We will use the notion of coprimeness to write down a criterion for a ring to be isomorphic to a direct sum of a finite collection of its own quotients.

Let A_1 , ..., A_n be rings. Call

$$A = \{ (x_1, \dots, x_n) \mid x_i \in A_i \quad \forall i \}$$

the **direct sum** of A_1 , ..., A_n , written

$$A = A_1 \oplus \ldots \oplus A_n$$

or

$$A = \bigoplus_{i=1}^n A_i = \sum_{i=1}^n A_i$$

which is a ring with coordinatewise operations, and identity element $(1,\ldots,1)$.

The **projection mapping**, for each i,

$$p_i:A\to A_i\;,\quad (x_1,\ldots,x_n)\mapsto x_i$$

is an onto ring homomorphism.

Now let A be any ring, $n \geq 2$ and J_1 , ..., $J_n \lhd A$. Define

$$\phi:A\to \oplus_{i=1}^n A/J_i$$

by

$$x \mapsto (J_1 + x, \ldots, J_n + x) \qquad (x \in A)$$
.

Clearly ϕ is a ring homomorphism with kernel

$$\ker \phi = \bigcap_{i=1}^n J_i.$$

Proposition:

- (i) ϕ is injective iff $\bigcap_{i=1}^n J_i = \{0\}$.
- (ii) ϕ is surjective iff J_i and J_k are coprime whenever $i \neq k$.
- (iii) If J_i , J_k are coprime whenever $i \neq k$ then

$$\prod_{i=1}^n J_i = \bigcap_{i=1}^n J_i.$$

Corollary:

The ring A is isomorphic to the direct sum of A/J_1 , ..., A/J_n by the "natural" map ϕ iff the ideals intersect trivially and are pairwise coprime.

Proof of Proposition: (i) is clear.

(ii) (\Longrightarrow) Suppose ϕ is surjective.

Then, for some $x \in A$,

$$(J_1+1, J_2, \ldots, J_n) = x\phi$$

$$= (J_1 + x, J_2 + x, \dots, J_n + x).$$

In particular $x \in (J_1+1) \cap J_2$, so

$$1 = (1-x) + x \in J_1 + J_2$$

proving J_1 and J_2 are coprime. Similarly J_i and J_k are coprime whenever $i \neq k$.

(\iff) Suppose conversely that J_i and J_k are coprime whenever $i \neq j$. Then

$$(\forall k \geq 2)(\exists u_k \in J_1)(\exists v_k \in J_k) \qquad u_k + v_k = 1.$$

Let $a \in A$ and put

$$x = a v_2 \dots v_n$$
.

Then

$$x \in J_k \qquad \text{for all } k \geq 2$$
 ,

and

$$x = a (1 - u_2) \dots (1 - u_n) \in J_1 + a$$

SO

$$(J_1+a, J_2, \ldots, J_n) \in \operatorname{im} \phi.$$

Similarly, for $i \geq 2$,

$$(J_1, \ldots, J_{i-1}, J_i+a, J_{i+1}, \ldots, J_n) \in \text{im } \phi.$$

Thus, for all a_1 , \ldots , $a_n \in A$,

$$(J_1+a_1,\ldots,J_n+a_n)$$

$$=\sum_{i=1}^n \left(J_1\;,\;\ldots\;,\;J_{i-1}\;,\;\;J_i+a_i\;,\;\;J_{i+1}\;,\;\ldots\;,\;\;J_n
ight)\,,$$

$$\in \operatorname{im} \phi$$
,

proving ϕ is surjective.

(iii) Suppose J_i and J_k are coprime whenever $i \neq k$.

If n=2 then, by an earlier Observation,

$$J_1 \cap J_2 = J_1 J_2 ,$$

which starts an induction. Suppose n>2 and (as inductive hypothesis)

$$\prod_{i=1}^{n-1} J_i = \bigcap_{i=1}^{n-1} J_i.$$

Put

$$K = \prod_{i=1}^{n-1} J_i$$
.

But

$$(\forall i=1,\ldots n-1)(\exists x_i\in J_i,\ y_i\in J_n)$$

$$x_i + y_i = 1$$

so that

$$1 = 1 - (x_1 \dots x_{n-1}) + (x_1 \dots x_{n-1})$$

$$= 1 - [(1 - y_1) \dots (1 - y_{n-1})] + (x_1 \dots x_{n-1})$$

$$= 1 - [1 + \dots] + (x_1 \dots x_{n-1})$$

$$\in J_n \qquad \in K$$

yielding $1 \in J_n + K$.

Thus

$$\prod_{i=1}^n J_i = \left(\prod_{i=1}^{n-1} J_i\right) J_n$$

$$= K J_n = K \cap J_n$$

$$= \left(\bigcap_{i=1}^{n-1} J_i\right) \cap J_n = \bigcap_{i=1}^n J_i,$$

completing the proof by induction.

The next result gives useful connections between **prime** ideals, unions and intersections:

Theorem: Let A be a ring.

(i) Let J_1 , . . . , J_n \lhd A and P a prime ideal of A such that

$$P \supseteq \bigcap_{i=1}^n J_i$$
.

Then $P\supseteq J_k$ for some k . If $P=\bigcap_{i=1}^n J_i$ then $P=J_k$ for some k .

