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COUNTING OVERLATTICES FOR
POLYHEDRAL COMPLEXES

SEONHEE LIM AND ANNE THOMAS

ABSTRACT. We investigate the asymptotics of the number of
“overlattices” of a cocompact lattice I' in Aut(X), where X
is a locally finite polyhedral complex. We use complexes of
groups to prove an upper bound for general X and a lower
bound for certain right-angled buildings.

1. INTRODUCTION

The group of automorphisms Aut(X) of a tree (or a locally finite
polyhedral complex) is a locally compact group which shares many
properties with rank one simple Lie groups. This analogy has mo-
tivated many works, including the study of lattices in Aut(X) (see
[3] and references therein).

One contrast between such Lie groups and Aut(X) is in the co-
volumes of lattices. A theorem of D. A. Kazhdan and G. A. Mar-
gulis [13] says that for a given connected semisimple Lie group G,
there is a positive lower bound on the set of covolumes p(I'\G) of
lattices in G. On the other hand, if G is the automorphism group
of a locally finite regular tree, Hyman Bass and Ravi Kulkarni [2]
constructed infinite strictly ascending sequences (called towers) of
lattices
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in G; hence, the covolumes p(I';\G) tend to zero. A question raised
by Bass and Alexander Lubotzky ([3], Section 0.7) is to find the
asymptotic behavior of the number ur(n) of overlattices of T' of
index n, that is, the number of lattices IV < G containing I" with
[[" : T] = n, as a question analogous to the question of finding
subgroup growth, i.e. the number of subgroups of index n of a
finitely generated group [16].

The growth of ur(n) is non-trivial (that is, u(n) > 0 for arbitrar-
ily large n) if there exists a tower of lattices starting with I'; = T'.

In this paper, we consider the asymptotics of ur(n) for I" cocom-
pact in the automorphism group G of a locally finite polyhedral
complex X. By arguments similar to those for tree lattices [2, The-
orem 6.5], for such lattices I', the cardinality ur(n) is finite.

Alternatively, we could also consider the asymptotics of ap(n) =
Y i<nur(n), which are more stable, but there is a well-known way
to interpret the asymptotics of ar(n) via those of ur(n) (see [16,
Chapter 1], for example).

The case where X is a tree is treated by Seonhee Lim [14]. In
higher dimensions, for some X, ur(n) may have trivial growth for
all cocompact lattices I' of Aut(X). For example, suppose X is
the classical Bruhat-Tits building associated to a higher-rank semi-
simple group G over a nonarchimedean local field of characteristic
0 (for example, G = SL3(Q))). Here, G has finite index in Aut(X)
[22] and the covolumes of lattices in G are bounded away from 0 [4];
hence, ur(n) = 0 for large enough n. In contrast, the existence of
towers is known for certain right-angled buildings (see [9] for towers
of lattices for the product of two trees and [21] for towers of lattices
for much more general right-angled buildings). Note also that, as
in the tree case (see [10]), for a fixed X such that Aut(X) admits
a tower of lattices, the existence of a tower starting with a given
lattice I depends on I' (see [9] for examples of irreducible lattices
I' < Aut(X), where X is the product of two regular trees, for which
the growth of ur(n) is trivial).

In this work we establish an upper bound on ur(n) for very
general X (see Theorem 1.1), and a lower bound for some lattices
in certain right-angled buildings X (see Theorem 1.2). We note,
by the previous paragraph, that there cannot be a non-trivial lower
bound for general I' and general X. Our proofs use covering theory
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for complexes of groups, developed by Martin R. Bridson and André
Haefliger in [6] and further in our article [15].

Theorem 1.1. Let X be a simply connected, locally finite polyhe-
dral complez and I' < Aut(X) a cocompact lattice. Then there are
positive constants Cy and C1, depending only on I', such that for
any n > 1,

up(n) < (Con)t log?(n)

This bound is asymptotically the same as the upper bound for
tree lattices in [14]. Although the proof uses the same deep results
of finite group theory, Bridson and Haefliger’s [6] definition of cov-
ering of complexes of groups makes this bound easier to obtain than
the result for trees (which uses Bass’s covering theory for graphs of
groups [1]), thus giving a simpler proof of the tree case. Alterna-
tively, we can obtain this upper bound using the upper bound for
tree lattices (see section 3).

