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1. Introduction

The goal of this paper is to present a number of problems about automor-

phism groups of nonpositively curved polyhedral complexes and their lattices.

This topic lies at the juncture of two slightly different cultures. In geometric

group theory, universal covers of 2-complexes are studied as geometric and

topological models of their fundamental groups, and an important way of

understanding groups is to construct “nice" actions on cell complexes, such

as cubical complexes. From a different perspective, automorphism groups

of connected, simply connected, locally finite simplicial complexes may be

viewed as locally compact topological groups, to which we can hope to extend

the theory of algebraic groups and their discrete subgroups. In the classifica-

tion of locally compact topological groups, these automorphism groups are the

natural next examples to study after algebraic groups. In this paper we pose

some problems meant to highlight possible directions for future research.

Let G be a locally compact topological group with left-invariant Haar mea-

sure μ. A lattice (respectively, uniform lattice) in G is a discrete subgroup

� < G with μ(�\G) <∞ (respectively, �\G compact). The classical study of

Lie groups and their lattices was extended to algebraic groups G over non-

Archimedean local fields K by Ihara, Bruhat-Tits, Serre, and many others.

This was done by realizing G as a group of automorphisms of the Bruhat-

Tits (Euclidean) building XG, which is a rankK (G)-dimensional, nonpositively

curved (in an appropriate sense) simplicial complex. More recently, Kac-

Moody groups G have been studied by considering the action of G on the

associated (twin) Tits buildings (see, for example, Carbone-Garland [CG] and

Rémy-Ronan [RR]).

The simplest example in the algebraic case is G = SL (n,K ), where one can

take K = Qp (where char (K ) = 0) or K = Fp((t)) (where char (K ) = p > 0).
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When n = 2, that is, rankK (G) = 1, the building XG is the regular simplicial

tree of degree p+ 1. One can then extend this point of view to study the full

group of simplicial automorphisms of a locally finite tree as a locally compact

topological group, and investigate the properties of the lattices it contains.

This leads to the remarkably rich theory of “tree lattices” to which we refer the

reader to the book of Bass-Lubotzky [BL] as the standard reference.

One would like to build an analogous theory in dimensions 2 and higher,

with groups like SL (n,Qp) and SL(n,Fp((t))), for n ≥ 3, being the “classical

examples.” The increase in dimension makes life much harder, and greatly

increases the variety of phenomena that occur.

Now, let X be a locally finite, connected, simply connected simplicial com-

plex. The group G = Aut (X ) of simplicial automorphisms of X naturally has

the structure of a locally compact topological group, where a decreasing neigh-

borhood basis of the identity consists of automorphisms of X that are the

identity on bigger and bigger balls. With the right normalization of the Haar

measure μ, due to Serre [Se], there is a useful combinatorial formula for the

covolume of a discrete subgroup � < G:

μ(�\G) =
∑
v∈A

1

|�v|
where the sum is taken over vertices v in a fundamental domain A ⊆ X for

the �-action, and |�v| is the order of the �-stabilizer of v. A discrete subgroup

� is a lattice if and only if this sum converges, and � is a uniform lattice if and

only if the fundamental domain A is compact.

In this paper we concentrate on the case when dim (X ) = 2. Most questions

also make sense in higher dimensions, where even less is understood. When

X is a product of trees much is known (see, for example, Burger-Mozes [BM]).

However, the availability of projections to trees makes this a special (but deep)

theory; we henceforth assume also that X is not a product. There are several

themes we wish to explore, many informed by the classical (algebraic) case

and the theoryof tree lattices in [BL].Wealsohope that classical casesmaybe re-

understood from a new, more geometric point of view. Part of our inspiration

for this paper came from Lubotzky’s beautiful paper [Lu], where he discusses

the theory of tree lattices in relation to the classical (real and p–adic) cases.

This paper is not meant to be encyclopedic. It presents a list of problems

from a specific and biased point of view. An important criterion in our choice

of problem is that it presents some new phenomenon, or requires some new

technique or viewpoint in order to solve it. After some background in Sec-

tion 2, we describe the main known examples of polyhedral complexes and
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their lattices in Section 3. We have grouped problems on the structure of the

complex X itself together with basic group-theoretic and topological proper-

ties of Aut (X ) in Section 4. Section 5 focuses on whether important properties

of linear groups and their lattices hold in this setting, while Section 6 discusses

group-theoretic properties of lattices in Aut (X ) themselves.

We would like to thank Noel Brady and John Crisp for permission to use

Figure 2, and Laurent Saloff-Coste for helpful discussions. We would also like

to thank Frédéric Haglund for making many useful comments, which greatly

improved the exposition of this paper.

2. Some Background

This preliminary material is mostly drawn from Bridson-Haefliger [BH]. We

give the key definitions for polyhedral complexes in Section 2.1. (Examples of

polyhedral complexes are described in Section 3.) Conditions for a polyhedral

complex X to have nonpositive curvature, and some the consequences for

X , are recalled in Section 2.2. The theory of complexes of groups, which is

used to construct both polyhedral complexes and their lattices, is sketched in

Section 2.3.

2.1. Polyhedral Complexes

Polyhedral complexes may be viewed as generalizations of (geometric real-

izations of) simplicial complexes. The quotient of a simplicial complex by a

group acting by simplicial automorphisms is not necessarily simplicial, and

so we work in this larger category. Roughly speaking, a polyhedral complex is

obtained by gluing together polyhedra from some constant curvature space by

isometries along faces.

More formally, let Xn be Sn, Rn, orHn, endowed with Riemannian metrics

of constant curvature 1, 0, and −1, respectively. A polyhedral complex X is a

finite-dimensional CW-complex such that

1) each open cell of dimension n is isometric to the interior of a compact

convex polyhedron in Xn; and

2) for each cell σ of X , the restriction of the attaching map to each open

codimension one face of σ is an isometry onto an open cell of X .

A polyhedral complex is said to be (piecewise) spherical, Euclidean, or hyperbolic

if Xn is Sn, Rn, or Hn, respectively. Polyhedral complexes are usually not

thought of as embedded in any space. A 2-dimensional polyhedral complex is

called a polygonal complex.
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Given a polyhedral complex X , we write G = Aut (X ) for the group of auto-

morphisms, or cellular isometries, of X . A subgroup H ≤ G is said to act

without inversions on X if for every cell σ of X , the setwise stabilizer of σ in H

is equal to its pointwise stabilizer. Note that any subgroup H ≤ G acts without

inversions on the barycentric subdivision of X . The quotient of a polyhedral

complex by a group acting without inversions is also a polyhedral complex so

that the quotient map is a local isometry.

Let x be a vertex of an n-dimensional polyhedral complex X . The link of x,

denoted Lk (x,X ), is the spherical polyhedral complex obtained by intersecting

X with an n-sphere of sufficiently small radius centered at x. For example, if

X has dimension 2, then Lk (x,X ) may be identified with the graph having

vertices (the 1-cells of X containing x) and edges (the 2-cells of X containing

x); two vertices in the link are joined by an edge in the link if the corresponding

1-cells in X are contained in a common 2-cell. The link may also be thought

of as the space of directions, or of germs of geodesics, at the vertex x. By

rescaling so that for each x the n-sphere around x has radius, say, 1, we induce

a metric on each link, and we may then speak of isometry classes of links

of X .

2.2. Nonpositive Curvature

In this section, we recall conditions under which the metrics on the cells of

X , a Euclidean or hyperbolic polyhedral complex, may be pieced together to

obtain a global metric that is, respectively, CAT(0) or CAT(− 1). Some of the

consequences for X are then described.

Any polyhedral complexX has an intrinsic pseudometric d, where for x, y ∈
X , the value ofd(x, y) is the infimumof lengths of paths� fromx to y inX , such

that the restriction of� to each cell of X is geodesic. Bridson [BH] showed that

if X has only finitely many isometry types of cells, for example, if G = Aut (X )

acts cocompactly, then (X , d) is a complete geodesic metric space.

Now assumeX is a Euclidean (respectively, hyperbolic) polyhedral complex

such that (X , d) is a complete geodesic space. By the Cartan-Hadamard theo-

rem, if X is locally CAT(0) (respectively, locally CAT(− 1)), then the universal

cover X̃ is CAT(0) (respectively, CAT(− 1)). Thus to see whether a simply con-

nected X has a CAT(0) metric, we need only check a neighborhood of each

point x ∈ X .

If dim (X ) = n and x is in the interior of an n-cell ofX , then a neighborhood

of x is isometric to a neighborhood in Euclidean (respectively, hyperbolic) n-

space. If x is not a vertex but is in the intersection of two n-cells, then it is not

hard to see that a neighborhood of x is also CAT(0) (respectively, CAT(− 1)).
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Hence, the condition that X be CAT(0) comes down to a condition on the

nieghborhoods of the vertices of X , that is, on their links.

There are two special cases in which it is easy to check whether neighbor-

hoods of vertices are CAT(0) or CAT(− 1). These are when dim (X ) = 2 and

when X is a cubical complex (defined below, and discussed in Section 3.8).

theorem 1. (gromov link condition) A 2-dimensional Euclidean

(respectively, hyperbolic) polyhedral complex X is locally CAT(0) (respectively,

CAT(− 1)) if and only if for every vertex x of X , every injective loop in the graph

Lk (x,X ) has length at least 2π .

Let In = [0, 1]n be the cube in Rn with edge lengths 1. A cubical complex

is a Euclidean polyhedral complex with all n-cells isometric to In. Let L be

a simplicial complex. We say L is a flag complex if whenever L contains the

1-skeleton of a simplex, it contains the simplex (“no empty triangles").

theorem 2. (gromov) A finite-dimensional cubical complex X is locally

CAT(0) if and only if the link L of each vertex of X is a flag simplicial complex.

In general, let X be a polyhedral complex of piecewise constant curvature

κ (so κ = 0 for X Euclidean, and κ = −1 for X hyperbolic).

theorem 3. (gromov) If X is a polyhedral complex of piecewise constant

curvature κ , and X has finitely many isometry types of cells, then X is locally

CAT(κ) if and only if for all vertices x of X , the link Lk (x,X ) is a CAT(1) space.

The condition that a metric space be nonpositively curved has a number

of implications, described, for example, in [BH]. We highlight the following

results:

• Any CAT(0) space X is contractible.
• Let X be a complete CAT(0) space. If a group � acts by isometries on X

with a bounded orbit, then � has a fixed point in X .

In particular, suppose X is a locally finite CAT(0) polyhedral complex and

� < Aut (X ) is a finite group acting on X . Then � is contained in the stabilizer

of some cell of X .

2.3. Complexes of Groups

The theory of complexes of groups, due to Gersten-Stallings [St] and Hae-

fliger [Hae, BH], generalizes Bass-Serre theory to higher dimensions. It may
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be used to construct both polyhedral complexes and lattices in their automor-

phism groups. We give here only the main ideas and some examples, and

refer the reader to [BH] for further details.

