1.6 Operations on Ideals

Let A be a ring, and consider $X \subseteq A$.

Put

$$\langle X \rangle$$
 = ideal generated by X

$$= \bigcap \{ J \mid X \subseteq J \vartriangleleft A \}.$$

Write $\langle x_1,\ldots,x_n\rangle=\langle\{\;x_1,\ldots,x_n\;\}\rangle$, and note that

$$\langle \emptyset \rangle = \{0\}.$$

Put

$$\mathcal{L}(A) = \{ J \mid J \vartriangleleft A \}$$

which is a poset with respect to \subseteq . Then

 $\mathcal{L}(A)$ is a complete lattice.

A **lattice** is a poset in which the greatest lower bound (g.l.b.) and least upper bound (l.u.b.) of a pair of elements exist.

A lattice is **complete** if the g.l.b. and l.u.b. of any subset (not necessarily finite) exist.

If
$$\mathcal{S} \subseteq \mathcal{L}(A)$$
 then

g.l.b.
$$\mathcal{S} = \cap \{ \ J \ | \ J \in \mathcal{S} \ \} \; ;$$
l.u.b. $\mathcal{S} = \langle \ \cup \ \{ \ J \ | \ J \in \mathcal{S} \ \} \ \rangle \; .$

Sum of sets:

If $X, Y \subseteq A$ then put

$$X + Y = \{ x + y \mid x \in X, y \in Y \}$$

and write

$$X + y = X + \{ y \}$$

(so if $X \triangleleft A$ then, consistent with earlier notation, X + y is the coset of X containing y).

Easy to see:

$$J, K \triangleleft A \implies J+K = \langle J \cup K \rangle.$$

(Need to check: (i) $J \cup K \subseteq J + K$;

- (ii) J + K is an ideal
- (iii) $J \cup K \subseteq L \vartriangleleft A \implies J + K \subseteq L$.)

Consider a family of ideals

$$\{J_i \vartriangleleft A \mid i \in I\}$$

where I is some indexing set. Define the sum

$$\sum_{i \in I} J_i = \left\{ \sum_{i \in I} x_i \mid x_i \in J_i \ (\forall i \in I) \right\}$$

and only finitely many x_i are nonzero $\}$.

Exercise: Verify that

$$\sum_{i \in I} J_i = \langle \cup_{i \in I} J_i \rangle.$$

Thus

finding least upper bounds in $\mathcal{L}(A)$ amounts to taking sums of families of ideals.

Product of an ideal with a set:

Let $J \triangleleft A$, $X \subseteq A$.

Define the **product**

Easy to check:

$$JX = \langle ax \mid a \in J, x \in X \rangle \lhd A.$$

Write

$$Jx = J\{x\}.$$

Easy to see

$$Jx = \{ ax \mid a \in J \}.$$

Special case:

the principal ideal generated by $\,x\,$ is

$$\langle x \rangle = Ax$$
.

Other routine facts:

$$\text{if } J,K,L \ \vartriangleleft \ A \ \text{ then } \ (JK)L \ = \ J(KL) \ ,$$

so brackets may be ignored, and

Powers of an ideal J are defined in a natural way:

$$J^0 = A$$

$$J^1 = J$$

$$J^k = J J \dots J \qquad (k \text{ times})$$

$$= \langle x_1 \dots x_k \mid x_1, \dots, x_k \in J \rangle.$$

It is immediate that

$$J^k = \{0\}$$

zero.

Note: Always we have

$$J , K \triangleleft A \Longrightarrow JK \subseteq J \cap K .$$

Examples:

(1) Put $A=\mathbb{Z}$, $J=\langle m \rangle$, $K=\langle n \rangle$ where $m,n\in\mathbb{Z}$.

Easy to see:

$$J \cap K = \langle \operatorname{l.c.m.}\{m, n\} \rangle$$

and

$$J+K \ = \ \langle \ \mathrm{g.c.d.}\{m,n\} \ \rangle$$

Hence the lattice of ideals of $\ensuremath{\mathbb{Z}}$ can be identified with the lattice

$$(\mathbb{Z}^+ \cup \{0\}, \leq)$$

where $a \leq b$ means $b \mid a$.

Further, clearly,
$$\left| \ JK \ = \ \langle \ mn \
angle \
ight|$$

SO

 $JK = J \cap K$ iff m and n are coprime.