The lower bound, proved in subsection 3.3, is for certain right-
angled buildings. A special case of the lower bound we obtain is
presented below.

Theorem 1.2. Let g be prime and let X be a Bourdon building
I, 24 (see [5]). Then there are a cocompact lattice I' in Aut(X) and
constants Cy and C1, such that for any N > 0, there exists n > N
with

up(n) > (Con)“11os™,

The full statement, in Theorem 3.2, applies to more general right-
angled buildings, including examples in arbitrarily high dimension.
The proof applies the Functor Theorem of [21] to a construction
for tree lattices in [14].

Theorems 1.1 and 3.2, together with the examples given above
for buildings, are presently the only known behaviors for overlattice
counting functions in higher dimensions.

2. BACKGROUND

In subsection 2.1 we describe the topology on the group G of
automorphisms of a locally finite polyhedral complex X; in 2.2 we
characterize cocompact lattices in G using a combinatorial normal-
ization of Haar measure. We also recall the basic theory of com-
plexes of groups. Subsection 2.3 states the pertinent results of [15]
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on covering theory for complexes of groups. Subsection 2.4 defines
right-angled buildings and recalls properties that we will need to
prove Theorem 3.2.

2.1. LATTICES IN AUTOMORPHISM GROUPS OF POLYHEDRAL
COMPLEXES

Let X be a connected, locally finite polyhedral complex, with
first barycentric subdivision X’. Let V(X’) be the set of vertices
of X', which is in bijection with the set of cells of X. Let Aut(X)
be the group of cellular isometries of X acting without inversions
on X, i.e., its elements fix pointwise each cell that they preserve.

The group G = Aut(X) is naturally a locally compact group with
the compact-open topology. In this topology, a subgroup I' < G is
discrete if and only if it acts on X with finite cell stabilizers. For
a given cell s € V(X'), let T'y be its stabilizer in I'. For a given
cell s € T\V(X') in a quotient complex, by abuse of notation, let
us denote by |I's| the cardinality of the stabilizer of a lift § of s
in V(X’). Note that two stabilizers of two lifts u,v of s have the
same cardinality since they are conjugate by an element of Aut(X)
sending u to v.

Using Jean-Pierre Serre’s normalization [19] and the same argu-
ments as for tree lattices [3, Chapter 1], it can be shown that if
G\ X is finite, then a discrete subgroup I' < G is a lattice (that is,
u(I'\G) < oo where p is left-invariant Haar measure on G) if and
only if its V(X')-covolume

Z 1
T

seM\V(x) " °

which we will denote by Vol(T'\\V (X)), is finite. (Here, T'\\V (X")
denotes the quotient complex of groups of I' which will be defined
in subsection 2.2. See the paragraph just below the definition of a
complex of groups.)

A lattice T' is cocompact (that is, the quotient I'\G is compact)
if and only if this sum has finitely many terms. We now normalize
the Haar measure p on G = Aut(X) so that for all lattices I' < G,
the covolume of I is

p(T\G) = Vol(T\V'(X")).
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2.2. COMPLEXES OF GROUPS

We give here the definitions from Bridson and Haefliger’s theory
of complexes of groups [6] needed to state the relevant results of [15].
Let Y be a polyhedral complex with barycentric subdivision Y.
Let V(Y') be the set of vertices of Y/ and E(Y”) its set of edges.
Each a € E(Y’) corresponds to cells 7 C o of Y and so may be
oriented from o to 7, with i(a) = o and t(a) = 7. Two edges a and
b of Y are composable if i(a) = t(b), in which case there exists an
edge ¢ = ab of Y’ such that i(c) = i(b), t(c) = t(a) and a, b and ¢
form the boundary of a 2-simplex in Y.
A complex of groups G(Y) = (Gy,%q, gap) Over a polyhedral
complex Y is given by:
(1) a group G, for each o € V(Y”), called the local group at o;
(2) a monomorphism v, : Gi(q) — Gy(q) for each a € E(Y);
(3) for each pair of composable edges a, b in Y’, a “twisting”
element g, € Gy(q), such that

Ad(ga,b) o ¢ab = wa o wb

where Ad(gq,p) is conjugation by gap in Gy(,), and for each
triple of composable edges a, b, ¢, the following cocycle con-
dition holds