Throughout this section, if Y is a polyhedral complex, then Y ′ will denote
the first barycentric subdivision ofY . This is a simplicial complex with vertices

V (Y ′) and edges E(Y ′). Each a ∈ E(Y ′) corresponds to cells τ ⊂ σ of Y , and so

may be oriented from i(a) = σ to t(a) = τ . Two edges a and b of Y ′ are com-

posable if i(a) = t(b), in which case there exists an edge c = ab of Y ′ such that

i(c) = i(b), t(c) = t(a) and a, b, and c form the boundary of a 2-simplex in Y ′.
A complex of groups G(Y ) = (Gσ ,ψa, ga,b) over a polyhedral complex Y is

given by

1) a group Gσ for each σ ∈ V (Y ′), called the local group at σ ;

2) a monomorphism ψa : Gi(a) → Gt(a) for each a ∈ E(Y ′); and
3) for each pair of composable edges a, b in Y ′, an element ga,b ∈ Gt(a), such

that

Ad (ga,b) ◦ψab = ψa ◦ψb

where Ad (ga,b) is conjugation by ga,b in Gt(a), and for each triple of

composable edges a, b, c the following cocycle condition holds

ψa(gb,c ) ga,bc = ga,b gab,c .

If all ga,b are trivial, the complex of groups is simple. To date, most applications

have used only simple complexes of groups. In the case Y is 2-dimensional,

the local groups of a complex of groups over Y are often referred to as face,

edge, and vertex groups.

example
Let P be a regular right-angled hyperbolic p-gon, p ≥ 5, and let q be a positive

integer≥ 2. Let G(P) be the following polygon of groups over P. The face group

is trivial, and each edge group is the cyclic group Z/qZ. The vertex groups are
the direct products of adjacent edge groups. All monomorphisms are natural

inclusions, and all ga,b are trivial.

Let G be a group acting without inversions on a polyhedral complex X .

The action of G induces a complex of groups, as follows. Let Y = G\X with

p : X → Y the natural projection. For each σ ∈ V (Y ′), choose σ̃ ∈ V (X ′) such
that p(σ̃ ) = σ . The local group Gσ is the stabilizer of σ̃ in G, and the ψa and

ga,b are defined using further choices. The resulting complex of groups G(Y )

is unique (up to isomorphism).
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Let G(Y ) be a complex of groups. Then one defines the fundamental

group of G(Y ), denoted by π1(G(Y )), as well as the universal cover of G(Y ),

denoted by G̃(Y ), and an action of π1(G(Y )) without inversion on G̃(Y ). The

quotient of G̃(Y ) by this action is naturally isomorphic to Y , and for each

cell σ of Y the stabilizer of any lift σ̃ ⊂ G̃(Y ) is a homomorphic image

of Gσ . The complex of groups is called developable whenever each homo-

morphism Gσ −→ Stabπ1(G(Y ))(σ ) is injective. Equivalently, a complex of

groups is developable if it is isomorphic to the complex of groups associ-

ated as above to an action without inversion on a simply connected polyhedral

complex.

Unlike graphs of groups, complexes of groups are not in general devel-

opable:

example (k. brown)
Let G(Y ) be the triangle of groups with trivial face group and edge groups infi-

nite cyclic, generated by, say, a, b, and c. Each vertex group is isomorphic to the

Baumslag-Solitar group BS(1, 2) = 〈 x, y | xyx−1 = y2 〉, where the generators
x and y are identifiedwith the generators of the adjacent edge groups. The fun-

damental group of G(Y ) then has presentation 〈 a, b, c | aba−1 = b2, bcb−1 =
c2, cac−1 = a2 〉. It is an exercise that this is the trivial group. Thus G(Y ) is not

developable.

We now describe a local condition for developability. Let Y be a connected

polyhedral complex and let σ ∈ V (Y ′). The star of σ , written St (σ ), is the

union of the interiors of the simplices in Y ′ that meet σ . If G(Y ) is a complex

of groups over Y , then even if G(Y ) is not developable, each σ ∈ V (Y ′) has a
local development. That is, we may associate to σ an action of Gσ on the star

St (σ̃ ) of a vertex σ̃ in some simplicial complex, such that St (σ ) is the quotient

of St (σ̃ ) by the action of Gσ . To determine the local development, its link may

be computed in combinatorial fashion.

example
Suppose G(Y ) is a simple polygon of groups, with Gσ = V a vertex group,

with adjacent edge groups E1 and E2, and with face group F. We identify the

groups E1, E2, and F with their images in V . The link L of the local develop-

ment at σ is then a bipartite graph. The two sets of vertices of L correspond

to the cosets of E1 and E2, respectively, in V , and the edges of L correspond to

cosets of F in V . The number of edges between vertices g1E1 and g2E2 is equal

to the number of cosets of F in the intersection g1E1 ∩ g2E2. In the polygon of
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groups G(P) given above, the link of the local development at each vertex of P

will be the complete bipartite graph Kq,q.

IfG(Y ) is developable, then for eachσ ∈ V (Y ′), the local development St (σ̃ )

is isomorphic to the star of each lift σ̃ of σ in the universal cover G̃(Y ). The

local development has a metric structure induced by that of the polyhedral

complex Y . We say that a complex of groups G(Y ) is nonpositively curved if for

all σ ∈ V (Y ′), the star St (σ̃ ) is CAT(0) in this induced metric. The importance

of this condition is given by

theorem 4. (stallings (st), haefliger (hae, bh)) A nonpositively

curved complex of groups is developable.

example
The polygon of groups G(P) above is nonpositively curved and thus devel-

opable. The links are the complete bipartite graph Kq,q with edge lengths π
2 ,

and so Gromov’s link condition (Theorem 1) is satisfied.

Let G(Y ) be a developable complex of groups, with universal cover a locally

finite polyhedral complex X , and fundamental group �. We say that G(Y ) is

faithful if the action of� onX is faithful. If so, �may be regarded as a subgroup

of Aut (X ). Moreover, � is discrete if and only if all local groups of G(Y ) are

finite, and � is a uniform lattice if and only if Y is compact.

example
Let G(P) be the (developable) polygon of groups above, with fundamental

group, say, � and universal cover, say, X . Then G(P) is faithful since its face

group is trivial. As all the local groups are finite and P is compact, � may be

identified with a uniform lattice in Aut (X ).

3. Examples of Polyhedral Complexes and Their Lattices

In this sectionwepresent themost studied examples of locally finite polyhedral

complexes X and their lattices. For each case, we give the key definitions, and

sketch known constructions of X and of lattices in Aut (X ). There is some

overlap between examples, which we describe. We will also try to indicate the

distinctive flavor of each class.While results on existence ofX are recalled here,

we defer questions of uniqueness of X , given certain local data, to Section 4.1.

Existence of lattices is also discussed further in Section 6.1.
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Many of the examples we discuss are buildings, which form an important

class of nonpositively curved polyhedral complexes. Roughly, buildings may

be thought of as highly symmetric complexes, which contain many flats,

and often have algebraic structure. Classical buildings are those associated

to groups such as SL(n,Qp), and play a similar role for these groups to that

of symmetric spaces for real Lie groups. The basic references for buildings

are Ronan [Ron2] and Brown [Br]. A much more comprehensive treatment by

Abramenko-Brown [AB] is to appear shortly. These works adopt a combina-

torial approach. For our purposes we present a more topological definition,

from [HP2].

Recall that a Coxeter group is a group W with a finite-generating set S and

presentation of the form

W = 〈 s ∈ S | (sisj)mij = 1 〉
where si, sj ∈ S, mii = 1, and if i �= j, then mij is an integer ≥ 2 or mij = ∞,

meaning that there is no relation between si and sj . The pair (W ,S), or (W , I)

where I is the finite-indexing set of S, is called a Coxeter system. A spherical,

Euclidean, or hyperbolic Coxeter polytope of dimension n is an n-dimensional

compact convex polyhedron P in the appropriate space, with every dihedral

angle of the form π/m for some integer m ≥ 2 (not necessarily the same m

for each angle). The group W generated by reflections in the codimension-1

faces of a Coxeter polytope P is a Coxeter group, and its action generates a

tesselation of the space by copies of P.

definition: Let P be an n-dimensional spherical, Euclidean, or hyperbolic

Coxeter polytope. Let W = (W ,S) be the Coxeter group generated by the set

of reflections S in the codimension-1 faces of P. A spherical, Euclidean, or

hyperbolic building of type (W ,S) is a polyhedral complex X equipped with a

maximal family of subcomplexes, called apartments, each polyhedrally isomet-

ric to the tesselation of, respectively, Sn, Rn, or Hn by the images of P under

W (called chambers), such that

1) any two chambers of X are contained in a common apartment; and

2) for any two apartments A and A′, there exists a polyhedral isometry from

A onto A′ that fixes A∩A′.

The links of vertices of n-dimensional buildings are spherical buildings

of dimension n− 1, with the induced apartment and chamber structure.

Using this and Theorem 3, it follows that Euclidean (respectively, hyperbolic)
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buildings are CAT(0) (respectively, CAT(− 1)). Since buildings are such

important examples in the theory, we will spend some time describing them

in detail.

3.1. Euclidean Buildings

Euclidean buildings are also sometimes known as affine buildings, or buildings

of affine type. A simplicial tree X is a 1-dimensional Euclidean building of

type (W ,S), where W is the infinite dihedral group, acting on the real line

with fundamental domain P an interval. The chambers of X are the edges of

the tree, and the apartments X are the geodesic lines in the tree. Since the

product of two buildings is also a building, it follows that products of trees are

higher-dimensional (reducible) Euclidean buildings (see Section 3.2). In this

section we consider Euclidean buildings X of dimension n ≥ 2 that are not

products.

3.1.1. classical euclidean buildings Classical Euclidean buildings

are those Euclidean buildings that are associated to algebraic groups, as we

now outline. We first construct the building for G = SL (n,K ) where K is a

non-Archimedean local field, in terms of lattices in Kn and then in terms

of BN -pairs (defined below). We then indicate how the latter construction

generalizes to other algebraic groups. Our treatment is based upon [Br].

Let K be a field. We recall that a discrete valuation on K is a surjective

homomorphism v : K∗ −→ Z, whereK∗ is themultiplicative groupofnonzero

elements of K , such that

v(x+ y) ≥ min{v(x), v(y)}

for all x, y ∈ K∗ with x+ y �= 0. We set v(0) = +∞, so that v is defined and the

above inequality holds for all of K . A discrete valuation induces an absolute

value |x| = e−v(x) on K , which satisfies the non-Archimedean inequality

∣∣x+ y
∣∣ ≤ max{|x| , ∣∣y∣∣}.

A metric on K is obtained by setting d(x, y) = ∣∣x− y
∣∣. The set O = { x ∈ K |

|x| ≤ 1 } is a subring of K called the ring of integers. The ring O is compact

and open in the metric topology induced by v. Pick an element π ∈ K with

v(π ) = 1, called a uniformizer. Every x ∈ K∗ is then uniquely expressible in

the form x = πnu where n ∈ Z and u is a unit of O∗ (so v(u) = 0). The ideal

πO generated by π is a maximal ideal, since every element of O not in πO is

a unit. Hence k = O/πO is a field, called the residue field.
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examples

1)For any prime p the p-adic valuation v on the field of rationalsQ is defined

by v(x) = n, where x = pna/b and a and b are integers not divisible by

p. The field of p-adics K = Qp is the completion of Q with respect to the

metric induced by v, and the valuation v extends to Qp by continuity.

