
1.4 Divisibility and Factorization

Let A be a ring and x ∈ A .

Call x irreducible if x is not a unit and

(∀y, z ∈ A)

x = yz =⇒ y or z is a unit.
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Call x prime if x 6= 0 , x is not a unit

and

(∀y, z ∈ A)

x | yz =⇒ x | y or x | z .

Easy to check, for nonzero x :

x is prime iff xA is a prime ideal.
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Example:

If A = Z then irreducibles and primes

coincide and are just the usual prime

numbers.

Exercise:

Prove that in an integral domain every prime

is irreducible.

However there are integral domains in which not all

irreducibles are primes.
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Exercise: Let

A = Z[
√
−5] = {a+ b

√
−5 | a, b ∈ Z } ,

which, being a subring of C , is an integral domain.

Recall that the map : C → R
+ ∪ {0} defined by

z 7→ |z|2

is multiplicative.

(1) Deduce that the units of A are precisely ±1 .
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(2) Observe that

6 = 2 · 3 = (1 +
√
−5) · (1 −

√
−5)

in A . Prove that

2 , 3 , 1 +
√
−5 , 1 −

√
−5

are irreducibles but not primes.
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Call an integral domain A a unique

factorization domain (UFD) if

(i) every nonzero nonunit of A can be

expressed as a product of irreducibles; and

(ii) the factorization is unique up to order

and multiplication by units.

e.g. A = Z is a UFD and (noting the units are

±1 ):

30 = 2 · 3 · 5 = 3 · 2 · 5 = −3 · −5 · 2 .
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Exercise:

Prove that in a UFD every irreducible is

prime.

Thus in a UFD the notions of irreducible and prime

coincide.

Gauss’ Theorem:

If A is a UFD then the polynomial ring

A[x] is also a UFD.

The proof is deferred until later.
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Note that vacuously

all fields are UFD’s.

Examples:

(1) Let A = F [x1, . . . , xn] , the polynomial ring

in n commuting indeterminates over a field F .

Clearly, by iterating Gauss’ Theorem, A is a UFD.
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If p = p(x1, . . . , xn) is any irreducible polynomial

over F then p is prime (by a previous exercise),

so the principal ideal

pA is a prime ideal of A .

(2) Let A = Z or A = F [x] where F is a field.

It is straightforward to show, using the Division

algorithm, that

every ideal of A is principal.
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In the case A = Z the prime ideals are

precisely those generated by 0 or a prime

number.

In the case A = F [x] the prime ideals

are precisely those generated by the zero

polynomial or an irreducible polynomial.

In both cases, because of the Observation below,

all nonzero prime ideals are also maximal.
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Observation:

Let A be a principal ideal domain (PID),

that is, an integral domain in which all ideals

are principal.

Then every nonzero prime ideal is maximal.

Proof: Let I be a nonzero prime ideal, and

suppose

I ⊂ J � A .
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Then, for some x, y, z ∈ A ,

I = xA , J = yA , x = yz .

But I is prime and yz ∈ I , so

y ∈ I or z ∈ I .

If y ∈ I then J ⊆ I ⊂ J , impossible.

Hence y 6∈ I , and so z ∈ I .

Thus z = xt for some t ∈ A ,
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and so

x = yz = yxt = xyt ,

so

0 = xyt− x = x(yt− 1) .

But I 6= {0} , so x 6= 0 .

Hence, since A is an integral domain, yt−1 = 0 ,

so y is a unit, and J = A .

This shows I is maximal, and the proof is complete.
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Examples (continued):

(3) Consider again A = F [x1, . . . , xn] where F

is a field. Put

M = { p ∈ A | the constant term of p is 0 } .

Then M = kerψ where ψ : A → F is the

epimorphism

p(x1, . . . , xn) 7→ p(0, . . . , 0) .

By the Fundamental Homomorphism Theorem,

A/M ∼= F .
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This proves

M is maximal.

However, if n > 1 , then

M is not principal,

because of the following

Exercise: Prove that M is generated

by n elements, but not by fewer than n

elements.
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