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1.0 Overview

— study of commutative rings

— elaboration of selections from first 7 chapters of

“Introduction to Commutative Algebra”

by Atiyah and Macdonald
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Part 1

A ring A is an “arithmetic” with +, • .

If • is commutative, that is,

(∀a, b ∈ A) a • b = b • a

then we call A commutative.

Unless stated otherwise all rings will be assumed to

be commutative.
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Not all of the detail of a given ring A will be of interest.

Information is filtered from A by factoring out by an ideal.

Example: Say time in whole hours is modelled by Z. If one

is only interested in the time, but not the day itself, or even

whether am or pm, then one works in the quotient ring

Z/24Z or Z/12Z .

The subsets 24Z and 12Z are ideals of Z.

The quotient ring is the formal consequence of

identifying elements of the ideal with zero . . .

. . . thinking of the ideal as “vanishing”.
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Rings can be arbitrarily complicated.

Sometimes they simplify or become tractable by factoring out

by the radical

(the “nasty” part that we would like to “vanish”).

We will meet the nil and Jacobson radical (which happen to

coincide for example if the ring is finite).

Example: Z9 = {0, 1, . . . , 8} , with mod 9 arithmetic, is not

a field, but

Z3
∼= Z9/3Z9

is a field.

3Z9 is the radical of Z9 .

7



Often we will factor out by prime or maximal ideals.

closely connected with
integral domains

connected with fields

existence guaranteed by
Zorn’s Lemma

Rings with exactly one maximal ideal are called local.

— “close” to being fields, e.g. Z9 is close to Z3.
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Part 2

Modules are like vector spaces, except that scalars may be ring

(rather than field) elements.

Familiar example: Every abelian group M , written additively,

becomes a module over Z: for x ∈ M and n ∈ Z define

nx =







x + ... + x︸ ︷︷ ︸
n times

if n > 0

0 if n = 0

−((−n)x) if n < 0
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Modules “decompose” or “extend” . . .

We develop some theory of exact sequences . . .

Example (short exact sequences):

0 → Z2 → Z2 ⊕ Z2 → Z2 → 0

x 7→ (x, 0)

(x, y) 7→ y
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0 → Z2 → Z4 → Z2 → 0

0 7→ 0

1 7→ 2

0, 2 7→ 0

1, 3 7→ 1

Z2 ⊕ Z2 and Z4 are extensions of Z2 by Z2 .
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We develop some theory of tensor products of

modules.

Example (“extending” the ring of scalars):

Now, Z3 is a module over Z , Z ⊆ Q and

Z ⊆ A = { a/b ∈ Q | b not divisible by 3 } .

Then M = A ⊗Z Z3 is a module over Z and over

A .

provides a “buffer” for scalar

multiplication by elements of A.
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Identifying x ∈ Z3 with 1 ⊗ x we get a scalar multiplication

by elements of A:

a

b
(1 ⊗ x) =

a

b
(1 ⊗ bb′x) =

a

b
b (1 ⊗ b′x)

= a (1 ⊗ b′x) = 1 ⊗ ab′x

where b′ is any integer such that bb′ ≡ 1 mod 3 (which exists

because b is not divisible by 3).

Care is required: Q ⊗Z Z3 vanishes!!

a

b
⊗ x = 3(

a

3b
⊗ x) =

a

3b
⊗ 3x =

a

3b
⊗ 0 ≡ 0 .
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Part 3

Rings of fractions: “formally inverting certain objects. . . and

seeing what happens”

Familiar examples:

Z ⊆ Q

R[x] ⊆ R(x) = {p(x)/q(x) | p(x), q(x) ∈ R[x] , q(x) 6≡ 0}

integral domain field of fractions

polynomial ring
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A general construction exists for multiplicatively closed

subsets of rings.

— important example: complement of a prime ideal;

— leads to “localization at a prime ideal”.

Example:

A = {m/n | m,n ∈ Z, n not divisible by 3}

is the result of localizing the ring Z at its prime ideal 3Z

(anything that is not a multiple of 3 can be inverted).

The ring A is local, “close” to being a field.
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Modules of fractions:

—forcing some scalars to be “invertible” and seeing what

happens;

—connection with tensor products, a module

construction studied in the second part of the course.

S−1M ∼= S−1A ⊗A M

as S−1A -modules
where M is an A -module and S is a

multiplicatively closed subset of A

“enlarging” the scalar multiplication from A to S−1A
16



Part 4:

Primary decomposition of (noetherian) rings:

—mimics factorization of integers into products of prime

powers.

Chain conditions (“finiteness” conditions) on modules and

rings

—ascending chain condition (a.c.c.)

R1 ⊆ R2 ⊆ . . . ⊆ Rn ⊆ . . . “halts”

—descending chain condition (d.c.c.)

R1 ⊇ R2 ⊇ . . . ⊇ Rn ⊇ . . . “halts”
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Example: Z is a principal ideal domain (PID) (all ideals

are principal of the form nZ , n ∈ Z .)

Observe that

2Z ⊃ 4Z ⊃ 8Z ⊃ . . . ⊃ 2nZ ⊃ . . .

where ⊃ means proper set containment, so

Z does not satisfy the d.c.c.

Z is not artinian
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However

Z does satisfy the a.c.c.

Z is noetherian

Proof: Suppose

k1Z ⊆ k2Z ⊆ . . . ⊆ knZ ⊆ . . . (∗)

WLOG we may suppose k1 6= 0, so that each kn 6= 0.

Now WLOG we may suppose each kn > 0.

19



Hence

. . . | kn | kn−1 | . . . | k2 | k1 .

divides

In particular

k1 ≥ k2 ≥ . . . ≥ kn ≥ . . .

which halts, because there is no infinite descending sequence

of positive integers. Hence (∗) halts, and the claim is proved.
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Final part of the main course, some classical results:

— Jordan-Holder Theorem: “no matter how you chop

up a module you get the same simple pieces”.

— Hilbert’s Basis Theorem: “adjoining an

indeterminate preserves being noetherian, so all ideals of a

polynomial ring in several variables are finitely generated”.

— Hilbert’s Nullstellensatz (Zeros Theorem): “zero

sets correspond to radical ideals”.

(For the last result we may need to review theory of field

extensions and discuss Gauss’ Theorem concerning unique

factorization domains.)
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