¢a(gb,c)ga,bc = Ja,bYab,c -

Similar to Bass-Serre theory of graphs of groups, if I' is a lat-
tice in the automorphism group Aut(X) of a connected, locally
finite polyhedral complex X, then we can define a quotient com-
plex of groups I'\\V (X'), by taking the quotient complex I'\V (X))
as the base polyhedral complex Y, the stabilizer I'; of any lift § of
s € T\V(X') for the local group at s, and the injection followed by
a suitable conjugation h, (sending i(a) to t(a)) for the monomor-
phism v, for each a € E(Y’), and elements gq) = hahbh(;bl. We
denote this complex of groups by I'\\V (X").

Let G(Y) = (Go,%a, gap) and H(Z) = (Hr, e, 9o 1) be com-
plexes of groups over polyhedral complexes Y and Z, respectively.
Let f :Y' — Z' be a simplicial map sending vertices to vertices
and edges to edges (such an f is nondegenerate). A morphism
¢»:GY)— H(Z) over f:Y' — Z' consists of

(1) a homomorphism ¢, : G5 — Hy(yy for each o € V(Y”), and
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(2) an element ¢(a) € Hyf(q)) for each a € E(Y”), such that

Ad(é(a)) o wf(a 0 ¢z (a) = ¢t 0 Ya,

where Ad(é(a))(g) = ¢(a)gp(a)™!, and for all pairs of com-
posable edges (a,b) in E(Y'),

Pt(a)(gap)P(ab) = d(a)y(a) (A(0))9s(a), (1)
If f is an isomorphism of simplicial complexes and each ¢, is an
isomorphism of groups, then the morphism ¢ is an isomorphism.
A morphism of complexes of groups ¢ : G(Y) — H(Z) is a

covering if

(1) each ¢, is injective, and

(2) for each o € V(Y’) and b € E(Z') such that t(b) = f(o) =

T, the map

H 0/1/)0,( ) — Hr/%( i(b) )

acf~1(b),t(a)=0
induced by g — ¢4(g)#(a) is a bijection.

An isomorphism of complexes of groups is clearly a covering. From
condition (2) above in the definition of covering and the connect-
edness of Y, if the value of

H-
P ;G;: 2 (Gl
e f~1(n) 7 aefip) O
is finite, it is independent of the vertex T and the edge b. A covering
of complexes of groups with the above n is said to be n-sheeted.

Any action (without inversions) by a group G on a polyhedral
complex X induces a complex of groups over the quotient G\ X,
which is unique up to isomorphism of complexes of groups. A
complex of groups is developable if it is isomorphic to a complex of
groups induced by an action.

Bridson and Haefliger [6] proved that a certain local condition,
called nonpositive curvature, of a complex of groups G(Y) ensures
developability. To define this, for some x < 0, each cell of Y must be
equipped with a Riemannian metric of constant sectional curvature
k. For each vertex o of Y, there is a simplicial complex called the
local development at o, which is defined combinatorially using the
local groups of G(Y) at o and neighboring vertices. Gromov’s Link
Condition (see [6]) implies that if, for each o € V(Y”), the link of

| H;p)|
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the local development at ¢ is CAT(1), then G(Y') is nonpositively
curved. In particular, if dim(Y) = 2, then the link of the local
development at each o € V(Y') is a metric graph, and G(Y) is
nonpositively curved if and only if each of these links contains no
circuits of length < 27.

The fundamental group 71 (G(Y'),T') of a complex of groups G(Y")
is defined with respect to a choice of maximal tree 71" in the 1-
skeleton of Y’, so that if Y is simply connected and all twisting
elements g, are trivial, then m(G(Y),T) is isomorphic to the di-
rect limit of the family of groups G, and monomorphisms 1),.

If a complex of groups G(Y) is developable, then its univer-
sal cover D(G(Y),T) is a connected, simply-connected polyhedral
complex. Different choices of trees T result in isometric univer-
sal covers. The universal cover is equipped with a natural action
of m(G(Y),T), so that the complex of groups induced by the ac-
tion of the fundamental group on the universal cover D(G(Y),T)
is canonically isomorphic to G(Y).

