LATTICES ACTING ON RIGHT-ANGLED HYPERBOLIC
BUILDINGS

ANNE THOMAS

ABSTRACT. Let X be a right-angled hyperbolic building. We show that the
lattices in Aut(X) share many properties with tree lattices. For example,
we characterise the set of covolumes of uniform and of nonuniform lattices in
Aut(X), and show that the group Aut(X) admits an infinite ascending tower of
uniform and of nonuniform lattices. These results are proved by constructing
a functor from graphs of groups to complexes of groups.

INTRODUCTION

Let G be a locally compact topological group, with suitably normalised Haar
measure . A discrete subgroup I' < G is a lattice if the covolume p(I'\G) is finite,
and a uniform lattice if T'\G is compact. A tower of lattices is a strictly increasing
infinite chain of subgroups

M<lhg< o<y < e
such that each T'; is a lattice in G. Two basic questions are:

(1) What are the possible covolumes of lattices in G?
(2) Does G admit a tower of lattices?

These questions have been studied for many G. For example, if G is a non-
compact simple real Lie group, then the covolumes of lattices in G are bounded
away from 0 (Kazhdan—-Margulis [24], [27]), and in most cases the set of lattice
covolumes is discrete (Borel [5], Wang [35] and Thurston [32]). A strong finiteness
result for lattices in semisimple groups is that of Borel-Prasad [10], which implies
that for G an algebraic k-group of rank > 2 over a number field k, and S a finite
set of places in k, there are only finitely many arithmetic subgroups I' < G4, s € S,
such that us(T\Gs) < e

Nonclassical cases arise from the fact that if G is the automorphism group of
a locally finite polyhedral complex, then G is naturally a locally compact group
(see Section 1.1). Lattices in the automorphism groups of trees are treated in
Bass—Lubotzky [4]. Lattices acting on a product of trees have been studied by, for
example, Burger—Mozes [13]. Apart from these cases, essentially nothing is known.

We consider lattices in the automorphism groups of certain hyperbolic buildings.
Let P be a compact, convex polyhedron in H" with all dihedral angles 7, and let
(W, I) be the right-angled Coxeter system generated by reflections in the (n —
1)-dimensional faces of P. A right-angled hyperbolic building of type (W,I) is a
polyhedral complex X with a maximal family of subcomplexes called apartments,
each isometric to the tesselation of H™ by copies of P, which satisfy the usual
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axioms for a building. A right-angled building has nonpositive curvature. It is
locally the product of trees, but is not globally a product. In dimension 2, where
right-angled buildings are sometimes known as “Bourdon buildings”, P is a regular
right-angled hyperbolic polygon, and the link of each vertex of X is a complete
bipartite graph. The dimension of a right-angled building is at most 4, and this
bound is sharp [33], [23]. In Section 1.2 we give precise definitions and recall the
classification of right-angled buildings. Hyperbolic buildings have been studied by,
for example, Bourdon [6], [7], Bourdon-Pajot [8], [9], Haglund [20], [21], Haglund-
Paulin [22] and Gaboriau—Paulin [16].
Our results on lattices acting on right-angled buildings are as follows.

Main Theorem. Let (W, I) be a right-angled Coxeter system acting cocompactly
on H" with fundamental domain P, and let S be the set of J C I such that
the subgroup of W generated by J is finite. Let {g;};cr be a family of positive
integers, ¢; > 2. Suppose X is the (unique) building of type (W, I), such that each
{i}-residue of X has cardinality ¢;, and let G = Aut(X).
(1) Uniform covolumes
(a) The set of covolumes of uniform lattices in G is

Vu(G) = {c(X)%’ ged(a, b) = 1, prime divisors of b are < maxi{qi}}

where

()= Y (I

Jest jed 4
[J]=dim(X)

(b) If ¢; > 2 for at least one ¢, then for each v € V,,(G), there is a countably

infinite number of nonconjugate uniform lattices of covolume v.
(2) Nonuniform covolumes

(a) If ¢; > 2 for at least one i then the set of covolumes of nonuniform
lattices is (0, 00).

(b) If there exist 4,5 € I such that m;; = oo and g¢;,¢q; > 2, then for
every v > 0 there exist uncountably many commensurability classes of
nonuniform lattices of covolume v.

