
1.5 The Nil and Jacobson Radicals

The idea of a “radical” of a ring A is an ideal I

comprising some “nasty” piece of A such that

A/I is well-behaved or tractable.

Two types considered here are the nil and Jacobson

radicals, which are intimately connected with prime

and maximal ideals respectively.

123



Factoring out by the nil and Jacobson

radicals yields quotients closely related to

integral domains and fields respectively (in

a sense which will be made precise).

Consider first all nilpotent elements of a ring:

Theorem: Let A be a ring and put

N = { x ∈ A | x is nilpotent } .

Then N � A and A/N has no nonzero

nilpotent elements.
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Proof: Let x, y ∈ N , a ∈ A . Then

xm = yn = 0 (∃m,n ∈ Z
+) .

Clearly

(ax)m = (−x)m = 0 ,

so

ax , −x ∈ N .
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Also

(x+ y)m+n−1 =

m+n−1
∑

i=0

(

m+ n− 1

i

)

xiym+n−1−i

where
(

m+ n− 1

i

)

denotes the usual binomial coefficient, and we

interpret integer multiples in the usual way.
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If i ≥ m then xi = 0 .

If i < m then

m+ n− 1 − i = n+ (m− i− 1) ≥ n

so that

ym+n−1−i = 0 .

Thus

(x+ y)m+n−1 = 0 ,

so x+y ∈ N , completing the proof that N � A .
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Further, if N + a is a nilpotent element of A/N

then

(N + a)k = N + ak = N (∃k ∈ Z
+)

so ak ∈ N , so

akl = (ak)l = 0 (∃l ∈ Z
+) ,

which shows a ∈ N and N + a = N .

Thus all nonzero elements of A/N are not

nilpotent, and the theorem is proved.
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The ideal N of the previous theorem is called the

nilradical of A , and the last part of the previous

theorem says that

the nilradical of what is left, after factoring

out by the nilradical, is itself trivial.

An alternative description is provided by:

Theorem: The nilradical of a ring is the

intersection of all of the prime ideals of the

ring.

129



Before proving this, we observe that its importance

derives from the following concept:

Suppose { Ai | i ∈ I } is a family of rings and

consider the ring

A =
∏

i∈I

Ai = { (xi)i∈I | xi ∈ Ai ∀i }

with coordinatewise operations, called the direct

product of the family.
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Call a ring B a subdirect product of this family if

there exists a ring homomorphism

ψ : B → A

such that

(i) ψ is injective; and

(ii) ρj ◦ ψ : B → Aj is surjective for all j

where ρj : A → Aj is the projection mapping

(xi)i∈I 7→ xj .
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Think of subdirect products as being “close” to

direct products.

Observation: Let B be a ring and

{ Ji | i ∈ I } be a family of ideals of B .

Put

J =
⋂

i∈I

Ji .

Then J � B and B/J is a subdirect

product of the family { B/Ji | i ∈ I } .
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Proof of the Observation: The map

ψ : B →
∏

i∈I

B/Ji , x 7→ (Ji + x)i∈I

is easily seen to be a ring homomorphism with kernel

kerψ =
⋂

i∈I

Ji = J .

Thus

B/J ∼= im ψ .

(by the Fundamental Homomorphism Theorem).
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Further, clearly the composite

B
ψ
→

∏

i∈I

B/Ji
ρj
→ B/Jj

is surjective for each j , so

im ψ , and hence B/J ,

is a subdirect product of the family

{ B/Ji | i ∈ I } ,

and the Observation is proved.
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Corollary to the Theorem: If A is any

ring and N its nilradical, then A/N is a

subdirect product of integral domains.

Proof: Let { Ji | i ∈ I } be the family of all

prime ideals of a ring A . By the Theorem,

N =
⋂

i∈I

Ji

is the nilradical of A , and by the Observation, A/N

is a subdirect product of the family { A/Ji | i ∈
I } , each member of which is an integral domain.
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Corollary: A ring with trivial nilradical is

a subdirect product of integral domains.

Proof of the Theorem: Let N denote the

nilradical and N ′ the intersection of all prime ideals

of the ring A .

We have to show N = N ′ .

Consider a prime ideal P of A and let x ∈ N .
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Then

x(xk−1) = xk = 0 ∈ P (∃k ∈ Z
+) ,

so, since P is prime,

x ∈ P or xk−1 ∈ P .

By a simple induction, x ∈ P . Thus N ⊆ P .

Hence

N ⊆ N ′ .
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Suppose x ∈ A\N , so x is not nilpotent. Put

Σ = { I � A | (∀k ∈ Z
+) xk 6∈ I } ,

which is a poset with respect to ⊆ .

Certainly Σ 6= ∅ , since {0} ∈ Σ (because x is

not nilpotent).

It is easy to verify that Zorn’s Lemma

applies, guaranteeing the existence of a

maximal element P of Σ .
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We will show P is prime.

Suppose a, b ∈ A and ab ∈ P .