Let G(Y) be a developable complex of groups with fundamental
group I' and universal cover X. We say that G(Y) is faithful if T
acts faithfully on X, in which case I' may be regarded as a subgroup
of Aut(X). In this case, by subsection 2.1, I is a cocompact lattice
in Aut(X) if and only if all local groups of G(Y) are finite and Y
is a finite polyhedral complex.

2.3. COVERING THEORY FOR COMPLEXES OF GROUPS

To count overlattices, we use several results from our previous
paper [15], which we recall in this subsection. The main result, The-
orem 2.1, gives a one-to-one correspondence between isomorphism
classes of coverings of complexes of groups and overlattices.

Theorem 2.1. Let X be a simply connected, locally finite polyhe-
dral complex, and let T' be a cocompact lattice in Aut(X) (acting
without inversions) which induces a complex of groups G(Y') over
Y = I'\X. Then there is a bijection between the set of overlat-
tices of T' of index n (acting without inversions) and the set of
isomorphism classes of n-sheeted coverings of faithful developable
complexes of groups by G(Y).

The definition of isomorphism of coverings is given at the end of
this subsection.
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We will need Proposition 2.2, which gives sufficient conditions for
a developable complex of groups G(Y) to be faithful. For any choice
of tree T in the 1-skeleton on Y’, there is a canonical morphism of
complexes of groups

tr: G(Y) - m(G(Y),T)
which is injective on each local group G, (here, the group m1 (G(Y),T)

is considered as a complex of groups over a single vertex).

Proposition 2.2. Let G(Y) be a developable complex of groups
over a connected polyhedral complex Y. Choose a mazimal tree T
in the 1-skeleton of Y', and identify each local group G, with its
image in m1(G(Y),T) under vp. Let

Np = ker(m (G(Y), T) — D(G(Y), T)).

Then
(1) Np is a vertex subgroup, that is, Ny < G, for each o €
V(Y.
(2) Np is Y-invariant, that is, Vo(Ny) = Np for each a €
E(Y").

(3) Nr is normal, that is, Ny 1 G, for each o € V(Y').
(4) Nt is mazimal: if N is another Y -invariant normal vertex
subgroup, then N7 < Nr.

The following result appears as Proposition 2.5 in [15], where the
induced maps Ar, 7, and L%l 1, are explicitly defined.

Proposition 2.3. Let A : G(Y1) — G(Y2) be a covering of com-
plexes of groups over a nondegenerate simplicial map 1 : Y{ — Y7,
where Y1 and Ys are connected polyhedral complexes. Assume G(Y1)
and G(Y3) are developable. For any mazimal trees Th and Ty in the
1-skeletons of Y{ and Yy, respectively, there is an induced monomor-
phism of fundamental groups

ATl,TQ : ﬂl(G(}/l),Tl) — Wl(G(YQ),TQ)
and a A7, 1,-equivariant isomorphism of universal covers
Ly, 1, D(G(Y1),T1) — D(G(Yz), Tb).

Proposition 2.3 is used to define an isomorphism of coverings
as follows. Let A : G(Y1) — G(Y2) and XN : G(Y1) — G(Y3) be
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coverings of developable complexes of groups over connected poly-
hedral complexes. We say that A and )\ are isomorphic coverings
if, for any choice of maximal trees 77, 75, and T3 in Y7, Yo, and
Y3, respectively, there exists an isomorphism N’ : G(Y2) — G(Y3)
of complexes of groups such that the diagram of induced isomor-
phisms of universal covers commutes, that is,

A" )\ o )\/
Ly, 1y o Ly 1y = Ly 13-

2.4. RIGHT-ANGLED BUILDINGS

We recall the definition and some properties of right-angled build-
ings for which we obtain a nontrivial lower bound in Theorem 3.2.
This class of buildings contains not only right-angled hyperbolic
buildings, but also some Euclidean buildings (which are not classi-
cal Bruhat-Tits buildings). We mostly follow [7].

Recall that a Cozeter system (W,S) is a group W with presen-
tation

W ={(S]|(st)™t=1forall s,t €S)

where mgs = 1 for all s € S and my € {2,3,...} U {0} for s # t
in S, with mg = oo meaning that the element st has infinite order.
A Coxeter system is right-angled if for all s,t € S with s # ¢,
mst € {2,00}.