(3) Towers

(a) If g¢; > 2 for at least one ¢ then there exists a tower of uniform lattices
in G.

(b) If ¢; > 2 for at least one 4 then there exists a tower of nonuniform
lattices in G.

(¢) If g; is composite for at least one i then there exists a tower of uniform
lattices in G such that the quotient by each lattice is isometric to P.

Although the right-angled building X is a higher-dimensional object, these prop-
erties of lattices in Aut(X) are quite different to those of lattices in higher-rank
algebraic groups. For example, the results of Kazhdan—Margulis and Borel-Prasad
cited above imply that semisimple groups do not admit lattices of arbitrarily small
covolume, thus do not admit towers of (any) lattices, and the theorem of Borel-
Prasad implies that any v > 0 is the covolume of at most finitely many lattices.
‘We note also that there exist nonpositively curved polyhedral complexes whose au-
tomorphism groups do not admit towers, for example the Bruhat—Tits building for
SL3(Qp), whose automorphism group contains SL3(Q,) as a finite index subgroup.
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In contrast, by comparing the Main Theorem with results for trees, we see that
the lattices in G = Aut(X) share many properties with tree lattices.

Uniform covolumes. Rosenberg (Proposition 9.1.2, [29]) showed that the set of
covolumes of uniform lattices acting on the m-regular tree is

1 /a
{ m (b)
and found a similar result for biregular trees (Theorem 9.2.1, [29]). One new feature
for right-angled buildings is that the uniform covolumes depend on the structure of
the associated Coxeter group.

Note that if all ¢; = 2 then the set of uniform covolumes is discrete. However,
if some ¢; > 2 then the set of (uniform) covolumes is dense in (0,00), and, in
particular, G admits (uniform) lattices of arbitrarily small covolume, as is the case
for trees.

Our proof of the counting result (1b) will show that this property holds for

regular and biregular trees as well (see Proposition 3.3 below). This generalises
Theorem 7.1(b) of [3], and answers a question put to us by Lubotzky.

ged(a,b) =1, prime divisors of b are < m}

Nonuniform covolumes. Bass—Lubotzky showed that for the m-regular tree,
m > 3, every v > 0 is the covolume of some nonuniform lattice (Theorem 4.3, [4]).
Rosenberg extended this result to biregular trees (Theorem 8.2.2, [29]).

Farb—Hruska [15] constructed commensurability invariants for lattices acting on
the (m,n)-biregular tree, for m,n > 3, and used these to show that for every v > 0
there are uncountably many commensurability classes of nonuniform tree lattices
(Corollary 1.2, [15]). Farb—Hruska have shown (2a) and (2b) for some 2-dimensional
right-angled hyperbolic buildings.

Towers. Rosenberg showed that if T" is a tree such that Aut(T") is nondiscrete and
admits a uniform lattice, then Aut(7") admits a tower of uniform lattices (Theorem
3.3.1, [29]), and Carbone-Rosenberg showed that, with one exception, if Aut(T)
admits a nonuniform lattice then it admits a tower of nonuniform lattices (Theorem
5.4, [14]).

Part (3c) of the Main Theorem addresses the following finer question about
towers. Let X be a polyhedral complex and G = Aut(X). A subgroup of G is
homogeneous if it acts transitively on the cells of maximum dimension in X. Does
G admit a tower of homogeneous lattices?

When X is the 3-regular tree, a deep theorem of Goldschmidt [18] implies that
G does not admit such a tower, since G has only finitely many conjugacy classes of
homogeneous lattices. The Goldschmidt—Sims conjecture (see [17]), which remains
open, is that if X is the (p, g)-biregular tree, where p and ¢ are prime, then there
are only finitely many conjugacy classes of homogeneous lattices in G. If X is the
product of two trees of prime valence, Glasner [17] has shown that there are only
finitely many conjugacy classes of (irreducible) homogeneous lattices. We do not
know if G of the Main Theorem admits a homogeneous tower when all g; are prime.
We note that, by the Functor Theorem below, if G has only finitely many conjugacy
classes of homogeneous lattices, then the Goldschmidt—Sims conjecture holds.

