1.1 Rings and Ideals

A ring A is a set with +, • such that

In this course all rings A are **commutative**, that is,

$$(4) \quad (\forall x, y \in A) \quad x \bullet y = y \bullet x$$

and have an **identity element** 1 (easily seen to be unique)

(5)
$$(\exists 1 \in A)(\forall x \in A) \quad 1 \bullet x = x \bullet 1 = x.$$

If 1 = 0 then $A = \{0\}$ (easy to see), called the **zero ring**.

Multiplication will be denoted by juxtaposition, and simple facts used without comment, such as

$$(\forall x, y \in A)$$

 $x \ 0 = 0,$
 $(-x)y = x(-y) = -(xy),$
 $(-x)(-y) = xy.$

Call a subset S of a ring A a **subring** if

(i)
$$1 \in S$$
;
(ii) $(\forall x, y \in S)$ $x + y, xy, -x \in S$.

Condition (ii) is easily seen to be equivalent to

(ii)'
$$(\forall x, y \in S)$$
 $x - y, xy \in S$.

25

Note: In other contexts authors replace the condition $1 \in S$ by $S \neq \emptyset$ (which is not equivalent!).

Examples:

(1) \mathbb{Z} is the only subring of \mathbb{Z} .

(2) $\mathbb Z$ is a subring of $\mathbb Q$, which is a subring of $\mathbb R$, which is a subring of $\mathbb C$.

(3)
$$\mathbb{Z}[i] = \{ a+bi \mid a,b\in\mathbb{Z} \}$$
 $(i=\sqrt{-1})$,

the ring of Gaussian integers is a subring of $\ \mathbb C$.

(4)
$$\mathbb{Z}_n = \{0, 1, \dots, n-1\}$$

with addition and multiplication mod n.

(Alternatively \mathbb{Z}_n may be defined to be the **quotient** ring $\mathbb{Z}/n\mathbb{Z}$, defined below).

(5)
$$R$$
 any ring, x an indeterminate. Put $R[[x]] = \{a_0 + a_1 x + a_2 x^2 + \dots \mid a_0, a_1, \dots \in R\}$,

the set of **formal power series over** R, which becomes a ring under addition and multiplication of power series. Important subring:

$$R[x] = \{a_0 + a_1 x + \dots + a_n x^n \mid n \ge 0,$$
$$a_0, a_1, \dots, a_n \in R \},$$

the ring of **polynomials over** R.

Call a mapping $f : A \rightarrow B$ (where A and B are rings) a **ring homomorphism** if

(a)
$$f(1) = 1$$
;
(b) $(\forall x, y \in A)$
 $f(x+y) = f(x) + f(y)$
and
 $f(xy) = f(x)f(y)$,

in which case the following are easily checked:

(i) f(0) = 0; (ii) $(\forall x \in A) \quad f(-x) = -f(x)$; (iii) $f(A) = \{f(x) \mid x \in A\}$, the **image** of f is a subring of B; (iv) Composites of ring hom's are ring hom's.

An isomorphism is a bijective homomorphism, say $f:A \to B$, in which case we write

$$A \cong B$$
 or $f: A \cong B$.

It is easy to check that

 \cong is an equivalence relation.

A nonempty subset I of a ring A is called an ideal, written $\ I \lhd A$, if

(i)
$$(\forall x, y \in I) \quad x + y, -x \in I$$

[clearly equivalent to
(i)' $(\forall x, y \in I) \quad x - y \in I$];
(ii) $(\forall x \in I)(\forall y \in A) \quad xy \in I$.

In particular $\,I\,$ is an additive subgroup of $\,A$, so we can form the quotient group

$$A/I = \{ I + a \mid a \in A \},\$$

the group of $\operatorname{\mathbf{cosets}}$ of I ,

with addition defined by, for $\ a,b\in A$,

$$(I+a) + (I+b) = I + (a+b)$$
.

Further A/I forms a ring by defining, for $a, b \in A$,

$$(I+a) (I+b) = I + (ab).$$

Verification of the ring axioms is straightforward.

— only tricky bit is first checking multiplication is well-defined:

If I + a = I + a' and I + b = I + b' then a - a', $b - b' \in I$,

SO

$$ab - a'b' = ab - ab' + ab' - a'b'$$

$$= a(b-b') + (a-a')b' \in I$$
,

yielding I + ab = I + a'b'.

We call A/I a **quotient ring**. The mapping

$$\phi: A \to A/I , \quad x \mapsto I + x$$

is clearly a surjective ring homomorphism, called the **natural map**, whose kernel is

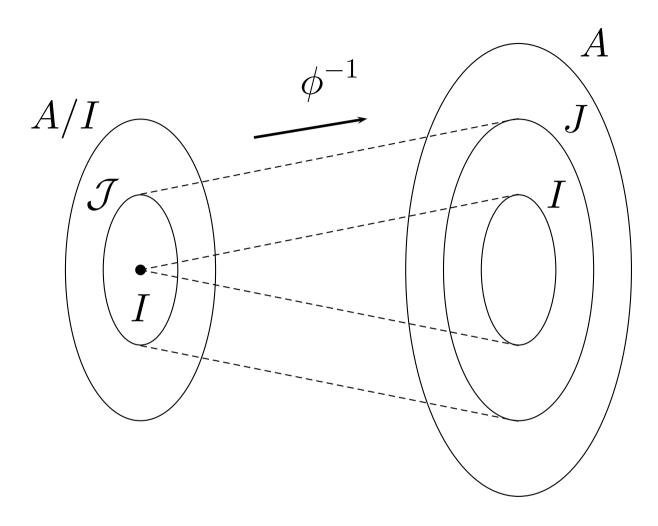
$$\ker \phi = \{ x \in A \mid I + x = I \} = I.$$

Thus all ideals are kernels of ring homomorphisms. The converse is easy to check, so kernels of ring homomorphisms with domain $\boldsymbol{A}\,$ are precisely ideals of $\,\boldsymbol{A}\,$.