For any Coxeter system (W,S) there is a locally finite simpli-
cial complex ¥, called the Davis complex for (W,S), on which W
acts properly discontinuously and cocompactly by isometries. The
definition is as follows.

A subset T of S is called spherical if the subgroup Wpr < W
generated by elements of T" is a finite subgroup. The poset S of
all nonempty spherical subsets, as an abstract simplicial complex,
is called the nerve for (W, 5).

Let K be the cone on the barycentric subdivision of the nerve
L for (W,S). Write S for the set of subsets 7' C S such that
the subgroup Wr of W generated by T is finite. By convention,
Wy = 1. There is then a one-to-one correspondence between the
vertices of K and the types T' € S, with the cone point having type
(). For each s € S, let K be the closed star of the vertex {s} in
the barycentric subdivision of L. In other words, it is the union
of simplices of L containing s. We call K, the s-mirror of K. For
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each x € K, put
S(x)={seS|ze K}
Then the Davis complex ¥ is defined by
Yi=(WxK)/~

where (w,z) ~ (w',2') if and only if # = 2/ and w™'w' € Wg,).
The natural W-action on W x K induces a W-action on % with
strict fundamental domain K. This W-action preserves types, so
each vertex of ¥ has type some T € S.

The Davis complex ¥ may be equipped with a standard piecewise
Euclidean metric, so that it is a CAT(0) space, and conditions on
(W, S) are known for when ¥ may be equipped with a standard
piecewise hyperbolic metric, so that it is CAT(—1) (see [7]). From
now on we assume that ¥ is equipped with one of these standard
metrics.

Definition 2.4. Let (W, S) be a right-angled Coxeter system. A
right-angled building of type (W,S) is a polyhedral complex X,
equipped with a maximal family of subcomplexes, called apart-
ments. Each apartment is polyhedrally isometric to the Davis com-
plex 3 for (W, S), and the copies of K in X are called chambers.
The apartments and chambers of X satisfy the axioms

(1) any two chambers of X are contained in a common apart-
ment; and

(2) given any two apartments ¥ and ¥’ of X, there is an isom-
etry ¥ — Y which fixes the intersection ¥ N Y.

Note that X, although a building, is not, in general, isomorphic
to any classical Bruhat-Tits building for an algebraic group over a
nonarchimedean local field.

Each vertex of a right-angled building X has a type T' € S,
induced by the types of vertices of its apartments, and any copy of
an s-mirror K of a chamber K in X will be called an s-mirror of X.
For s € S, an {s}-residue of X is a connected subcomplex consisting
of all chambers which meet a given s-mirror of X. A right-angled
building X is reqular if for each s € S, there is a cardinality g5 > 2
such that every {s}-residue of X contains exactly ¢s chambers. We
will refer to a regular right-angled building of type (W, S) as a
building of type (W, S) and parameters {qs}scs.
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The following result classifies regular right-angled buildings and
will be used in the proof of Theorem 3.2 below.

Theorem 2.5 (Proposition 1.2, [12]). Let (W, S) be a right-angled
Cozeter system and {qs}scs a family of cardinalities (qs > 2).
Choose the type of standard metric on the Davis complexr 3 for
(W, S), either piecewise Euclidean or (if possible) piecewise hyper-
bolic. Then there exists a unique (up to isometry) building X of type
(W, S), with the given standard metric, such that for each s € S,
the {s}-residue of X has cardinality qs.

The result in the 2-dimensional case (with hyperbolic metric) is
due to M. Bourdon [5]. According to [12, p. 139], Theorem 2.5 was
proved by M. Globus, and was known to M. Davis, T. Januszkiewicz,
and J. Swi@tkowski.

For example, let (W,S) be the Coxeter system generated by
reflections in the sides of a regular right-angled hyperbolic p-gon
P (with p > 5). The Davis complex X for (W,S) may then be
equipped with the standard piecewise hyperbolic metric, and with
this metric is isometric to the barycentric subdivision of the tesse-
lation of the hyperbolic plane by copies of the regular polygon P.
An example of a regular building of type (W, S) is (the barycentric
subdivision of) Bourdon’s building X = I,, in which every 2-cell
is a copy of the p-gon P, and there are ¢ copies of P glued around
each 1-cell of X, with ¢ > 2.