Theorem (continued):

(ii) Let P_1 , ... , P_n be prime ideals of A and $J \vartriangleleft A$ such that

$$J \subseteq \bigcup_{i=1}^n P_i.$$

Then $J \subseteq P_k$ for some k.

Proof: (i) Suppose $P \not\supseteq J_i$ for all i. Then

$$(\forall i) \quad \exists x_i \in J_i \backslash P.$$

Put

$$y = x_1 \ldots x_n$$
.

Then

$$y \in \bigcap_{i=1}^n J_i \subseteq P,$$

so, since P is prime,

$$(\exists k) \qquad x_k \in P$$
,

contradicting that $x_k \in J_k \backslash P$.

Hence $P \supset J_k$ for some k .

If
$$P = \bigcap_{i=1}^n J_i$$
 then

$$J_k \subseteq P \subseteq J_k$$
,

so $P = J_k$, and (i) is proved.

(ii) If n=1 then $J\subseteq P_1$, which starts an induction. We will show

$$(*) J \subseteq \bigcup_{i \neq j} P_i \exists j \in \{1, \dots n\} .$$

Suppose that (*) fails, so

$$(\forall j \in \{1, \dots, n\}) \qquad \exists x_j \in J \setminus \bigcup_{i \neq j} P_i.$$

But

$$J \subseteq \bigcup_{i=1}^n P_i,$$

SO

$$(\forall j \in \{1,\ldots,n\})$$
 $x_j \in P_j$.

Put

$$y = \sum_{j=1}^{n} x_1 \dots x_{j-1} x_{j+1} \dots x_n$$

Then

$$y \in J \subseteq \bigcup_{i=1}^{n} P_i$$

SO

$$y \in P_k \qquad (\exists k \in \{1, \dots, n\})$$
.

Hence

$$x_1 \ldots x_{k-1} x_{k+1} \ldots x_n$$

$$= y - \left(\sum_{j \neq k} x_1 \dots x_{j-1} x_{j+1} \dots x_n\right) \in P_k$$

since $y \in P_k$ and $x_k \in P_k$ is a factor of

$$x_1 \ldots x_{j-1} x_{j+1} \ldots x_n$$
 for $j \neq k$.

But P_k is prime, so $x_j \in P_k$ for some $j \neq k$.

This contradicts that

$$x_j \notin \bigcup_{i \neq j} P_i \supseteq P_k$$
.

Hence (*) holds.

By an inductive hypothesis, $J \subseteq P_i$ for some i, and (ii) is proved.

Ideal quotients:

Let I, $J \triangleleft A$.

The ideal quotient of I by J is

$$(I:J) = \{ x \in A \mid Jx \subseteq I \}.$$

It is routine to verify that

$$(I:J) \ \lhd \ A$$
 .

We write

$$\mathsf{Ann}(J) \ = \ (0:J) \ = \ (\{0\}:J)$$

$$= \{ x \in A \mid Jx = \{0\} \},$$

called the **annihilator** of J.

If $y \in A$ then we write

$$(I:y) = (I:Ay)$$
 and $Ann(y) = Ann(Ay)$.

Easy to see:

$$\bigcup_{x \neq 0} \mathsf{Ann}(x) \; = \; \{ \; \mathsf{zero-divisors} \; \mathsf{in} \; A \; \} \; .$$

Example: Put $A=\mathbb{Z}$, and let m , $n\in\mathbb{Z}^+$. Then

$$m = p_1^{\alpha_1} \dots p_k^{\alpha_k}, \qquad n = p_1^{\beta_1} \dots p_k^{\beta_k}$$

for some prime numbers p_1, \ldots, p_k and nonnegative integers $\alpha_1, \ldots, \alpha_k$ and β_1, \ldots, β_k .

Then

$$(m\mathbb{Z}:n) = (m\mathbb{Z}:n\mathbb{Z})$$

$$= \{ z \in \mathbb{Z} \mid zn \in m\mathbb{Z} \}$$

$$= q\mathbb{Z}$$

where

$$q = p_1^{\gamma_1} \dots p_k^{\gamma_k}$$

such that, for each i ,

$$\gamma_i = \max \{\alpha_i - \beta_i, 0\} = \alpha_i - \min \{\alpha_i, \beta_i\}$$
.

Thus

$$(m\mathbb{Z}:n\mathbb{Z}) = q\mathbb{Z}$$

where

$$q = \frac{m}{\text{g.c.d.} \{m, n\}}$$

Exercises: Let I, J, $K \triangleleft A$. Verify the following:

- $(1) \quad I \subseteq (I:J) ;$
- (2) $(I:J) J \subseteq I$;
- (3) ((I:J):K) = (I:JK) = ((I:K):J);

(4) Verify that if $I_\ell \lhd A$ for all $\ell \in X$, where X is some indexing set, and $J \lhd A$, then

$$\left(\bigcap_{\ell\in X} I_{\ell}: J\right) = \bigcap_{\ell\in X} \left(I_{\ell}: J\right).$$

(5) Verify that if $J_\ell \lhd A$ for all $\ell \in X$, where X is some indexing set, and $I \lhd A$, then

$$\left(I : \sum_{\ell \in X} J_{\ell}\right) = \bigcap_{\ell \in X} (I : J_{\ell}).$$