The key fact used to prove the Main Theorem is that if a tree is “nicely embedded”
in a right-angled hyperbolic building, then any automorphism of the tree may be
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extended to the building. This may be expressed algebraically by means of a functor
from graphs of groups to complexes of groups:

Functor Theorem. Let (W, I), P and X be as in the Main Theorem. For each
i1, 42 € I such that m,, ;, = oo, let T be the (g¢;,, ¢;,)-biregular tree. Then there is
a functor from the category of graphs of groups with universal covering tree T' to
the category of complexes of groups with universal cover X, provided either that
X is “sufficiently symmetric”, or that we restrict to 2-colourable graphs. Moreover,
this functor takes coverings to coverings, and faithful graphs of groups to faithful
complexes of groups.

We give a precise statement and proof of the Functor Theorem in Section 2.2, and
then apply it to prove the Main Theorem in Section 3. An example of a sufficiently
symmetric building X is one where P is regular, for instance if dim(X) = 2, and all
q; are equal. For the theory of graphs of groups and their morphisms, see Section 1.3
and [30], [2] and [4]. The theory of complexes of groups (see [19], [11]) is outlined
in Section 1.4.

I thank Benson Farb for introducing me to this area, for his enthusiasm and
guidance, and his many comments on earlier versions of this paper. I would also
like to thank G. Christopher Hruska and Frédéric Haglund for helpful discussions.

1. BACKGROUND

Section 1.1 gives the basic definitions for lattices and describes a suitable nor-
malisation of Haar measure for automorphism groups of polyhedral complexes. In
Section 1.2 we define right-angled hyperbolic buildings, discuss their combinatorial
structure and recall their classification. The key definitions for graphs of groups are
given in Section 1.3, and the theory of complexes of groups is dealt with in more
detail in Section 1.4. In Section 1.5 we apply the results of Sections 1.1, 1.2 and 1.4
to right-angled hyperbolic buildings. We refer the reader to [11] for generalities on
polyhedral complexes.

1.1. Lattices and covolumes. Let G be a locally compact topological group with
left-invariant Haar measure p. A discrete subgroup I' < G is a lattice if the covolume
w(I\G) is finite. A lattice I' is uniform if T\G is compact. Let S be a left G-set
such that for every s € S, the stabiliser G is compact and open. Then if I' < G is
discrete, the stabilisers I'y are finite. We define the S-covolume of T' by

Vol(T\S) :== >

sel’'\S

! <
< oo
ITs]
The following theorem shows that Haar measure may be normalised so that u(I'\G)
equals the S-covolume.

Theorem 1.1 ([4], Chapter 1). Let G be a locally compact topological group
acting on a set S with compact open stabilisers and a finite quotient G\ S. Suppose
further that G admits at least one lattice. Then there is a normalisation of the Haar
measure u, depending only on the choice of G-set S, such that for each discrete
subgroup T" of G we have u(I'\G) = Vol(T'\\9).

Let X be a connected, locally finite polyhedral complex with vertex set V(X),
and let Aut(X) be the group of cellular isometries of X. A subgroup of Aut(X) is
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said to act without inversions on X if its elements fix pointwise each cell that they
preserve. The group G = Aut(X) is a locally compact topological group, with a
neighbourhood basis of the identity consisting of automorphisms fixing larger and
larger combinatorial balls. By the same arguments as for tree lattices ([4], Chapter
1), it can be shown that if G\X is finite, then a discrete subgroup I' < G is a
uniform lattice if and only if its V' (X)-covolume is a sum with finitely many terms.
Using Theorem 1.1, we now normalise the Haar measure p on G = Aut(X) so that
for all uniform lattices I' < G, the covolume of T" is

§(N\G) = Vol(M\ V(X))

1.2. Right-angled hyperbolic buildings. References for the theory of Coxeter
groups and buildings are Brown [12] and Ronan [28]. On hyperbolic buildings, we
follow [22].