3. PROOF OF MAIN RESULTS

We prove first the upper bound of Theorem 1.1 and conclude
with the proof for the lower bound for right-angled buildings.

3.1. UPPER BOUND

We now prove the upper bound of Theorem 1.1, stated in the
introduction, using the bijection between overlattices and coverings
given in Theorem 2.1. We will also use the following deep results
of finite group theory.

Suppose G is a group of order m = ngl pfi (p; are distinct
primes, i.e., k; are maximal) and let u(m) = max{k;}. By results
of Andrea Lucchini [17], Robert M. Guralnick [11], and Charles C.
Sims [20], the minimal number d(G) of generators of G is bounded
above by p(m) + 1. By work of L. Pyber [18] and Sims [20], there
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is also an upper bound on the number f(m) of isomorphism classes
of groups of order m:

f(m) <matm),

where g(m) = Zu(m)? + Lub3(m) + 75u(m) + 16.

Now let I' be a cocompact lattice in G, the automorphism group
of a simply connected, locally finite polyhedral complex X. Fix a
quotient complex of groups G(Y') induced by the action of I' on X.
By Theorem 2.1, we need to count only the number of isomorphism
classes of coverings of faithful developable complex of groups by
G(Y).

From the definition of covering, as Y is a finite polyhedral com-
plex, there exist only finitely many polyhedral complexes Z such
that a covering (of any number of sheets) may be defined over a
simplicial map [ : Y — Z’ (since | must be surjective). Let N
be the number of such lattices. Note that N is the number of all
possible Z’s and that for each fixed n, the number of possible Z’s
for which there is a covering G(Y) — H(Z) of index n is bounded
above by N.

Now let us count the number of isomorphism classes of n-sheeted
coverings of complexes of groups A : G(Y') = H(Z) = (H7,Ya/, 9o’ i)
over morphisms [ : Y — Z, where Z is fixed. Note that some of
the complexes of groups defined on Z might result in isomorphic
coverings; thus, our counting is valid only as an upper bound.

For o € V(Y'), let ¢, = |G4|, and for 7 € V(Z'), let

-1
Cr = E 0;1

oef=1(r)

By the definition of an n-sheeted covering, the cardinality |H| is
equal to ne,. Let ¢g = |V(Y')| > |[V(Z')] and ¢1 = |E(Y")| >
E(Z')).

Let us first count the number of possible complexes of groups
H(Z). There are at most HTGV(Z,)(|HT|)9(‘HT|) isomorphism classes

of groups H,. There are at most HbeE(Z,)(|Ht(b)|)“(|Hi<b>|)+1 mono-
morphisms ¢y, : H;p) — Hyp) determined by the images of gen-
erators of H;g), and at most HaeE(Z,)(\Ht(a)])Cl twisting elements

ga' - Now for a given complex of groups H(Z), we count the num-
ber of possible coverings determined by local maps A, and elements
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A(a). There are at most Haev(y,)(\Hl(o)D“(ca)H monomorphisms
Ao ¢ Go — Hy,y and at most HaeE(Y,) |Hy(1(a))| choices for the
Aa).

Let M = max,cy (y/) max{cy, ¢j(s)} and p = p(Mn). The num-
ber ur(n) is at most the product of the number of isomorphism
classes of groups H,, the number of monomorphisms v, the num-
ber of twisting elements gq 3/, the number of local maps s, and
the number of elements A(a). Combining all the estimates above,
we get the following upper bound for ur(n):

ur (n) < Nl eyz (CTn)g(CTn)HbGEZ’(Ct(b)n)“(ci(b>n)+1+cl

oy (o) e gy ciayn

< N(Mn)COQ(Mn)+Cl(M(Mn)+01+1)+c()(M(M)-f—l)—‘rq
< N(Mn)clu(Mn)2 < (Con)C{(logn)2

where Coy = MN, Cy = co(2/27+1/2+75+16+1+1)+c1 (14+¢1+2),
and Cf = 4C1(u(M) + 1)2. Note that the last inequality comes
from the fact that pu(Mn) < p(M) + p(n) < (w(M) + 1)2logn.

(Here, log denotes the natural log.) This completes the proof of
Theorem 1.1. O

Remark 3.1. (1.) The leading term comes from the number of
isomorphism classes of local groups H,. More careful counting of
other morphisms or twisting elements does not change the asymp-
totics of the upper bound.