The following important result is easy to verify:

Fundamental Homomorphism Theorem: If $f: A \to B$ is a ring homomorphism with kernel I and image C then $A/I \cong C$.

Proposition: Let $I \triangleleft A$ and $\phi: A \rightarrow$ A/I be the natural map. Then (i) ideals \mathcal{J} of A/I have the form $\mathcal{J} = J/I = \{I+j \mid j \in J\}$ for some J such that $I \subseteq J \triangleleft A$; (ii) ϕ^{-1} is an inclusion-preserving bijection between ideals of A/I and ideals of A containing I.



Example: The ring

$$\mathbb{Z}_n = \{0, 1, \ldots, n-1\}$$

with mod n arithmetic is isomorphic to $\mathbb{Z}/n\mathbb{Z}$:

follows from the Fundamental Homomorphism Theorem, by observing that the mapping $f:\mathbb{Z}\to\mathbb{Z}_n$ where

$$f(z) =$$
 remainder after dividing z by n

is a ring homomorphism with image $\ensuremath{\mathbb{Z}}_n$ and kernel $n\ensuremath{\mathbb{Z}}$.

Example: $\mathbb{Z}/9\mathbb{Z} \cong \mathbb{Z}_9$ has ideals

 $\mathbb{Z}/9\mathbb{Z}$, $3\mathbb{Z}/9\mathbb{Z}$, $9\mathbb{Z}/9\mathbb{Z}$

(corresponding under the isomorphism to the ideals \mathbb{Z}_9 , $\{0,3,6\}$, $\{0\}$ of \mathbb{Z}_9)

which correspond under ϕ^{-1} to

$$\mathbb{Z}$$
, $3\mathbb{Z}$, $9\mathbb{Z}$

respectively, a complete list of ideals of $\ensuremath{\mathbb{Z}}$ which contain $\ensuremath{9\mathbb{Z}}$.

Zero-divisors, nilpotent elements and units: Let A be a ring.

Call $x \in A$ a **zero divisor** if

 $(\exists y \in A) \quad y \neq 0 \quad \text{and} \quad xy = 0$.

Examples:

2~ is a zero divisor in $~\mathbb{Z}_{14}$.

 $5,7\,$ are zero divisors in $\,\mathbb{Z}_{35}$.

A nonzero ring in which 0 is the only zero divisor is called an **integral domain**.

Examples: \mathbb{Z} , $\mathbb{Z}[i]$, \mathbb{Q} , \mathbb{R} , \mathbb{C} .

We can construct many more because of the following easily verified result:

Proposition: If R is an integral domain then the polynomial ring R[x] is also.

Corollary: If R is an integral domain then the polynomial ring $R[x_1, \ldots, x_n]$ in n commuting indeterminates is also.

Call $x \in A$ nilpotent if

$$x^n = 0$$
 for some $n > 0$.

All nilpotent elements in a nonzero ring are zero divisors, but not necessarily conversely.

Example: $2 \cdot 3 = 0$ in \mathbb{Z}_6 , so 2 is a zero divisor, but

$$2^{n} = \begin{cases} 2 & \text{if } n \text{ is odd} \\ \\ 4 & \text{if } n \text{ is even} \end{cases}$$

so 2 is not nilpotent in \mathbb{Z}_6 .

Call $x \in A$ a **unit** if

xy = 1 for some $y \in A$,

in which case it is easy to see that y is unique, and we write $y = x^{-1}$.

It is routine to check that

the units of A form an abelian group under multiplication.

Examples:

(1) The units of \mathbb{Z} are ± 1 .

(2) The units of $\mathbb{Z}[i]$ are $\pm 1, \pm i$.

(3) If $x \in \mathbb{Z}_n$ then x is a unit iff x and n are coprime as integers. Thus

all nonzero elements of \mathbb{Z}_n are units iff n is a prime.

A **field** is a nonzero ring in which all nonzero elements are units.

Examples: \mathbb{Q} , \mathbb{R} , \mathbb{C} and \mathbb{Z}_p , where p is a prime, are fields.

It is easy to check that

all fields are integral domains.

Not all integral domains are fields (e.g. \mathbb{Z}).

However integral domains are closely related to fields by the construction of **fields of fractions** described in **Part 3**.

A principal ideal P of A is an ideal generated by a single element, that is, for some $x \in A$, $P = Ax = xA = \{ ax \mid a \in A \}.$ Note that

$$A \ 1 = A$$
, and $A \ 0 = \{0\}$.

Clearly, for $x \in A$,

$$x$$
 is a unit iff $Ax = A$.

Proposition: Let A be nonzero. TFAE

1. A is a field.

2. The only ideals of A are $\{0\}$ and A.

3. Every homomorphism of A onto a nonzero ring is injective.