Let P be a compact convex polyhedron in H" with all dihedral angles 7, and let
(W, I) be the right-angled Coxeter group generated by reflections in the (n — 1)-
dimensional faces of P. We write ST for the set of J C I such that the subgroup
Wy of W generated by J is finite. By convention, W, = 1 and so the empty set
¢ is in S7. Let N be the finite nerve of (W, ). Each vertex of the barycentric
subdivision N’ of N has a type J € Sf. The barycentric subdivision P’ of P
may be identified with the simplicial cone on N’. We thus obtain a one-to-one
correspondence between the vertices of P’ and the types J € Sf. In particular,
each vertex of P has the type of a J € S/ with |J| = n = dim(X), and the
barycentre of each (n — 1)-dimensional face of P has the type of a unique i € I.
We will refer to the corresponding (n — 1)-dimensional face of P as an i-face. A
polyhedral isometry g : P — P may, by abuse of notation, be regarded as a bijection
g : I — I such that m; ; = mgy) g¢;) for all 4,5 € I. Such an isometry takes the
i-face of P to the g(i)-face of P.

A hyperbolic building of type (W, I) is a polyhedral complex X equipped with
a maximal family of subcomplexes, called apartments. Each apartment is polyhe-
drally isometric to the tesselation of H™ by the images of P under W, and these
images are called chambers. The apartments and chambers of X satisfy the usual
axioms for Bruhat-Tits buildings. Each cell of X has a type J € S, induced by the
types of P. For ¢ € I, an {i}-residue of X is the connected subcomplex consisting
of all chambers which meet in a given i-face of X. Let ¢; be the cardinality of each
{i}-residue of X, that is, the number of copies of P in each {i}-residue, and let =
be a vertex of X. Then x has the type of some J € S with |J| = n, and the link
of z in X is isometric to the join of n sets of points of cardinalities respectively g;,
for j e J.

A key example of a right-angled hyperbolic building is Bourdon’s 2-dimensional
building I, ; (see [6]). Here, P is a regular right-angled hyperbolic p-gon. The link
of each vertex of I, , is the complete bipartite graph K, 4, which may be thought
of as the join of 2 sets of ¢ points. Each {i}-residue of I, , consists of ¢ copies of
P, glued together along a common edge.

The following result classifies right-angled buildings.

i),9

Theorem 1.2 (Proposition 1.2, [22]). Let (W, I) be a right-angled Coxeter system
and {¢;}icr a family of positive integers (g; > 2). Then there exists a unique (up
to isometry) building X of type (W, I), such that for each ¢ € I, the {i}-residue of
X has cardinality g;.
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In the 2-dimensional case, this result is due to Bourdon [6]. According to [22],
Theorem 1.2 was proved by M. Globus, and was known also to M. Davis, T. Janusz-
kiewicz and J. Swiatkowski.

1.3. Graphs of groups. We give only the definitions most relevant to the proof
of the Functor Theorem below. See [30], [4] and [2] for more complete treatments.
A graph of groups A = (A, A) consists of a connected graph A, with vertices
V(A) and edges E(A), together with groups A, for each v € V(A), and A. = Az
for each e € F(A), and monomorphisms a. : A. — Aj(e). See [2] for the definitions
of the path group w(A), the fundamental group of the graph of groups m1 (A, vg) and
the universal covering tree. A graph of groups is faithful if its fundamental group
acts faithfully on its universal covering tree.
Let A = (4, A) and B = (B, B) be graphs of groups. A morphism ¢ : A — B
consists of
(1) a morphism of graphs f: A — B,
(2) homomorphisms of local groups ¢, : A, — By () and ¢ = ¢z : Ae — By (e,
(3) elements v, € m(B, f(v)) for each v € V(A4), and 7. € w(B) for each
e € E(A), such that if v = i(e) then
(a) 66 = 7;178 € Bf('u)a and
(b) ¢ace = Ad(de)arf(e)pe, where Ad(de) is conjugation by d. in By(y).
The morphism ¢ is a covering if in addition

(1) each ¢, and ¢. is injective, and
(2) for each v € V(A) and ¢’ € E(B) with i(e’) = f(v), the map

[T Av/ac(Ae) = By /ae (Be)
eef(e)
i(e)=v

induced by g — ¢,(g)d. is a bijection.

1.4. Complexes of groups. We first recall some of the standard theory of com-
plexes of groups, due to Haefliger in [19] and [11]; all references to [11] are to
Chapter III.C. Then in Section 1.4.1 we record some new definitions and results
used for constructing towers, which are mostly generalisations of the corresponding
notions for tree lattices. In [11], complexes of groups are over scwols, small cate-
gories without loops. To avoid unnecessary background, we work with complexes
of groups over polyhedral complexes.