(2.) We do not insist on the complex of groups H(Z) being
faithful or developable, which indicates that a better general up-
per bound might be obtained. However, the faithfulness condition
seems to translate into a hard question in finite group theory. For
example, in David M. Goldschmidt’s deep result [10], the finite
number of amalgams comes from faithfulness of certain graphs of
groups. Indeed, the Goldschmidt-Sims Conjecture (the analogue of
[10] for more general amalgams) has been open for several decades.

(3.) Here is an alternative proof of Theorem 1.1, using the upper
bound in [14].

Let X and I be as in Theorem 1.1. Let X! be the 1-skeleton
of X, N =m(X™M,.) its (free) fundamental group, and T = X (1)
its universal covering tree. There is a short exact sequence

1=+ N— H=NAut(X) - Aut(X) — 1,
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and an action of H on the tree T, giving rise to an embedding
H < Aut(T). The group I'N < H < Aut(7) is a uniform lattice in
H; thus, the number of overlattices of I' < Aut(X) is bounded by
the number of overlattices of I'N in Aut(7).

Note that to prove the upper bound for tree overlattices in [14],
standard Bass-Serre theory does not suffice, and similar results to
those given in subsection 2.3 had to be proved. Therefore, given
the results in [15], this alternative proof roughly amounts to our
main proof.

3.2. LOWER BOUND FOR RIGHT-ANGLED BUILDINGS

We now prove Theorem 3.2 below, a special case of which was
stated as Theorem 1.2 in the introduction. This theorem gives a
lower bound on the number of overlattices of a particular lattice for
certain right-angled buildings. See subsection 2.4 for definitions.

Theorem 3.2. Let X be a reqular right-angled building of type
(W, S) and parameters {qs}scs. Assume that for some t,t' € S,
with t # ¢,

(1) ¢ = qv = 2p where p is prime; and

(2) My = oc.
Then there is a cocompact lattice T' in Aut(X), acting without in-
versions, such that for n = p* and k > 3,

ur(n) > ns*=3),

Let X be as in Theorem 3.2. Let T5, be the 2p-regular tree.
In [14], Lim constructed many non-isomorphic coverings of faithful
graphs of groups with universal cover Ty, as sketched in Figure 1.

%Oi
Z/pZ{){l} = GQH
A\

FiGUrRE 1. Coverings of faithful graphs of groups
with universal cover Ty,
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Let T'y, < Aut(T3,) be the cocompact lattice which is the fun-
damental group of the left-hand graph of groups in Figure 1. The
lower bound obtained from these constructions is ur,, (n) > n%(k_g),
for n = p* and k > 3.

To obtain the same lower bound for overlattices of a certain
cocompact lattice I' in Aut(X), we first take the “double cover”
of the graphs of groups in Figure 1, as shown in Figure 2.

{1} O‘;,H ~\2

Ao =2Z/p7  »2/p7 —= A=G¢ G
0 /p i /P ag\H/Aal

FIGURE 2. “Double cover” of graphs of groups in Figure 1

We now carry out a special case of the Functor Theorem of [21],
for the graphs of groups Ag and A in Figure 2. The idea is to
“fatten up” these graphs of groups to obtain complexes of groups
Go(Y) and G(Y), respectively, so that the fundamental group T’
of Go(Y) is a cocompact lattice in Aut(X) and the fundamental
group of G(Y') is an overlattice of T'.

Let A be the graph underlying both of the graphs of groups in
Figure 2. Let K be the cone on the barycentric subdivision of the
nerve for (W,S), as described in subsection 2.4. Note that since
myy = 00, the t- and ¢-mirrors of K are disjoint. Let K and K?
be two copies of K. Glue together, preserving types, the t-mirrors
of K' and K?, and similarly with the ¢-mirrors. Denote by Y the
resulting polyhedral complex. The vertices of Y have well-defined
types T € S, induced by the types of the vertices of K! and K?2.
The edges of Y are then naturally oriented, so that an edge a of
Y joining vertices of types T,7" € S has i(a) of type T and t(a)
of type T" if and only if T C T'. Composable edges may then also
be defined, and thus we may define a complex of groups over Y
(without first taking the barycentric subdivision).

