisors in Z35 .
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A nonzero ring in which 0 is the only zero

divisor is called an integral domain.

Examples: Z , Z[i] , Q , R , C .

We can construct many more because of the

following easily verified result:

Proposition: If R is an integral domain

then the polynomial ring R[x] is also.
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Corollary: If R is an integral domain

then the polynomial ring R[x1, . . . , xn] in

n commuting indeterminates is also.

Call x ∈ A nilpotent if

xn = 0 for some n > 0 .
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All nilpotent elements in a nonzero ring are zero

divisors, but not necessarily conversely.

Example: 2 ·3 = 0 in Z6 , so 2 is a zero divisor,

but

2n =











2 if n is odd

4 if n is even

so 2 is not nilpotent in Z6 .
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Call x ∈ A a unit if

xy = 1 for some y ∈ A ,

in which case it is easy to see that y is unique, and

we write y = x−1 .

It is routine to check that

the units of A form an abelian group under

multiplication.
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Examples:

(1) The units of Z are ±1 .

(2) The units of Z[i] are ±1,±i .

(3) If x ∈ Zn then x is a unit iff x and n are

coprime as integers. Thus

all nonzero elements of Zn are units iff n

is a prime.
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A field is a nonzero ring in which all nonzero

elements are units.

Examples: Q , R , C and Zp , where p is a

prime, are fields.

It is easy to check that

all fields are integral domains.

48



Not all integral domains are fields (e.g. Z ).

However integral domains are closely related to fields

by the construction of fields of fractions described

in Part 3.

A principal ideal P of A is an ideal

generated by a single element, that is, for

some x ∈ A ,

P = Ax = xA = { ax | a ∈ A } .
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Note that

A 1 = A , and A 0 = {0} .

Clearly, for x ∈ A ,

x is a unit iff Ax = A .
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Proposition: Let A be nonzero. TFAE

1. A is a field.

2. The only ideals of A are {0} and A .

3. Every homomorphism of A onto a nonzero

ring is injective.
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