The ring of integers is the ring of p-adic integers Zp, and we may take

π = p as uniformizer. The residue field of Qp is then the finite field

k = Fp.

2) Let q be a power of a prime p. The field K = Fq((t)) of formal Laurent

series with coefficients in the finite field Fq has valuation v given by

v
( ∞∑

j=−m

ajt
j
)
= −m

where a−m �= 0, a uniformizer is t, and the ring of integers is the ring of

formal power series Fq[[t]]. The residue field is k = Fq.

A local non-Archimedean field is a field K that is complete with respect

to the metric induced by a discrete valuation, and whose residue field is

finite. Examples are K = Qp, which has char (K ) = 0, and K = Fq((t)), which

has char (K ) = p > 0. In fact, all local non-Archimedean fields arise as finite

extensions of these examples.

We now fix K to be a local non-Archimedean field, O its ring of integers, π

a uniformizer, and k its residue field. The Euclidean building associated to the

group G = SL (n,K ) is the geometric realization |	| of the abstract simplicial

complex 	, which we now describe.

Let V be the vector space Kn. A lattice in V is an O-submodule L ⊂ V of

the form L = Ov1⊕ · · ·⊕Ovn for some basis {v1, . . . , vn} of V . If L′ is another
lattice, then we may choose a basis {v1, . . . , vn} for L such that L′ admits the

basis {λ1v1, . . . , λnvn} for some λi ∈ K∗. The λi may be taken to be powers of

π . Two lattices L and L′ are equivalent if L = λL′ for some λ ∈ K∗. We write

[L] for the equivalence class of L, and [v1, . . . , vn] for the equivalence class of
the lattice with basis {v1, . . . , vn}.

The abstract simplicial complex	 is defined tohave vertices the set of equiv-

alence classes of lattices in V . To describe the higher-dimensional simplices

of 	, we introduce the following incidence relation. (An incidence relation is a

relation that is reflexive and symmetric.) Two equivalence classes of lattices�

and �′ are incident if they have representatives L and L′ such that

πL ⊂ L′ ⊂ L.
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This relation is symmetric, since πL′ ∈ �′ and πL ∈ � satisfy

πL′ ⊂ πL ⊂ L′.

The simplices of 	 are then defined to be the finite sets of pairwise incident

equivalence classes of lattices in V .

By the definition of incidence, every top-dimensional simplex of 	 has

vertex set

[v1, . . . , vi,πvi+1, . . . ,πvn] for i = 1, . . . , n,

for some basis {v1, . . . , vn} of V . Hence 	 is a simplicial complex of dimen-

sion n− 1. The geometric realization X = |	| is thus a Euclidean polyhedral

complex of dimension n− 1. We note that n− 1 is equal to the K -rank of

G = SL (n,K ).

We now construct a simplicial complex isomorphic to 	, using certain

subgroupsB andN ofG = SL (n,K ). For now, we statewithout proof that, with

the correct Euclidean metrization, X = |	| is indeed a Euclidean building,

with chambers its (n− 1)-cells, and that the vertex set of an apartment of X is

the set of equivalence classes

[πm1v1, . . . ,πmnvn]
where the mi are integers ≥ 0, and {v1, . . . , vn} is a fixed basis for V .

Observe that the group G = SL (n,K ) acts on the set of lattices in V . This

action preserves equivalence of lattices and the incidence relation, so G acts

without inversions on X . Let {e1, . . . , en} be the standard basis of V . We define

the fundamental chamber of X to be the simplex with vertices

[e1, . . . , ei,πei+1, . . . ,πen], for i = 1, . . . , n,

and the fundamental apartment of X to be the subcomplex with vertex set

[πm1e1, . . . ,πmnen], where mi ≥ 0.

Define B to be the stabilizer in G of the fundamental chamber, and N to

be the stabilizer in G of the fundamental apartment. There is a surjection

SL (n,O) −→ SL (n, k) induced by the surjection O −→ k. It is not hard to

verify that B is the inverse image in SL (n,O) of the upper-triangular subgroup

of SL (n, k), and that N is the monomial subgroup of SL (n,K ) (that is, the set

of matrices with exactly one nonzero entry in each row and each column). We

say that a subgroup of G is special if it contains a coset of B.

Now, from the set of cosets in G of special subgroups, we form a partially

ordered set, ordered by opposite inclusion. There is an abstract simplicial
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complex	(G,B) associated to this poset. The vertices of	(G,B) are cosets of

special subgroups, and the simplices of	(G,B) correspond to chains of oppo-

site inclusions. Using the action of G on 	 and the construction of 	(G,B),

it is not hard to see that 	(G,B) is isomorphic to (the barycentric subdivision

of) 	.

We now generalize the construction of	(G,B) to algebraic groups besides

G = SL(n,K ). Let G be an absolutely almost-simple, simply connected lin-

ear algebraic group defined over K . Examples other than SL (n,K ) include

Sp (2n,K ), SO (n,K ), and SU (n,K ). All such groups G have a Euclidean BN -

pair, which we now define. A BN-pair is a pair of subgroups B and N of G,

such that

• B and N generate G;
• the subgroup T = B∩N is normal in N ; and
• the quotient W = N/T admits a set of generators S satisfying certain

(technical) axioms, which ensure that (W ,S) is a Coxeter system.

A BN–pair is Euclidean if the group W is a Euclidean Coxeter group. The letter

B stands for the Borel subgroup, T for the torus, N for the normalizer of the

torus, and W for the Weyl group.

For G = SL (n,K ), the B and N defined above, as G-stabilizers of the fun-

damental chamber and fundamental apartment of 	, are a BN -pair. Their

intersection T is the diagonal subgroup of SL (n,O). The group W acts on

the fundamental apartment of 	 with quotient the fundamental chamber,

and is in fact isomorphic to the Coxeter group generated by reflections in the

codimension one faces of a Euclidean (n− 1)-simplex (with certain dihedral

angles).

For any groupGwith a EuclideanBN -pair, onemay construct the simplicial

complex 	(G,B) from the poset of cosets of special subgroups, as described

above. The geometric realization of	(G,B) is a Euclidean polyhedral complex,

of dimension equal to the K -rank of G. To prove that the geometric realization

of 	(G,B) is a building, one uses the axioms for a BN -pair, results about

Coxeter groups, and the Bruhat-Tits decomposition of G.

For classical EuclideanbuildingsX , there is a close relationshipbetween the

algebraic group G to which this building is associated and the group Aut (X ),

so long as dim (X ) ≥ 2.

theorem 5. (tits [Ti3]) Let G be an absolutely almost-simple, simply con-

nected linear algebraic group defined over a non-Archimedean local field K. Let

X be the Euclidean building for G. If rankK (G) ≥ 2, then G has finite index
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in Aut (X ) when char (K ) = 0, and is cocompact in Aut (X ) when char (K ) =
p > 0.

Thus the lattice theory of Aut (X ) is very similar to that of G. Existence

and construction of lattices in groups G as in Theorem 5 are well understood.

If char (K ) = 0, then G does not have a nonuniform lattice (Tamagawa [Ta]),

but does admit a uniform lattice, constructed by arithmetic means (Borel-

Harder [BHar]). If char (K ) = p > 0, then G has an arithmetic nonuniform

lattice, and an arithmetic uniform lattice if and only if G = SL(n,K ) (Borel-

Harder [BHar]). In real rank at least 2 (for example, if G = SL(n,K ), for n ≥ 3)

every lattice of G is arithmetic (Margulis [Ma]).

3.1.2. nonclassical euclidean buildings Nonclassical Euclidean

buildings are those Euclidean buildings (see Definition (3) that are not the

building for any algebraic group G over a non-Archimedean local field. Tits

constructed uncountably many isometry classes of nonclassical Euclidean

buildings [Ti4]. Nonclassical buildings may also be constructed as univer-

sal covers of finite complexes, a method developed by Ballmann-Brin [BB1],

and examples of this kind were obtained by Barré [Ba] as well. Ronan [Ron1]

used a construction similar to the inductive construction of Ballmann-Brin,

described in Section 3.7, to construct 2-dimensional nonclassical Euclidean

buildings. Essert [Es] has constructed Euclidean buildings (of type Ã2 and C̃2),

both classical and nonclassical, as universal covers of finite complexes of finite

groups.

Very few lattices are known for nonclassical buildings. In [CMSZ], exotic

lattices that act simply transitively on the vertices of various classical and non-

classical Euclidean buildings (of type Ã2) are constructed by combinatorial

methods. The fundamental groups of the complexes of groups constructed by

Essert [Es] are uniform lattices that act simply transitively on the panels of the

universal cover.

3.2. Products of Trees

Let T1 and T2 be locally finite simplicial trees. The product space T1×T2 is a

polygonal complex, where each 2-cell is a square (edge × edge), and the link

at each vertex is a complete bipartite graph. Products of more than two trees

may also be studied.

The group G = Aut (T1×T2) is isomorphic to Aut (T1)×Aut (T2) (with a

semidirect product with Z/2Z if T1 = T2). Thus any subgroup of G may be

projected to the factors. Because of this availability of projections, the theory
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of lattices for products of trees is a special (but deep) theory. See, for example,

the work of Burger-Mozes [BM]. Many of the problems listed below may be

posed in this context, but we omit questions specific to this case.

3.3. Hyperbolic Buildings

The simplest example of a hyperbolic building is Bourdon’s building Ip,q,

defined and studied in [B1]. Here p and q are integers, p ≥ 5 and q ≥ 2. The

building Ip,q is the (unique) hyperbolic polygonal complex such that each 2-

cell (chamber) is isometric to a regular right-angled hyperbolic p-gon P, and

the link at each vertex is the complete bipartite graph Kq,q. The apartments

of Ip,q are hyperbolic planes tesselated by copies of P. Bourdon’s building is

CAT(− 1), and may be regarded as a hyperbolic version of the product of two

q-regular trees, since it has the same links. However, Ip,q is not globally a prod-

uct space. The example of a polygon of groups G(P) given in Section 2.3 has

universal cover Ip,q, and the fundamental group � of this polygon of groups is

a uniform lattice in Aut (Ip,q).

Bourdon’s building is a Fuchsian building, that is, a hyperbolic building of

dimension 2. More general Fuchsian buildings have all chambers hyperbolic

k-gons, k ≥ 3, with each vertex angle of the form π/m, for some integer m ≥ 2

(depending on the vertex). The link at each vertex with angle π/m is a 1-

dimensional spherical building L that is a generalized m-gon, that is, a graph

with diameter m and girth 2m. For example, a complete bipartite graph is a

generalized 2-gon.

Unlike Euclidean buildings, hyperbolic buildings do not exist in arbitrary

dimension. This is because there is a bound (n ≤ 29), due to Vinberg [Vi], on

the dimension n of a compact convex hyperbolic Coxeter polytope. Gaboriau-

Paulin [GP] broadened the definition of building given above (Definition 3)

to allow hyperbolic buildings with noncompact chambers, in which case

there are examples in any dimension, with chambers for ideal hyperbolic

simplexes.

