THE UNIVERSITY OF SYDNEY

COMMUTATIVE ALGEBRA

Semester 1 Selected Exercises continued 2009

Due Friday 22 May 2009. Please hand in written answers for credit. Acknowledge
any sources or assistance. Throughout, ring means commutative ring with identity.
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Find a ring A and ideals I, J and K such that
(INJ)+(INK) # IN(J+K)

and
(J+K)JNK) # JK .

Let A= Flzq,...,x,] where F is any fixed field, and put
M ={f € A | the constant term of f is zero } .

Then M is generated as an ideal of A by the elements x1,...,x, . Prove that
M cannot by generated as an ideal of A by fewer than n elements.

Let F be a field and let f : F|x,y] — F[x,y] be the ring homomorphism where
p(z,y) — p(x,x) for all polynomials p(x,y) € F[x,y]. Prove that

C = {p@)Flz]+ (z —y)Flz,y] | p(x) € Fla] }

and
& = {p(=@)Fz,y] | p(z) € Flz] },

where C and £ are the sets of contracted and extended ideals respectively.

Find an example of a ring homomorphism and ideals J, K of the codomain such
that (J + K)¢ # J¢+ K°.

Find an example of a ring homomorphism and ideals J, K of the codomain such
that (JK)¢ # JK°.

Find an example of a ring homomorphism and ideals J, K of the codomain such
that (J : K)° # (J¢: K°).

Find an example of a ring homomorphism and ideals J, K of the domain such
that (J : K)¢ # (J¢: K°).
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Let F be a field, n € ZT and M an n x n matrix over F such that the
eigenvalues of M (in the algebraic closure of F') are distinct. The vector space
F"™ becomes an F[z]-module by defining, for p(z) € F|x],

p(x)- (a1, ...,an) = (b1,...,bn)
where the following matrix equation holds:

al b1
p(M) | & | =
an by,

Verify that Ann (F™) = x(x)F[x] where x(z) is the characteristic polynomial
of M.

[For example, taking M = [(1) _(1]} , [(1) 3] leads to faithful representa-
tions of the fields

C = Rz]/(2> + DR[z] , Q(V2) = Q[z]/(2* - 2)Qla]
by 2 x 2 matrices with entries from R and Q respectively.}

Let A bearingand u: N'— N and v: N — N” be A-module homomor-
phisms. Verify that the sequence

u v
0 — N — N — N"

is exact iff for all A-modules M , the sequence

u v
0 — Hom(M, N’) — Hom(M, N) — Hom(M, N")

is exact.

Let A bearingand M, N, P be A-modules. Prove the following A-module
isomorphisms:

(i) A®M = M;
i) (MeN)@P = (MRP)&(N®P).