(2) Put $A = F[x_1, ..., x_n]$ where F is a field and $x_1, ..., x_n$ are n commuting indeterminates.

Put

$$J = \langle x_1, \dots, x_n \rangle$$

 $= \{ p \in A \mid p \text{ has constant term } 0 \}.$

Clearly, if $m \ge 1$ then

$$J^m = \{ p \in A \mid \text{ each term of } p \text{ has degree } \geq m \}$$

where the **degree** of a term

$$\lambda x_1^{d_1} x_2^{d_2} \dots x_n^{d_n} \qquad (\lambda \in F)$$

is

$$d_1+d_2+\ldots+d_n.$$

Easy Exercises: Let $J, K, L \triangleleft A$.

(1)
$$J(K+L) = JK + JL$$
;

(1)
$$J(K+L) = JK + JL$$
;
(2) $J \cap (K+L) \supseteq (J \cap K) + (J \cap L)$;

(3)
$$J \supseteq K \implies$$
 $J \cap (K + L) = (J \cap K) + (J \cap L)$ (the modular law);

(4)
$$(J+K)(J\cap K)\subseteq JK$$
.

Exercise: Find a ring $\,A\,$ and ideals $\,J\,$, $\,K\,$, $\,L\,$ such that

$$(J \cap K) + (J \cap L) \subset J \cap (K + L)$$
.

Exercise: Find a ring $\,A\,$ and ideals $\,J\,$, $\,K\,$ such that

$$(J+K)(J\cap K) \subset JK$$
.

Example: Put $A=\mathbb{Z}$ and let $a,b,c\in\mathbb{Z}^+\cup\{0\}$.

Exercise: Verify that

I.c.m. $\{\,a\;,\;\; {\sf g.c.d.}\{b,c\}\;\}$

 $= \operatorname{g.c.d.} \left\{ \operatorname{l.c.m.} \{a,b\} \;,\; \operatorname{l.c.m.} \{a,c\} \; \right\} \, \Big|$

Put $J=a\mathbb{Z}\;,\;\;K=b\mathbb{Z}\;,\;\;L=c\mathbb{Z}\;.$ Then

$$J \cap (K+L) = a\mathbb{Z} \cap (\mathsf{g.c.d.}\{b,c\} \mathbb{Z})$$

= $\mathsf{l.c.m.}\{a, \mathsf{g.c.d.}\{b,c\}\} \mathbb{Z}$

$$= \ \operatorname{g.c.d.} \{ \ \operatorname{l.c.m.} \{a,b\} \ , \ \ \operatorname{l.c.m.} \{a,c\} \ \} \ \mathbb{Z}$$

$$= \text{ l.c.m.}\{a,b\} \ \mathbb{Z} \ + \text{ l.c.m.}\{a,c\} \ \} \ \mathbb{Z}$$

$$= (J \cap K) + (J \cap L)$$
.

Thus, since \mathbb{Z} is a PID,

For all ideals J,K,L of $\mathbb Z$,

$$J\cap (K+L) = (J\cap K) + (J\cap L) .$$

Further, if $a, b \in \mathbb{Z}^+ \cup \{0\}$ then clearly

$$ab = (\mathsf{g.c.d.}\{a,b\})(\mathsf{l.c.m.}\{a,b\})$$

so that

$$(a\mathbb{Z})(b\mathbb{Z}) = ab\mathbb{Z} = (\text{g.c.d.}\{a,b\}\mathbb{Z})(\text{l.c.m.}\{a,b\}\mathbb{Z})$$

$$= (a\mathbb{Z} + b\mathbb{Z})(a\mathbb{Z} \cap b\mathbb{Z}).$$

Again, since \mathbb{Z} is a PID,

For all ideals J,K of \mathbb{Z} , $(J+K)(J\cap K) \ = \ JK \ .$

Call ideals J,K of a ring A coprime or comaximal if

$$J+K = A$$
,

equivalently

$$(\exists x \in J, y \in K)$$
 $1 = x + y.$

e.g. If $A = \mathbb{Z}$ then ideals are coprime iff their respective generators are coprime as integers.

Observation: If J, K are coprime then

$$J \cap K = JK$$
.

Proof: If J + K = A then

$$J \cap K = A(J \cap K) = (J+K)(J \cap K)$$

$$\subseteq JK \subseteq J\cap K$$
,

whence equality holds.