Various constructions of hyperbolic buildings are known. In low dimen-

sions, right-angled buildings (see Section 3.4) may be equipped with the struc-

ture of a hyperbolic building. In particular, Bourdon’s building is a right-

angled building. Certain hyperbolic buildings arise as Kac-Moody buildings

(see Section 3.5), and some Davis-Moussong complexes may also be metrized

as hyperbolic buildings (see Section 3.6). Vdovina constructed some Fuchsian

buildings as universal covers of finite complexes [Vd]. Fuchsian buildingswere

constructed as universal covers of polygons of groups by Bourdon [B1, B2]

and by Gaboriau-Paulin [GP]. Haglund-Paulin [HP2] have constructed
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3–dimensional hyperbolic buildings using “treelike" decompositions of the

corresponding Coxeter systems.

Many of these constructions of hyperbolic buildings X also yield lattices in

Aut (X ). When a hyperbolic building X is a Kac-Moody building then a few lat-

tices in Aut (X ) are known from Kac-Moody theory (see, for example, [Rem1]),

and when X is a Davis-Moussong complex for a Coxeter group W then W

may be regarded as a uniform lattice in Aut (X ). If X is the universal cover of a

finite complex, the fundamental group of that complex is a uniform lattice in

Aut (X ). As described in Section 2.3, if X is the universal cover of a finite com-

plex of finite groups, such as a polygon of finite groups, then the fundamental

group of the complex of groups is a uniform lattice in Aut (X ). More elab-

orate complexes of groups were used by Thomas to construct both uniform

and nonuniform lattices for certain Fuchsian buildings in [Th3]. In [B2] Bour-

don was able to “lift" lattices for affine buildings to uniform and nonuniform

lattices for certain Fuchsian buildings.

3.4. Right-Angled Buildings

Recall that (W , I) is a right-angled Coxeter system if all the mij with i �= j equal

2 or ∞. A building X of type (W , I) is then a right-angled building. Products

of trees are examples of right-angled buildings, with associated Coxeter group

the direct product of infinite dihedral groups.

Bourdon’s building Ip,q, discussed in Section 3.3, is another basic exam-

ple of a right-angled building. The Coxeter group W here is generated by

reflections in the sides of a regular right-angled hyperbolic p-gon. Right-

angled Coxeter polytopes exist only in dimensions n ≤ 4, and this bound

is sharp (Potyagailo-Vinberg [PV]). Thus right-angled buildings may be

metrized as hyperbolic buildings (with compact chambers) only in dimen-

sions ≤ 4.

We may broaden the definition of building given above (Definition 3)

to allow apartments that are Davis-Moussong complexes for W (see Sec-

tion 3.6), rather than just the manifold Sn, Rn, or Hn tesselated by the

action of W . With this definition, Gromov-hyperbolic right-angled buildings,

equipped with a piecewise Euclidean metric, exist in arbitrary dimensions

(Januszkiewicz-Świ
↪
atkowski [JŚ1]).

The following construction of a right-angled building X and a uniform

lattice in Aut (X ) appears in [HP1]; this construction was previously known

to Davis and Meier. It is a generalization of the polygon of groups G(P) in

Section 2.3. Let (W , I) be a right-angled Coxeter system, and {qi}i∈I a set of

cardinalities with qi ≥ 2. Let N be the finite nerve of W , with first barycentric
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subdivision N ′, and let K be the cone on N ′. For example, if W is generated

by reflections in the sides of a right-angled hyperbolic p-gon P, then N is a

circuit of p edges, and K is isomorphic to the barycentric subdivision of P. For

each i ∈ I, let Gi be a group of order qi. Each vertex of K has a type J, where

J ⊂ I is such that the group WJ generated by {si}i∈J is finite. For each i, let Ki

be the subcomplex of K , which is the closed star of the vertex of type {i} in N ′.
Let G(K ) be the complex of groups where the vertex of K with type J has local

group the direct product

∐
i∈J

Gi

and all monomorphisms are natural inclusions. This complex of groups is

developable, with universal cover a right-angled building X of type (W , I). The

copies of K in X are called chambers, and each copy of Ki in X is contained

in qi distinct chambers. Moreover, the fundamental group of this complex of

groups may be viewed as a uniform lattice in Aut (X ) (if all qi are finite).

Many other lattices for right-angled buildings (in any dimension) were

obtained by promoting tree lattices, using complexes of groups, in

Thomas [Th2].

3.5. Kac-Moody Buildings

Kac-Moody groups over finite fields Fq may be viewed as infinite-dimensional

analogues of Lie groups. See, for example, Carbone-Garland [CG] and Rémy-

Ronan [RR]. For any Kac-Moody group� there are associated (twin) buildings

X+ and X−, constructed using twin BN -pairs (B+,N) and (B−,N) (see Sec-

tion 3.1.1). The group � acts diagonally on the product X+ ×X−, and for q

large enough� is a nonuniform lattice in Aut (X+ ×X−) (see [Rem1]). A Kac-

Moody building is a building that appears as one of the twin buildings for a

Kac-Moody group. Kac-Moody buildings are buildings, but unlike classical

Euclidean buildings (see Theorem 5), nonisomorphic Kac-Moody groups may

have the same building (Rémy [Rem2]). One may also study a complete Kac-

Moody group G, which is the completion of � with respect to some topology.

Very few lattices in complete Kac-Moody groups are known.

3.6. Davis-Moussong Complexes

Given any Coxeter system (W ,S), the associated Davis-Moussong complex is

a locally finite, CAT(0), piecewise Euclidean polyhedral complex on which W

acts properly discontinuously and cocompactly. We describe a special case of

this construction in dimension 2.

   You are reading copyrighted material published by University of Chicago Press. 
   Unauthorized posting, copying, or distributing of this work except as permitted under U.S. copyright law is illegal

   and injures the author and publisher.



problems on automorphism groups and their lattices / 533

Let L be a connected, finite simplicial graph with all circuits of length at

least 4, and let k ≥ 2 be an integer. The Coxeter system corresponding to this

data has a generator si of order 2 for each vertex vi of L, and a relation (sisj)k = 1

if and only if the vertices vi and vj are connected by an edge in L. The Coxeter

group defined by this Coxeter system is denoted W =W (k, L). If k = 2, then

W is a right-angled Coxeter group.

For any such W =W (k, L), Davis-Moussong constructed a CAT(0) piece-

wise Euclidean complex X = X (2k, L) (see [D, Mo]). The cells of X correspond

to cosets in W of spherical subgroups of W , and in particular the 0-cells of

X correspond to the elements of W , viewed as cosets of the trivial subgroup.

Recall that a spherical subgroup of W is a subgroup WT generated by some

subset T ≤ S, such that WT is finite.

The Davis-Moussong complex may be identified with (the first barycentric

subdivision of) a polygonal complex X with all links L and all 2-cells regular

Euclidean 2k-gons. The group W has a natural left action on X that is properly

discontinuous, cellular, and simply transitive on the vertices of X . Thus W

may be viewed as a uniform lattice in Aut (X ). This construction can also be

carried out in higher dimensions, provided L is a CAT(1) spherical simplicial

complex. In dimension 2, where L is a graph, this is equivalent to all circuits

having length at least 4, by the Gromov link condition (Theorem 1). If W

is right angled, then each apartment of a right-angled building of type W is

isomorphic to the Davis-Moussong complex for W .

Davis-Moussong also foundeasy-to-verify conditions onL such thatX (2k, L)

may be equipped with a CAT(− 1) piecewise hyperbolic structure. In this

way, some hyperbolic buildings (or rather, their first barycentric subdivisions)

may be constructed as Davis-Moussong complexes, with the graph L a 1-

dimensional spherical building.

3.7. (k, L)-Complexes

Let L be a finite graph and k an integer ≥ 3. A (k, L)-complex is a polygonal

complex X such that the link of each vertex of X is L, and each 2-cell of X is a

regular k-gon (usually but not necessarily Euclidean).

Many polygonal complexes already described are (k, L)-complexes. For

example, 2-dimensional Euclidean or hyperbolic buildings, with all links the

same, are (k, L)-complexes where L is a 1-dimensional spherical building.

The 2-dimensional Davis-Moussong complexes described in Section 3.6 are

barycentric subdivisions of (k, L)-complexes with k ≥ 4 even. An example of a

(k, L)-complex that is not a building or a Davis-Moussong complex is where k

is odd and L is the Petersen graph (Figure 1).

   You are reading copyrighted material published by University of Chicago Press. 
   Unauthorized posting, copying, or distributing of this work except as permitted under U.S. copyright law is illegal

   and injures the author and publisher.



534 / b. farb, c. hruska, and a. thomas

Fig. 1. Petersen graph.

There are simple conditions on the pair (k, L) ensuring that a (k, L)-complex

satisfies Gromov’s link condition (Theorem 1) and thus has nonpositive curva-

ture. Ballmann-Brin [BB1] showed that any (k, L)-complexwhere k andL satisfy

these conditionsmay be constructed in an inductivemanner, by adding k-gons

to the previous stage without obstructions. This construction is discussed in

more detail in Section 4.1. Some (k, L)-complexes may also be constructed as

universal covers of triangles of groups, as done in [JLVV]. In this case the fun-

damental group of the triangle of groups is a uniform lattice. Constructions

of uniform and nonuniform lattices as fundamental groups of complexes of

groups are carried out for certain highly symmetric (k, L)-complexes, including

those with Petersen graph links, as in Thomas [Th4].

3.8. CAT(0) Cubical Complexes

Recall that a cubical complex is a Euclidean polyhedral complex with all n-cells

isometric to the Euclidean n-cube, and that a cubical complex X is locally

CAT(0) if and only if each vertex of X is a flag simplicial complex (Theorem 2).

Trees and products of trees are examples of CAT(0) cubical complexes.

Groups of automorphisms of CAT(0) cubical complexes are different in

many ways from groups acting on the Euclidean buildings discussed in Sec-

tion 3.1. Examples of discrete groups that act properly on CAT(0) cube com-

plexes include finitely generated Coxeter groups [NRe2], many small cancella-

tion groups [W4], 1-relator groups with torsion [LW], many diagram groups,

including Thompson’s group F [Far], and groups acting properly on products

of trees.

In this setting, themain geometric objects of study are hyperplanes, defined

as follows. Consider two edges of a CAT(0) cube complex X to be equivalent if
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they are opposite edges of some 2-cube. This relation generates an equivalence

relation whose equivalence classes are the combinatorial hyperplanes of X . One

can also define geometric hyperplanes of X as unions of midplanes of cubes,

where a midplane of the cube C = [0, 1]n is a subset of the form

[0, 1]× · · · × [0, 1]× 1

2
×[0, 1]× · · · × [0, 1].

Thus C has n midplanes, which intersect transversely at the barycenter of

C. Given a combinatorial hyperplane H, the corresponding geometric hyper-

plane is the union of all midplanes meeting the barycenters of the edges of H.