Throughout this section, if X is a polyhedral complex, then X’ is the first
barycentric subdivision of X. This is a simplicial complex with vertex set V(X')
and edge set E(X’). The edges of X’ may be oriented naturally as follows. If
a € E(X’), then the vertices of a are the barycentres of (say) an n-cell o and a
k-cell T of X, with n > k. We then orient a from o to 7, and write i(a) = ¢ and
t(a) = 7. Two edges a and b of X' are composable if i(a) = t(b). If a and b are
composable, there exists an edge ¢ = ab of X’ such that i(c) = i(b), t(c) = t(a) and
a, b and ¢ form the boundary of a 2-simplex in X'.

A complex of groups G(X) = (Go,%Ya; ga,p) Over a polyhedral complex X is given
by:

(1) a group G, for each o € V(X'), called the local group at o;
(2) a monomorphism v, : Gj(a) — Gy(q) for each a € E(X'); and
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(3) for each pair of composable edges a, b in X', an element g, € Gy(q), such
that

Ad(ga,b)¢ab = %%

where Ad(ga,) is conjugation by gap in Gy(q), and for each triple of com-
posable edges a, b, ¢ the following cocycle condition holds

’(/}a (gb,c)ga,bc = Ga,bGab,c

All complexes of groups in this paper will be simple, meaning that each gqp is
trivial. Equivalently, all diagrams of monomorphisms commute.

Next we define morphisms of complexes of groups. Let G(X) = (Gy,v,) and
H(Y) = (H:,vp) be simple complexes of groups over polyhedral complexes X and
Y. Let f: X’ — Y’ be a simplicial map sending vertices to vertices and edges to
edges (such an f is nondegenerate). A morphism ¢ : G(X) — H(Y') over f consists
of:

(1) a homomorphism ¢, : Go — Hy () for each o € V(X'), and
(2) an element ¢(a) € Hy(g(q) for each a € E(X’), such that

Ad(¢(a)Vf(a)Pi(a) = Pt(a)Va
and for all pairs of composable edges (a,b) in E(X'),

¢(ab) = ¢(a)¥((b))
We note that morphisms may also be defined over degenerate maps f : X' — Y.
If f is an isometry and each ¢, an isomorphism then ¢ is an isomorphism. A
morphism ¢ is a covering if
(1) each ¢, is injective, and
(2) for each o € V(X') and b € E(Y’) such that ¢(b) = f(o), the map

H Go/Va(Gita)) = Hyo)/o(Hiw))
acf (b
t(a)=0c
induced by g — ¢, (g)¢(a) is a bijection.

Let G be a group acting without inversions on a polyhedral complex Y. This
action induces a complex of groups, as follows. Let X = G\Y with p : ¥ —
X the natural projection. For each o € V(X'), choose ¢ € V(Y’) such that
p(6) = 0. The local group G, is the stabiliser of & in G, and the 9, and g, are
defined using further choices. The resulting complex of groups G(X) is unique up
to isomorphism. A complex of groups is developable if it is isomorphic to a complex
of groups associated, as just described, to an action.

We now define the fundamental group of a complex of groups in two ways. Let
G(X) = (G4, 14) be a simple complex of groups over a connected polyhedral com-
plex X. Let E*(X’) be the set of symbols a* and a~, where a € E(X’). The
group F'G(X) then has generators

e the elements of G, for o € V(X’), and
e the elements of E*+(X),

and relations

e the relations in the groups G,
e (a")'=a"and (a7) ! =a" for all a € E(X'),
e atht = (ab)™T, for all composable edges a and b, and
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e Yu(g) =atga” for all g € Gy, and all a € E(X').

For e € E*(X'), if e = a* we define i(e) = t(a) and t(e) = i(a). If e = a~ we
define i(e) = i(a) and t(e) = t(a). Let o and 7 be vertices of X’. An edge path in
X' joining o to 7 is then a sequence

c= (617623"'7671)
of elements of E*(X') such that i(e;) = o, t(e;) = i(ej+1) for 1 < j <n—1 and
t(en) = 7. A G(X)-path joining o to T is a sequence

Y= (ganl7gl7"'aenygn)

where (e1,...,e,) is an edge path joining o to 7, and gy € G, and g; € Gy(,)
for 1 < j < n. We associate to v as above the element 7(v) = goe1g1 - - - engn of
FG(X).