Choose an identification of the two vertices of the graph A with
the vertices of Y of types {t} and {t'} and of the two edges of A
with the two vertices of Y of type (). An example is sketched on
the left of Figure 3, which shows the complex Y, and the types of
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its vertices, for K the barycentric subdivision of a regular right-
angled hyperbolic hexagon with K; and Ky on opposite sides of
the hexagon.

Y= {51782}

H x Gy, x Gy,

FIGURE 3. The space Y and the complex of groups G(Y)

We now explain how A induces a complex of groups G(Y) over
Y. The construction for Ay is similar. First, fix the local groups G
and H induced by the identification of the vertices and edges of A
with certain vertices of Y. Each of the monomorphisms «; : H — G
in A then induces a monomorphism 1, along an edge a of Y with
i(a) of type 0 and t(a) of type either {t} or {t'}.

To assign the remaining local groups and monomorphisms in
G(Y), for each s € S, let G be a group of order gs. Let T' € S. If
T contains neither ¢ nor ¢, then the local group at the two vertices

of Y of type T is
H x HGS'

seT

The monomorphisms between such local groups are natural inclu-
sions. Now suppose T' contains one of ¢ and t'. (Since myy = oo
and Wy is finite, T' cannot contain both ¢ and ¢'.) Without loss of
generality, suppose T contains t. Then the unique vertex of type
T in Y is contained in the glued ¢-mirror, and we assign the local
group at this vertex to be

G x H G.

seT,s#t
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The monomorphism from G (the local group at the vertex of Y of
type {t}) to this local group is inclusion onto the first factor. For
each T/ C T with t € T”, the monomorphism

Gx [[ Gs—ax ] G-

seT’ s#t seT,s#t

is the natural inclusion. For each 77 C T with ¢t € T”, the monomor-

phism
Hx [[G—=Gx ][] Gs
seT’ seT,s#t

is a monomorphism «; : H — G from the graph of groups A on the
first factor, with ¢ = 1,2 chosen so that all triangles of monomor-
phisms commute, and natural inclusions on the other factors. Put
all gop = 1, and we have a complex of groups G(Y'). See the right
of Figure 3 for an example. Let Go(Y) be the complex of groups
induced in the same way by Ag.

We now show that Go(Y') and G(Y) have nonpositive curvature
and are thus developable, and that they have universal cover the
regular right-angled building X. For this, we claim first that the
link of each vertex of Go(Y') of type T in its local development is
the join of |T'| sets of points of cardinalities, respectively g5, s € T
The only vertices where this requires some care are those of type
T where T contains either ¢ or t'; here there are two collections of
cosets of the trivial group {1} in Z/pZ (or of H in G for G(Y)),
each of cardinality p, and since ¢; = qv = 2p, the claim follows.
For example, in Figure 3, the local development at the vertex of
type T = {t,s1} is the (barycentric subdivision of) the complete
bipartite graph K, 4,; the cosets in G x G, of G contribute gs,
vertices, and the cosets in G x G, of the two copies of H x G,
contribute q; = 2p vertices.

With the standard piecewise Euclidean metric on K, which in-
duces a metric on Y, it follows by Gromov’s Link Condition that
Go(Y) and G(Y) have nonpositive curvature and are thus devel-
opable. The universal cover of Go(Y') and of G(Y) is a building of
type (W, S) (see [8, Section 3.3]), and by construction it is regular.
Theorem 2.5 then implies that the universal cover of Go(Y) and of
G(Y) is the unique regular right-angled building X of type (W, S)
and parameters {gs;}. Hence, Go(Y) and G(Y) are developable
complexes of groups with universal cover X.
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By construction, every covering, as in Figure 2, induces a cover-
ing of complexes of groups Go(Y) — G(Y). Recall that the graphs
of groups in [14] are faithful because there is no nontrivial subgroup
of H whose images in G under o and a9 are the same. This con-
dition implies that there is no nontrivial group N7 satisfying the
conditions in Proposition 2.2; thus, each G(Y') is faithful. More-
over, in Lim’s construction, distinct coverings of the form in Fig-
ure 1 are non-isomorphic because the vertex and edge groups G' and
H are non-isomorphic; thus, they induce non-isomorphic coverings
Go(Y) = G(Y). By Theorem 2.1, this completes the proof. O
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