Each geometric hyperplane is itself a CAT(0) cubical complex, whose cubes

are midplanes of cubes of X . Each geometric hyperplane separates X into

two complementary components, called half-spaces. The properties of hyper-

planes generalize the separation properties of edges in a tree. The main new

feature in higher dimensions, not present in trees, is that hyperplanes can

have transverse intersections. In fact, CAT(0) cubical complexes have a rich

combinatorial structure arising from the incidence and nesting properties of

hyperplanes.

Geometrically, the most significant subgroups in a group acting on a

CAT(0) cubical complex are the codimension-1 subgroups, which typically

arise as stabilizers of hyperplanes. If a group � has a finite-generating set S,
a subgroup H ≤ � is codimension-1 provided that some neighborhood of H

separates Cayley(G,S) into at least two “deep” complementary components,

where a component is deep if it contains elements arbitrarily far away from H.

For instance, if M is a 3-manifold with an immersed, incompressible surface

S, then π1(S) is a codimension-1 subgroup of π1(M).

Sageev has shown (together with a result proved independently by Gerasi-

mov and Niblo-Roller) that a finitely generated group � has a codimension-1

subgroup if and only if � acts on a CAT(0) cube complex with no global fixed

point [Sa, Ger, NRo]. The cube complex produced by Sageev’s theorem is

sometimes infinite-dimensional and sometimes locally infinite.

Several representation-theoretic aspects of actions on trees extend naturally

to actions on CAT(0) cubical complexes. If a topological group with property

(T) acts on a CAT(0) cubical complex, then the action must have a global fixed

point. On the other hand, if a topological group G acts metrically properly

on a CAT(0) cubical complex X , then G is a-T-menable [NRo]. In particular,

if X is locally finite then any discrete subgroup � ≤ Aut (X ) is a-T-menable.

Niblo-Reeves have also shown that ifX is any CAT(0) cube complex, then every

uniform lattice � ≤ Aut (X ) is biautomatic [NRe1].
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3.9. Systolic Complexes

Systolic complexes are a family of simplicial complexes whose geometry

exhibits many aspects of nonpositive curvature, yet which are not known to

be CAT(0). A systolic complex is a flag simplicial complex that is connected

and simply connected, such that the link of each vertex does not contain an

isometric edge cycle of length 4 or 5. In [Ch], Chepoi proved that a graph

is the 1-skeleton of a systolic complex if and only if it is a bridged graph,

which is a connected graph having no isometric edge cycles of length at

least 4.

Bridged graphs were introduced by Soltan-Chepoi [SC] and independently

by Farber-Jamison [FJ] where they were shown to share certain convexity prop-

erties with CAT(0) spaces. Their geometric and algorithmic properties were

studied for many years from the point of view of graph theory. Systolic com-

plexes were rediscovered independently by Januszkiewicz-Świ
↪
atkowski [JŚ2],

Haglund [H4], and Wise, and have subsequently been the subject of much

study in geometric group theory.

A simplicial complex can be metrized in many ways, but the most natural

metric, called the standard piecewise Euclidean metric, is given by declaring each

simplex to be isometric to a regular Euclidean simplex with all side lengths

equal to 1. In dimension 2, a simplicial complex is systolic exactly when the

standard piecewise Euclidean metric is CAT(0). In higher dimensions being

systolic is neither stronger nor weaker than the standard piecewise Euclidean

metric being CAT(0). A much more subtle question is whether a systolic

complex admits any piecewise Euclidean metric that is CAT(0). No answer

is known, but the answer is generally expected to be negative.

Systolic complexes do sharemanypropertieswithCAT(0) spaces. For exam-

ple, any finite-dimensional systolic simplicial complex is contractible. As with

CAT(0) cubical complexes, any group acting properly discontinuously and

cocompactly on a systolic complex is biautomatic. An interesting question is

whether all systolic groups are in fact CAT(0) groups.

Systolic complexes are constructed in [JŚ2] as universal covers of simplices

of groups, using the result that a locally 6-large complex of groups is devel-

opable. The fundamental groups of these simplices of groups are uniform

lattices in the automorphism group of the universal cover.

4. Properties of X and Aut(X)

The goal of this section is to understand the general structure of a polyhedral

complex X and its full automorphism group Aut (X ). For instance, howmuch
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local data is required in order to uniquely determine X? What are the basic

topological and group-theoretic properties of Aut (X )?

4.1. When Do Local Data Determine X?

As seen in many examples in Section 3, polyhedral complexes X are often

constructed as universal covers of complexes of groups, and lattices in Aut (X )

are often fundamental groups of complexes of groups. In each case, the local

structure of the universal cover is determined by the local structure of the quo-

tient space, together with the attached local groups of the complex of groups.

Thus it is critical to know how much local data is needed in order to uniquely

specify a desired polyhedral complex X . To simplify matters, we focus on the

special case when X is a (k, L)-complex (see Section 3.7).

Question 6.

For afixed (k, L), is there aunique (k, L)-complexX? If not, thenwhat additional

local data is needed to determine X uniquely?

If L is the complete bipartite graph Km,n, then in many cases there is

a unique (k, L)-complex X . If k = 4, this complex is the product of an m-

valent and an n-valent tree [W1]. If k > 4 and either k is even or n = m,

the unique (k, L)-complex is isomorphic to Bourdon’s building Ip,q, a right-

angled Fuchsian building, with k = p and L = Kq,q ([B1, Św1]; Ip,q is discussed

in Section 3.3). If k > 4 is odd and n �= m, then there does not exist a

(k, L)-complex.

On the other hand, when L is the complete graph Kn for n ≥ 4, Ballmann-

Brin [BB1] and Haglund [H1] independently constructed uncountably many

nonisometric (k, L)-complexes. We now discuss these constructions. As men-

tioned in Section 3.7, simply connected nonpositively curved complexes can

be constructed “freely” by building successive balls outward from a given cell.

Provided that certain obvious local obstructions do not occur, we can glue in

cells arbitrarily at each stage. Ballmann-Brin showed that for many choices of

k and L, every nonpositively curved (k, L)-complex can be constructed in this

manner [BB1].

In this inductive construction of a (k, L)-complex, choices may or may not

arise. Let us consider the case when k = 6 and L = K4. Then each 2-cell of a

(k, L)-complex X is a regular hexagon. Each 1-cell of X is contained in three

distinct hexagons. Fix a 2-cell A of X , and consider the 12 surrounding 2-

cells that contain one of the six 1-cells bounding A. These 2-cells are arranged

locally in two sheets, whose union is a band surrounding A. However, if one
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Fig. 2. If the union of the 12 hexagons surrounding A is a Möbius band, then the holonomy
around the boundary of A is nontrivial.

follows the sheets around the boundary of A, there are two cases, depending

on whether the union of the 12 hexagons is an annulus, or is the Möbius band

shown in Figure 2.

To describe and analyze this phenomenon, Haglund [H3] introduced the

notion of holonomy, which measures the twisting of the 2-cells neighboring

a given 2-cell C as one traverses the boundary cycle of C. In many cases,

the choices of holonomies around each 2-cell uniquely determine the iso-

morphism type of a nonpositively curved (k, L)-complex. The existence of

holonomies depends on combinatorial properties of the graph L.

For instance, when n ≥ 4, the complete graph L = Kn admits nontriv-

ial holonomies. Roughly speaking, Ballmann-Brin and Haglund constructed

uncountably many (k,Kn)-complexes by showing that, at each stage, a count-

able number of holonomies can be specified arbitrarily. In particular, K4 has a

unique nontrivial holonomy, which is illustrated in Figure 2. The unique

(6,K4)-complex with trivial holonomies around every 2-cell is the Cayley

complex for the presentation 〈 a, b | ba2 = ab2 〉, which defines the Geisking

3-manifold group. The unique (6,K4)-complex with nontrivial holonomies

around every 2-cell is the Cayley complex for the presentation 〈 a, b | aba2 =
b2 〉, which is δ-hyperbolic (see [BC] for more details). On the other hand, the

complete bipartite graph L = Km,n admits only the trivial holonomy, which

explains why there is a unique (k, L)-complex in this case.

Świ
↪
atkowski [Św1] considered (k, L)-complexes X where L is a trivalent

graph and X has Platonic symmetry, that is, Aut (X ) acts transitively on the

set of flags (vertex, edge, face) in X . He found elementary graph-theoretic

conditionsonL that imply that suchanX is unique. Januszkiewicz-Leary-Valle-

Vogeler [JLVV] classify Platonic (k, L)-complexes X in which L is a complete

graph. Their main results are for finite complexes X .
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In general, holonomies are not enough to uniquely determine a (k, L)-

complex. For instance, Haglund has observed that the Euclidean buildings for

SL (3,Qp) and SL(3,Fp((t))) are (3, L)-complexes with the same link L and the

same holonomies. Yet the buildings are not isomorphic, by Theorem 5.

Nonclassical buildings with given local structures have been studied by

Gaboriau-Paulin and Haglund-Paulin, who proved results analogous to those

for (k,Kn)-complexes and (k,Km,n)-complexes discussed above. If q > 4 is a

prime power, Gaboriau-Paulin [GP] proved that for every hyperbolic Coxeter

polygon P with all vertex angles π/6, and for every prime power q > 4, there

exist uncountably many hyperbolic buildings with chambers P such that the

links of vertices are all isomorphic to the building for the projective plane over

the finite field Fq. On the other hand, Haglund-Paulin [HP2] showed that if

(W , I) is a right-angledCoxeter systemand (qi)i∈I is a collection of cardinalities,

then there exists a unique building X of type (W , I) such that for each i ∈ I,

each codimension 1-cell containing a vertex of type {i} in X is a face of qi

distinct chambers. This generalizes the result that Bourdon’s building Ip,q is

the unique (p,Kq,q)-complex.

In many cases it is still unknown how much local data is required to

uniquely specify a (k, L)-complex.

4.2. Nondiscreteness of Aut(X)

Let X be a locally finite, nonpositively curved polyhedral complex. The most

basic question about the locally compact group G = Aut (X ) is whether it is

discrete. Recall that in the compact-open topology, the group G = Aut (X )

is nondiscrete exactly when, for each positive integer n, there is an element

gn ∈ G, with gn fixing pointwise the ball of radius n in X , and gn �= Id. The

theory of lattices in a discrete group is trivial, hence this issue is of crucial

importance. We again focus on the case of (k, L)-complexes (see Section 3.7).

Question 7.

Given a (k, L)-complex X , is G = Aut (X ) discrete?

The answer is known in certain cases, and is closely related to the notion

of a flexible complex.

definition: A complex X is flexible if there exists φ ∈ Aut (X ) such that φ fixes

the star of some vertex in X but φ �= Id.

Flexibility was introduced by Ballmann-Brin in [BB1]. If X is locally finite

and not flexible, then the stabilizer of any vertex v ∈ X is finite, since an
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automorphism of X that fixes v is uniquely determined by its action on the

link of v. In particular, Aut (X ) is discrete if X is not flexible. The following

result is nearly immediate from the definition of flexibility.

theorem 8. (discreteness criterion) If the graph L is not flexible, then

no (k, L)-complex X is flexible, and Aut (X ) is discrete.