Suppose a, b 6∈ P , so

P ⊂ P + aA and P ⊂ P + bA .

But

P + aA , P + bA � A

and P is maximal in Σ . Hence

P + aA , P + bA 6∈ Σ ,
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so

xk ∈ P + aA , xl ∈ P + bA (∃k, l ∈ Z
+) .

Then

xk+l = xk xl ∈ P + abA � A ,

so

P + abA 6∈ Σ .

But ab ∈ P , so P + abA = P ∈ Σ , a

contradiction.
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Hence a ∈ P or b ∈ P , proving P is prime.

In particular x 6∈ P , so x 6∈ N ′ .

This proves

N ′ ⊆ N ,

so we conclude

N = N ′ ,

and the Theorem is proved.
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Define the Jacobson radical R of a ring A to be

the intersection of all of the maximal ideals of A .

Thus

A/R is a subdirect product of fields.

Clearly, the maximal ideals of A/R have the form

M/R where M is a maximal ideal of A , so the

Jacobson radical of A/R is just R/R = {R} ,

the trivial ideal.
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Since all maximal ideals are prime, we get

immediately that

nilradical ⊆ Jacobson radical.

The nilradical was defined in terms of a membership

test for elements (that they be nilpotent). A

membership test exists also for the Jacobson radical.

Theorem: Let x ∈ A . Then

x ∈ R ⇐⇒ (∀y ∈ A) 1 − xy is a unit.
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Proof: (=⇒) Suppose 1 − xy is not a unit for

some y ∈ A .

By Zorn’s Lemma (an earlier Corollary)

1 − xy ∈ M

for some maximal ideal M .

If x ∈ R then x ∈M

(since R is the intersection of all maximal ideals)
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and so

1 = (1 − xy) + xy ∈ M ,

elements of M

which is impossible since M 6= A .

Hence x 6∈ R .

145



(⇐=) Suppose x 6∈ R .

Then x 6∈M for some maximal ideal M

(since R is the intersection of all maximal ideals).

By maximality,

A = 〈M ∪ {x}〉

= { m+ xy | m ∈M , y ∈ A } .
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In particular,

1 = m+ xy (∃m ∈M)(∃y ∈ A)

so

1 − xy = m ∈ M .

If 1 − xy is a unit then M = A .

But M 6= A , so 1 − xy is not a unit.

The Theorem is proved.
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Examples: (1) In any integral domain the

nilradical is trivial, and in any local ring the Jacobson

radical is the unique maximal ideal.

Since there are local rings which are integral domains

but not fields, the nil and Jacobson radicals need not

be equal.

(2) Let A = Z .

Claim: R = N = {0} .

Proof: Consider 0 6= a ∈ Z .
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If 1 − 3a = 1 then a = 0 ,

whilst if 1 − 3a = −1 then a = 2/3 ,

both of which are impossible.

Hence 1−3a is not a unit, so a 6∈ R , so R = {0} .

Alternatively (since maximal ideals in Z , being a

PID, are precisely nonzero prime ideals)

R =
⋂

p prime

pZ = {0} .
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(3) Let A = F [x] where F is a field.

Claim: R = N = {0} .

Proof: Consider 0 6= α ∈ F [x] .

Then 1 − xα is a polynomial of degree ≥ 1 , so

cannot be a unit

(units in F [x] being just the nonzero constants).

Hence α 6∈ R , so again R = {0} .
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(4) Let A = F [G] , a group ring, where F is a

field of prime characteristic p , and G is an abelian

p-group.

Claim: In this example

R = N =
{

∑

αg g |
∑

αg = 0
}

.

Proof: Consider the onto ring homomomorphism

φ : A→ F where
∑

αg g 7→
∑

αg ,
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whose kernel is

kerφ = {
∑

αg g |
∑

αg = 0
}

.

Thus

A/ kerφ ∼= F

(by the Fundamental Homomorphism Theorem),

so kerφ is a maximal ideal of A . Hence

R ⊆ kerφ .

152



Consider

x = α1 g1 + . . . + αn gn ∈ kerφ .

Then

α1 + . . . + αn = 0 ,

and, for some sufficiently high power m = pk ,

gmi = 1 (∀i = 1, . . . , n) .

Hence
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xm = (α1g1 + . . .+ αngn)
m

= (α1g1)
m + . . .+ (αngn)

m

[by the “Freshman’s Dream”

(a+ b)p = ap + bp

in any field of characteristic p ],
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so

xm = αm1 g
m
1 + . . .+ αmn g

m
n

= αm1 + . . . + αmn

= (α1 + . . . + αn)
m

= 0m = 0 .
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Thus x ∈ N . Hence R ⊆ kerφ ⊆ N ⊆ R , so

R = N = kerφ ,

and the Claim is proved.

Exercise: Let A be a finite ring.

(1) Prove that if x ∈ A then some power

of x is idempotent.

(2) Verify that if 0 6= e = e2 ∈ A then

1 − e is idempotent so cannot be a unit.

(3) Deduce that N = R .
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