Theorem 8 has the following converse when X = X (2k, L) is the Davis-

Moussong complex for the Coxeter group W =W (k, L), discussed in Sec-

tion 3.6. The result was proved independently by Haglund and Świ
↪
atkowski

in the case that X is 2-dimensonal [H2, Św1], and was extended to arbitrary

Coxeter systems by Haglund-Paulin [HP1].

theorem 9. (nondiscreteness criterion) Suppose L is a finite sim-

plicial graph and k ≥ 2. Let X = X (2k, L) be the Davis-Moussong complex for the

Coxeter group W =W (k, L). If L is flexible, then Aut (X ) is nondiscrete.

The proof of Theorem 9 relies on the fact that Davis-Moussong complexes

havenumerous symmetries. For other (k, L)-complexes, particularly thosewith

k odd, much less is known. It is not clear whether this reflects the limitations

of our techniques, or actual differences in behavior for k odd and k even.

4.3. Simplicity and Nonlinearity

Let X be a locally finite, nonpositively curved polyhedral complex, with

locally compact automorphism group G = Aut (X ). In this section we discuss

whether two basic group-theoretic properties, simplicity and (non)linearity,

hold for G. We assume for this section that G = Aut (X ) is nondiscrete.

Question 10.

When is G = Aut (X ) a simple group?

For X a locally finite regular or biregular tree, Tits [Ti1] proved simplicity

of the group Aut0 (X ) of type-preserving automorphisms of X (which is finite

index in the full automorphism group G = Aut (X )). Haglund-Paulin [HP1]

showed that various type-preserving automorphism groups in several higher-

dimensional cases are simple.Wenote that themethodof proof of these results

lies in geometric group theory.

We say that a group G is linear if it has a faithful representation G −→
GL (n,K ) for some fieldK . On the question of linearity, supposeX is a classical
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Euclidean building, associated to the algebraic group G over a local non-

Archimedean field K (see Section 3.1.1). Theorem 5 says that if char (K ) = 0,

then G is finite index in Aut (X ) (and if char (K ) = p > 0, then G is cocom-

pact in Aut (X )). By inducing, we see in particular that when char (K ) = 0, the

group Aut (X ) has a faithful linear representation over K . On the other hand,

for several higher-dimensional complexes X that are not classical buildings,

Haglund-Paulin [HP1] proved that the full automorphism group Aut (X ) has

no such faithful linear representation. For dim (X ) = 2, we pose the following

problem:

problem 11. Find conditions on the link L so that a (k, L)-complex X has

linear automorphism group.

Haglund [H5] has recently shown thatAut (X ) is nonlinear for certainFuchsian

buildings X (see Section 3.3). Is it possible that linearity of Aut (X ) character-

izes those X that are classical Euclidean buildings among all nonpositively

curved X?

5. Comparisons with Linear Groups

While one expects some of the phenomena and results from the theory of

linear groups G ⊂ GL (n,C) to hold for the group G = Aut (X ) and its lattices,

most of the methods from that theory are unavailable in this new context.

There are no eigenvalues or traces. There are no vectors to act on. It therefore

seems important to attack such questions, as they will (hopefully) force us to

come up with new methods and tools.

One new approach to the study of automorphism groups of nonpositively

curved polyhedral complexes is the structure theory of totally disconnected

locally compact groups (see the survey [W]). An example of this approach is

the computation of the flat rank of automorphism groups of buildings with

sufficiently transitive actions [BRW].

5.1. Some Linear-Type Properties

One of the basic properties of linear groupsG is the Tits alternative: any finitely

generated linear groupeither contains anonabelian free grouporhas a solvable

subgroup of finite index (see [Ti2]). The following problem is well known.

problem 12. LetX be a nonpositively curved polyhedral complex. Prove that

finitely generated subgroups of G = Aut (X ) satisfy the Tits alternative.
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When X is a CAT(− 1) space, uniform lattices in G = Aut (X ) are word

hyperbolic, and thus satisfy the Tits alternative (Gromov [Gr]). The usual ping-

pong argument for the Tits alternative requires strong expanding/contracting

behavior for the action of isometries of X on the visual boundary ∂X . The

difficulty with Problem 12 lies in the fact that if X is just nonpositively curved,

rather than negatively curved, this behavior on ∂X is not strong enough to

immediately allow for the usual ping-pong argument to work.

The Iwasawa decomposition KAN of a semisimple Lie group G plays a

fundamental role in the representation theory of G. Here, K is a compact

subgroup, A is abelian, and N is nilpotent. In the topology on G = Aut (X ),

where X is a locally finite polyhedral complex, the stabilizers of vertices are

maximal compact subgroups.

Question 13.

For which X does G = Aut (X ) have a KAN structure?

Answering this question might be a first step toward investigating var-

ious analytic properties of X , the group G = Aut (X ), and its lattices. For

instance, random walks on classical buildings have been studied using the

representation theory of the associated algebraic group (see, for example,

Cartwright-Woess [CW] and Parkinson [Pa]), but for more general complexes

X this machinery is not available.

Kazhdan proved that simple Lie groups G have property (T ): the trivial

representation is isolated in the unitary dual of G (see, for example, [Ma]).

Ballmann-Świ
↪
atkowski [BŚ], Żuk [Żu], and Dymara-Januszkiewicz [DJ] have

proven that many G = Aut (X ) satisfy this important property.

Question 14.

For which X does Aut (X ) have property (T)?

We remark that a locally compact topological group G has property (T) if

and only if any of its lattices has property (T).

One of the deepest theorems about irreducible lattices � in higher-rank

semisimple Lie groups is Margulis’s normal subgroup theorem (see [Ma]),

which states that any normal subgroup of � is finite or has finite index in �.

Question 15.

For which X does a normal subgroup theorem hold for Aut (X )?

Such a theorem has been shown for products of trees by Burger-Mozes [BM].
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Recall that the Frattini subgroup �(�) of a group � is the intersec-

tion of all maximal subgroups of �. Platonov [Pl] proved that �(�) is

nilpotent for every finitely generated linear group. Ivanov [I] proved a sim-

ilar result for mapping class groups. Kapovich [K] proved that �(�) is

finite for finitely generated subgroups of finitely generated word-hyperbolic

groups.

problem 16. Compute the Frattini subgroup �(�) for finitely generated

subgroups � < Aut (X ).

Part of the fascination of lattices in Aut (X ) is that they exhibit a mixture

of rank 1 and higher-rank behavior. Ballmann-Eberlein (see [Eb]) defined an

invariant rank (�), called the rank of �, which is defined for any finitely gen-

erated group � as follows. Let �i denote the set of elements g ∈ � so that

the centralizer of g contains Zd for some d ≤ i as a finite-index subgroup.

Let r(�) be defined to be the smallest i so that � is a finite union of trans-

lates

� = g1�i ∪ · · · ∪ gn�i

for some gj ∈ �. Then define rank (�) to be the maximum of r(�′), where �′

runs over all finite-index subgroups of �.

Work of Prasad-Raghunathan shows that this notion of rank agrees with

the classical one for arithmetic lattices. Ballmann-Eberlein [BE] proved that

the rank of the fundamental group of a complete, finite-volume, nonpositively

curved manifold M equals the geometric rank of the universal cover of M.

Since centralizers of infinite-order elements in word-hyperbolic groups � are

virtually cyclic, it is clear that rank (�) = 1 in these cases. Thus for nonposi-

tively curved, connected, simply connected 2-complexes X , lattices in Aut (X )

can have rank 1 and also rank 2 (the latter, for example, when X is a classical

Euclidean building, discussed in Section 3.1.1).

problem 17. Compute rank (�) for lattices � < Aut (X ).

A basic property of any finitely generated linear group is that it is residually

finite. In contrast, there are lattices � in G = Aut (X ) that are not residually

finite. Indeed, Burger-Mozes [BM] have constructed, in the case when X is a

product of simplicial trees, lattices that are simple groups. Wise had earlier

constructed lattices for such X that are not residually finite [W2]. Kac-Moody

lattices are also simple, and their buildings have arbitrarily large dimension

(see [CapRem]).
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problem 18. Construct a lattice � in G = Aut (X ) that is a simple group,

and where X is not a product of trees.

For residual finiteness, a key case isBourdon’s building Ip,q (see Section 3.3)

whose 2-cells are right-angled hyperbolic p-gons. Wise [W3] has shown that

fundamental groups of polygons of finite groups, where the polygon has at

least 6 sides, are residually finite. Thus there are residually finite uniform

lattices for Ip,q, p ≥ 6, but the question of whether every uniform lattice in Ip,q

is residually finite is completely open for p = 5, that is, for pentagons. The

question of residual finiteness of uniform lattices is open even for triangular

hyperbolic buildings (see [KV]).

Question 19.

Which lattices � < G = Aut (X ) are residually finite?

A related but broader problem is as follows. Most of the known CAT(0)

groups are residually finite, hence virtually torsion free. As remarked in Sec-

tion 2.3, to date most applications of the theory of complexes of groups have

used only simple complexes of groups. Now, if the fundamental group � of a

complex of groups G(Y ) is virtually torsion free, then G(Y ) has a finite cover

G(Y ′) −→ G(Y ) where all local groups of G(Y ′) are trivial, hence G(Y ′) is a
simple complex of groups.

problem 20. (haglund) Find a nonpositively curved complex of groups

G(Y ) that is not finitely covered by a simple complex of groups. Do this in

the negatively curved setting as well. Is there a CAT(0) group � that is not

virtually the fundamental group of any (nonpositively curved) simple complex

of groups?

5.2. Rigidity

Automorphism groups G of nonpositively curved polyhedral complexes X ,

and lattices � < G, are natural places in which to study various rigidity phe-

nomena, extending what we know in the classical, algebraic cases. A first

basic problem is to prove strong (Mostow) rigidity. In other words, one wants

to understand the extent to which a lattice � in G determines G.

problem 21. (strong rigidity) Let X1 and X2 be nonpositively curved

polyhedral complexes, and let �i be a lattice in Gi = Aut (Xi), i = 1, 2. Find

conditions on the Xi that guarantee that any abstract group isomorphism
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φ : �1 −→ �2 extends to an isomorphism G1 −→ G2. Further, determine

when any two copies of �i in Gi are conjugate in Gi.

Some assumptions on the Xi, for example, that every 1-cell is contained in a

2-cell, are needed to rule out obvious counterexamples.

A harder, more general problem is to prove quasi-isometric rigidity.

problem 22. (quasi-isometric rigidity) Compute thequasi-isometry

groups of nonpositively curved polyhedral complexes X . Prove quasi-isometric

rigidity theorems for these complexes; that is, find conditions on X for which

1)Any quasi-isometry of X is a bounded distance from an isometry

(automorphism), and

2)Any finitely generated group quasi-isometric to X is (a finite extension

of) a cocompact lattice in Aut (X ).

A standard trick due to Cannon-Cooper shows that (1) implies (2). It is also

immediate from Mostow’s original argument that (1) implies strong rigid-

ity. Quasi-isometric rigidity was proven in the case of Euclidean buildings

by Kleiner-Leeb [KL]. Bourdon-Pajot [BP] proved quasi-isometric rigidity for

Bourdon’s building Ip,q, and Xie [X] generalized this to Fuchsian buildings

(see Section 3.3). One would expect that higher-dimensional buildings would

be more rigid, and indeed they seem to be harder to construct, so they might

be a good place to look for rigidity phenomena.

Another kind of rigidity problem follows:

problem 23. Suppose X1 and X2 are locally finite, connected, simply con-

nected 2-complexes, such that for i = 1, 2, the group Aut (Xi) acts cocompactly

on Xi. If Aut (X1) is isomorphic to Aut (X2), is X1 isometric to X2?

A variety of other rigidity phenomena from Riemannian geometry have

natural analogues in this context. Examples include rank rigidity, hyperbolic

rank rigidity, minimal entropy rigidity, and marked-length-spectrum rigid-

ity. A rank rigidity theorem for nonpositively 2-complexes was proven by

Ballmann-Brin in [BB2].

5.3. Geometry of the Word Metric

One of the few results about the geometry of the word metric for nonuniform

lattices is the theorem of Lubotzky-Mozes-Raghunathan [LMR], which we now

discuss.
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Let G be a semisimple Lie group over R (respectively, over a non-

archimedean local field K ), and let X be the associated symmetric space

(respectively, Euclidean building). Thus X is a nonpositively curved Rieman-

nianmanifold (respectively, simplicial complex) onwhichG acts by isometries.

Let � be a lattice in G. If K is non-archimedean and G has rank 1 over K , then

nonuniform lattices in G are not finitely generated. On the other hand, when

G is either a real Lie group or a non-archimedean group with K -rank at least

2, then all lattices � in G are finitely generated. In this section, we consider

only the finitely generated case, and we endow � with the word metric for a

finite-generating set.

If � is uniform, then the natural map ψ : � −→ X sending � to any of

its orbits is a quasi-isometry. When � is nonuniform, the orbit map is never

a quasi-isometry, since the quotient �\X is noncompact. When G has real

rank 1, the map ψ is not even a quasi-isometric embedding, as can be seen

by considering any nonuniform lattice acting on real hyperbolic space. In

this case, the maximal parabolic subgroups of � are exponentially distorted

in X .

The theorem of Lubotzky-Mozes-Raghunathan [LMR] states that, when G

has real rank (respectively,K -rank) at least 2, thenψ is indeed aquasi-isometric

embedding. Each of the known proofs of this result is heavily algebraic,

depending on the structure of matrix groups. Thus the following problem

presents an interesting challenge, even in terms of giving a geometric proof

in the (non-archimedean) algebraic case.

question 24. Let � be a finitely generated nonuniform lattice in the auto-

morphism group of a nonpositively curved polyhedral complex X . When is

the natural map ψ : � −→ X , sending � to any of its orbits, a quasi-isometric

embedding?

When X is a product of trees, ψ need not be a quasi-isometric embedding.

When X is not a product of trees, is ψ always a quasi-isometric embedding?

5.4. Dynamics

LetG be (any) locally compact topological group, equippedwithHaarmeasure,

and let � be a lattice in G. Then G acts on the left on G/�, preserving the

finite measure on G/� induced by the Haar measure on G. We thus obtain

an action of every closed subgroup H < G on G/�. It is a basic question in

understanding these dynamical systems, in particular to determine when the

action of H on G/� is ergodic; that is, when every H-invariant set has 0 or full

measure. When G is a semisimple Lie group with no compact factors, and �
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is an irreducible lattice in G, Moore’s ergodicity theorem (see [Zi]) states that the

H-action on G/� is ergodic if and only if H is noncompact.

Now let X be a simply connected, locally finite polyhedral complex of non-

positive curvature. Equip G = Aut (X ) with left-invariant Haar measure, and

let � be a lattice in G.

problem 25. Determine which closed subgroups of G = Aut (X ) act ergod-

ically on G/�.

One reason we consider Problem 25 to be worthwhile is that the usual

method of provingMoore’s ergodicity theoremuses the unitary representation

theory ofG. We thus believe that, apart from being interesting in its own right,

attempts to solve Problem 25 will require us either to find new approaches

to Moore’s theorem, or to develop the unitary representation theory of G =
Aut (X ).

6. Lattices in Aut(X)

In this section we consider properties of the lattices in Aut (X ) themselves.

Some lattice properties have already been mentioned in Section 5, on com-

parisons with linear groups. Here, we discuss topics where new phenomena,

contrasting with classical cases, have already been observed, and where the

known techniques of proof are combinatorial or geometric in flavor.

6.1. Existence and Classification Theorems

Given a locally compact group G, the most basic question in the lattice theory

of G is whether G admits a uniform or nonuniform lattice.

For algebraic groups, the existenceof bothuniformandnonuniform lattices

was settled by Borel and others, using arithmetic constructions (see the final

paragraph of Section 3.1.1). For automorphism groups of trees, precise condi-

tions are known for the existence of both uniform lattices (Bass-Kulkarni [BK])

and nonuniform lattices (Bass-Carbone-Rosenberg, in [BL]). In Section 3, for

each example X of a polyhedral complex, we described known constructions

of lattices in G = Aut (X ). These constructions are nonarithmetic, for X not a

classical building. The following question is still largely open.

Question 26.

When does G = Aut (X ) admit a uniform lattice? A nonuniform lattice?

A special case of this question is
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Question 27.

For which positive integers k ≥ 3 and finite simplicial graphs L does the

automorphism group of a (k, L)-complex X admit lattices?

Once one establishes the existence of lattices in a given G = Aut (X ), the

next problem is to classify all such lattices. We discuss commensurability of

lattices in Section 6.2. An even more fundamental problem is

problem 28. Classify lattices in G = Aut (X ) up to conjugacy.

We note that in the case of real Lie groups, classification theorems are diffi-

cult. For SO (3, 1), for example, the classification is precisely the classification

of all finite-volume, complete hyperbolic orbifolds. On the other hand, for

higher-rank real (and p-adic) semisimple Lie groups, Margulis’s arithmeticity

theorem (see [Ma]) states that all lattices are arithmetic, and arithmetic lattices

can in some sense be classified (although this is also not easy). So, even solving

Problem 28 in any special case, for example, for specific hyperbolic buildings,

would be of great interest.

6.2. Commensurability

One of the basic problems about a locally compact topological group G is to

classify its lattices up to commensurability. Recall that two lattices �1,�2 ≤ G

are commensurable in G if there exists g ∈ G so that g�1g−1 ∩�2 hasfinite index
in both g�1g−1 and �2. Since covolume is multiplicative in index, two com-

mensurable lattices have covolumes that are commensurable real numbers,

that is, they have a rational ratio.

problem 29. Classify lattices in G = Aut (X ) up to commensurability. As a

subproblem, find commensurability invariants of lattices.

If G is an algebraic group of rank at least 2 over a non-Archimedean local

field K , then there exist noncommensurable arithmetic lattices in G. If G is a

rank-1 simple real Lie group, then lattices are again not all commensurable,

as there exist both arithmetic and nonarithmetic lattices.

For G = Aut (X ), commensurability of uniform lattices is strikingly differ-

ent. When X is a locally finite tree, Leighton proved in [Lei] that all torsion-free

uniform lattices in G = Aut (X ) are commensurable. The torsion-free hypoth-

esis was removed by Bass–Kulkarni in [BK], establishing that there is at most

one commensurability class of uniform lattices in the tree case. Haglund [H5]
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has shown the same result for many Fuchsian buildings (see Section 3.3). He

has also found a sufficient condition for a uniform lattice in the automorphism

group of a Davis-Moussong complex X (see Section 3.6) to be commensurable

to the corresponding Coxeter group W . As specific instances of Problem 29,

we have

problem 30. Suppose X is a (k, L)-complex. Find conditions on L such

that all uniform lattices in Aut (X ) are commensurable, and find examples

of such L.

And on the other hand:

problem 31. (Haglund) Find a Gromov-hyperbolic CAT(0) complex X

such that Aut (X ) admits two noncommensurable uniform lattices.

For nonuniform lattices in G = Aut (X ), the situation seems much wilder.

Even in the tree case, there seems to be a great deal of flexibility in the con-

struction of nonuniform lattices. For instance, Farb-Hruska [FH] have shown

that when X is the biregular tree there are uncountably many commensura-

bility classes of nonuniform lattices in G = Aut (X ) with any given covolume

v > 0 . To prove this result, they construct several new commensurability

invariants, and then evaluate them on lattices constructed using graphs of

groups.

A similar result holdswhenX is a right-angled building (see Section 3.4), by

work of Thomas [Th2]. Lattices in right-angled hyperbolic buildings, such as

Bourdon’s building Ip,q, are known to exhibit higher-rank phenomena, such as

quasi-isometric rigidity (see [BP] and Section 5.2). In contrast, Thomas’s the-

orem indicates a similarity of these lattices with tree lattices. In fact, Thomas

proves this theorem by constructing a functor that takes tree lattices to lat-

tices in right-angled buildings. This functor preserves many features of the

lattice.

Themost important commensurability invariant of a group� inside agroup

G is the commensurator CommG (�) of � in G, defined by

CommG (�) := { g ∈ G | � ∩ g�g−1 has finite index in both � and g�g−1 }.
Margulis proved that a lattice � in a semisimple Lie group G is arithmetic if

and only if CommG (�) is dense inG (see [Zi]). Lubotzky proposed this density

property as a definition of “arithmeticity" when G = Aut (X ).
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problem 32. For lattices � in G = Aut (X ), compute CommG (�). Deter-

mine whether CommG (�) is dense in G.

WhenX is a tree, density of commensurators of uniform latticeswas proved

by Bass-Kulkarni [BK] and Liu [Liu]. Haglund established density of com-

mensurators of uniform lattices for many Davis-Moussong complexes in[H2],

and Haglund [H6] and independently Barnhill-Thomas [KBT] have recently

shown the same result for right-angled buildings. For commensurators of

nonuniform lattices, however, even for trees very little is known (see [BL]).

6.3. Finiteness Properties of Lattices

Uniform lattices in G = Aut (X ) are always finitely generated, for obvious

reasons. However, nonuniform lattices need not be finitely generated.

question 33. For which G = Aut (X ) are all nonuniform lattices non-

finitely generated? Do there exist G that admit both finitely generated and

nonfinitely generated nonuniform lattices?

Higher-rank algebraic groups, such as G = SL(3, (Fq((t))), have Kazhdan’s

property (T) (see Section 5.1). Furthermore, property (T) is inherited by lattices,

and all countable groups with property (T) are finitely generated. Therefore,

lattices in higher-rank groups are all finitely generated.

On the other hand, if X is a tree, every nonuniform lattice in Aut (X ) is non-

finitely generated [BL]. Thomas’s functormentioned inSection6.2 implies that

many nonuniform lattices in right-angled hyperbolic buildings are nonfinitely

generated as well.

conjecture 34. Let � be a nonuniform lattice in G = Aut (X ), where X is any

right-angled hyperbolic building. Then � is not finitely generated.

We are starting to believe that finite generation of nonuniform lattices in

2-complexes is actually a miracle, and could even characterize the remarkable

nonuniform lattices in algebraic groups in characteristic p > 0. Even these

lattices are not finitely presentable, and so we make the following:

conjecture 35. If � is a nonuniform lattice in G = Aut (X ), where X is a

locally finite polyhedral complex, then � is not finitely presentable.
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6.4. Covolumes

One of themore striking ways in which the study of lattices in Aut (X ) diverges

from the case of lattices in semisimple Lie groups is the study of covolumes of

lattices in a fixed Aut (X ). New phenomena are seen to occur right away, and

much remains to be understood.

problem 36. Given G = Aut (X ) with Haar measure μ, describe the set of

covolumes

V(G) := {μ(�\G) | � is a lattice in G }.

Note that V(G) is a set of positive real numbers.

If G is a noncompact simple real Lie group, such as PSL (n,R), then the set

V(G) has positive lower bound (Kazhdan-Margulis, [KM]) and in most cases is

discrete (see [Lu] and the references therein). If G is a higher-rank algebraic

group over a non-Archimedean local field, such as PSL (n,Qp) with n ≥ 3, the

strong finiteness result of Borel-Prasad [BPr] implies that for any c > 0, there

are only finitely many lattices in G with covolume less than c. Hence V(G) is

discrete, has positive lower bound, and for any v ∈ V(G) there are only finitely

many lattices of covolume v.

The set of covolumes for tree lattices is very different. Suppose G is the

group of automorphisms of a regular locally finite tree. Then, for example,

Bass-Kulkarni [BK] showed that V(G) contains arbitrarily small elements, by

constructing a tower of uniform lattices (see Section 6.5). Bass-Lubotzky [BL]

showed that the set of nonuniform covolumes is (0,∞).

A few higher-dimensional nonclassical cases have been studied. In [Th2]

and [Th3], Thomas considered covolumes for, respectively, right-angled build-

ings and certain Fuchsian buildings (see Sections 3.4 and 3.3, respectively).

In both these settings, V(G) shares properties, such as nondiscreteness, with

covolumes of tree lattices, even though such buildings also have some rigid-

ity properties typical of classical cases (see Section 5.2). Little is known about

covolumes for X not a building. In [Th4], the class of (k, L)-complexes X of

Platonic symmetry (introduced by Świ
↪
atkowski [Św1]; see Section 3.7) is con-

sidered. A sample result is that if k ≥ 4 is even and L is the Petersen graph,

then V(G) is nondiscrete. Many cases are completely open.

From a different point of view, Prasad [Pr] gave a computable formula

for the covolumes of lattices � in algebraic groups G over non-archimedean

local fields. This formula is in terms of discriminants of field extensions

and numbers of roots. If � is viewed instead as a lattice in Aut (X ), where

X is the building associated to the algebraic group G, we also have Serre’s
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more geometrically flavored formula for the covolume of �, stated in the

introduction.

Question 37.

Can Serre’s geometric formula for covolumes tell us anything new about

lattices in classical cases?

More generally, using Serre’s geometric formula, in [Th1] Thomas estab-

lished a computable number-theoretic restriction on the set of covolumes of

uniform lattices, for all locally finite X with G = Aut (X ) acting cocompactly,

in all dimensions.

problem 38. Suppose v > 0 satisfies the restriction of [Th1]. Construct a

uniform lattice in G of covolume v, or show that such a lattice does not exist.

Also, find the cardinality of the set of uniform lattices of covolume v. For

nonuniform lattices, the same questions for any v > 0.

This problem was solved for right-angled buildings (see Section 3.4)

in [Th2].

The properties of the set of volumes of hyperbolic 3-manifolds are well

understood (see [Thu]), and one could investigate whether similar properties

hold for volumes of lattices in Aut (X ). For instance, for every nonuniform

lattice � in SO (3, 1), there is a sequence of uniform lattices with covolumes

converging to that of �, obtained by Dehn surgery. This gives a surjective

homomorphism from � to each of these uniform lattices. It is not known

whether any nonuniform lattices in Aut (X ) surject onto uniform lattices.

6.5. Towers

The study of towers of lattices is closely related to covolumes (Section 6.4). A

tower of lattices in a locally compact group G is an infinite strictly ascending

sequence

�1 < �2 < · · · < �n < · · · < G

where each �n is a lattice in G.

Question 39.

Does G = Aut (X ) admit a tower of (uniform or nonuniform) lattices?

If G admits a tower, then the covolumes of lattices in this tower tend to

0, hence the set V(G) of covolumes does not have positive lower bound. It
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follows that in classical (algebraic) cases, G does not admit any towers, by the

Kazhdan-Margulis theorem in Section 6.4.

The first examples of towers of tree lattices are due to Bass-Kulkarni [BK].

Generalizing these constructions, Rosenberg [Ros] proved that if X is a

tree such that Aut (X ) is nondiscrete and admits a uniform lattice, then

Aut (X ) admits a tower of uniform lattices. Carbone-Rosenberg [CR] consid-

ered nonuniform lattice towers in Aut (X ) for X a tree, showing that, with one

exception, if Aut (X ) admits a nonuniform lattice, then it admits a tower of

nonuniform lattices.

In higher dimensions, for X a right-angled building (see Section 3.4)

Thomas [Th2] constructed a tower of uniform and of nonuniform lattices.

Other higher-dimensional cases are open. In particular, it is not known

whether the automorphism groups of any Fuchsian buildings that are not

right angled (see Section 3.3) admit towers.

A finer version of Question 6.5 is the following:

Question 40.

DoesG admit a tower of homogeneous lattices, that is, lattices acting transitively

on cells of maximum dimension in X?

For X = Tp,q the (p, q)-biregular tree, if p or q is composite, there is a homo-

geneous tower in G = Aut (X ) (Bass-Kulkarni [BK]). When X is the 3-regular

tree, a deep theorem of Goldschmidt [Go] implies thatG does not admit such a

tower, since G contains only finitely many conjugacy classes of edge-transitive

lattices. The Goldschmidt-Sims conjecture (see [Gl]), which remains open, is

that if p and q are both prime, then there are only finitely many conjugacy

classes of homogeneous lattices in Aut (Tp,q). If X is the product of two trees

of prime valence, Glasner [Gl] has shown that there are only finitely many

conjugacy classes of (irreducible) homogeneous lattices in G = Aut (X ). For

all other higher-dimensional X , the question is open.

Question 41.

Does G admit maximal lattices?

In the algebraic setting, lattices of minimal covolume are known in many

cases (see [Lu] and its references), and so these lattices are maximal. Examples

of maximal lattices in G = Aut (X ) are some of the edge-transitive lattices for

X the 3-regular tree, classified by Goldschmidt [Go].

A coarse version of the question of towers is
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Question 42. (Lubotzky)

Let � be a uniform lattice in G = Aut (X ). Define

u�(n) = #{�′ | �′ is a lattice containing �, and [�′ : �] = n}.
By similar arguments to [BK], u�(n) is finite. What are the asymptotics of

u�(n)?

The case X a tree was treated by Lim [Lim]. If X is the building associated to

a higher-rank algebraic group, then for any �, we have u�(n) = 0 for n >> 0,

since V(G) has positive lower bound. In contrast, if Aut (X ) admits a tower of

lattices (for example, ifX is a right-angled building), there is a�withu�(n) > 0

for arbitrarily large n. Lim-Thomas [LT], by counting coverings of complexes

of groups, found an upper bound on u�(n) for very general X , and a lower

bound for certain right-angled buildings X . It would be interesting to sharpen

these bounds for particular cases.

6.6. Biautomaticity of Lattices

The theory of automatic and biautomatic groups is closely related to nonpos-

itive curvature. All word-hyperbolic groups are biautomatic [ECHLPT]. Yet it

is not known whether an arbitrary group acting properly, cocompactly, and

isometrically on a CAT(0) space is biautomatic, or even automatic. Indeed, the

following special case is open:

Question 43

Suppose a group � acts properly, cocompactly, and isometrically on a CAT(0)

piecewise Euclidean 2-complex. Is � biautomatic? Is � automatic?

Biautomaticity is known in several cases for groups acting on complexes

built out of restricted shapes of cells. Gersten-Short established biautomaticity

for uniform lattices in CAT(0) 2-complexes of type Ã1× Ã1, Ã2, B̃2, and G̃2 in

[GS1] and [GS2]. In particular, Gersten-Short’s work includes CAT(0) square

complexes, 2-dimensional systolic complexes, and 2-dimensional Euclidean

buildings.

Several special cases of Gersten-Short’s theorem have been extended.

For instance, Świ
↪
atkowski proved that any uniform lattice in a Euclidean

building is biautomatic [Św2]. Niblo-Reeves [NRe1] proved biautomaticity

of all uniform lattices acting on CAT(0) cubical complexes. In particular,

this result includes all finitely generated right-angled Coxeter groups and

right-angled Artin groups. Systolic groups, that is, uniform lattices acting
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on arbitrary systolic simplicial complexes, are also biautomatic by work of

Januszkiewicz-Świ
↪
atkowski [JŚ1].

Gersten-Short’s work applies only to 2-complexes with a single shape of

2-cell. Levitt has generalized Gersten-Short’s theorem to prove biautomaticity

of any uniform lattice acting on a CAT(0) triangle-square complex, that is, a

2-complex each of whose 2-cells is either a square or an equilateral triangle

[Lev].

Epstein proved that all nonuniform lattices in SO (n, 1) are biautomatic

[ECHLPT, 11.4.1]. Rebbechi [Reb] showed more generally that a relatively

hyperbolic group is biautomatic if its peripheral subgroups are biautomatic.

Finitely generated virtually abelian groups are biautomatic by [ECHLPT, §4.2].

It follows from work of Hruska-Kleiner [HK] that any uniform lattice acting

on a CAT(0) space with isolated flats is biautomatic.

By a theorem of Brink-Howlett, all finitely generated Coxeter groups are

automatic [BHo]. Biautomaticity has been considerably harder to establish,

and remains unknown for arbitrary Coxeter groups. Biautomatic structures

exist when the Coxeter group is affine, that is, virtually abelian, and also when

the Coxeter group has no affine parabolic subgroup of rank at least 3 by a result

of Caprace-Mühlherr [CM]. Coxeter groups whose Davis-Moussong complex

has isolatedflats are also biautomatic by [HK]. TheCoxeter groupswith isolated

flats have been classified by Caprace [Cap].

Let W be a Coxeter group, and let X be a building of type W .

Świ
↪
atkowski [Św2] has shown that any uniform lattice � in G = Aut (X ) is

automatic. If W has a geodesic biautomatic structure, he shows that � is biau-

tomatic as well. Together with Caprace’s work mentioned above it follows that

if W is a Coxeter group with isolated flats, then � is biautomatic [Cap]. This

consequence can be seen in two ways: using the fact that W is biautomatic, or

alternately using the fact, established byCaprace, that� is relatively hyperbolic

with respect to uniform lattices in Euclidean buildings.
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[JŚ1] T. Januszkiewicz and J. Świ
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