Fix a vertex og € V(X'). A G(X)-loop at o¢ is a G(X )-path joining oq to itself.
Two G(X)-loops v and +/ at o¢ are homotopic if 7(y) = w(y’). Concatenation
defines a group structure on the set of homotopy classes of G(X)-loops at og. The
resulting group, denoted m1(G(X), 09), is the fundamental group of G(X) at oy.
By definition, the map = identifies m1 (G(X), 09) to a subgroup of FG(X).

We now give the second definition of the fundamental group. Let T" be a max-
imal tree in the 1-skeleton of X'. The fundamental group of G(X) at T, written
m1(G(X),T), is the quotient of the group FG(X) by the normal subgroup gener-
ated by the elements a™* such that a is an edge of T'. If X is simply connected, the
fundamental group 71 (G(X),T) is the direct limit of the family of groups G, and
monomorphisms .

The fundamental groups m (G(X), 09) and 7 (G(X),T) are isomorphic, via the
following maps (Theorem 3.7, [11]). Identify m (G(X), 0¢) to a subgroup of FG(X).
Then the isomorphism

U m (G(X),00) —» m(G(X),T)

is given by restricting the natural projection FG(X) — m(G(X),T). To state the
inverse of U, for each o € V(X’), let ¢, = (e1,...,e,) be the unique edge path in
X' joining og to o such that no two consecutive edges are inverse to each other and
each e; is contained in T'. Let 7, = €1 -+ e, € FG(X). Then

0:m(G(X),T) — m(G(X),00)

mapping the generator g € G, to m,gm,* and a™ to Wt(a)a*‘m(a) is the inverse of
v,
We now discuss conditions for a complex of groups to be developable.

Theorem 1.3 (Haefliger, Theorem 4.1, [19]). Let G(X) be a (simple) complex of
groups over a connected polyhedral complex X, such that for each o € V(X'), the
natural homomorphism from G, to FG(X) is injective. Let T be a maximal tree in
the 1-skeleton of X’. Then there is canonically a simply connected polyhedral com-
plex D(G(X),T) and an action of m1 (G(X),T) without inversions on D(G(X),T),
such that G(X) is naturally isomorphic to the complex of groups associated to this
action.

The polyhedral complex D(G(X),T) in the statement of Theorem 1.3 is called
the universal cover of the complex of groups G(X). The natural projection from
FG(X) to m(G(X),T) is injective on the image of each G, (see the proof of
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Theorem 3.7, [11]), so we may identify each G, to its image in m (G(X),T). The
vertices of D(G(X),T)" are then the pairs

(9Gos,0) where o € V(X') and g € m (G(X),T)
and the edges of D(G(X),T)" are the pairs
(9Gi(a),a) where a € E(X') and g € m(G(X),T)
The initial and terminal vertices of each edge are given by
i(9Gi(a), @) = (9Gi(a),i(a)) and  t(9Gia),a) = (9a~ Gy, t(a))
The action of h € 1 (G(X),T) on the vertices is
h-(9Go,0) = (hgGs,0)

We now describe a geometric condition for developability. Let X be a connected
polyhedral complex and o € V(X'). The star of o, written St(c), is the union of the
interiors of the simplices in X’ which meet . If G(X) is a complex of groups over
X then, even if G(X) is not developable, each o € V(X’) has a local development.
That is, we may associate to o an action of G, on the star St(5) of a vertex & in
some simplicial complex, such that St(o) is the quotient of St(&) by the action of
G,. If G(X) is developable, then for each o € V(X’), the local development of o
is isomorphic to the star of each lift & of ¢ in the universal cover D(G(X),T).

The local development St(&) has a metric structure induced by that of the poly-
hedral complex X. We say that a complex of groups G(X) is nonpositively curved if
for all o € V(X'), St(&) has nonpositive curvature (that is, St(5) is locally CAT (k)
for some k < 0) in this induced metric. The importance of this condition is given
by:

Theorem 1.4 (Haefliger, [19]). A nonpositively curved complex of groups is de-
velopable.

Let G(X) be a developable complex of groups over a polyhedral complex X,
with universal cover Y and fundamental group I'. We say that G(X) is faithful if
the action of I' on Y is faithful. If X is finite, all local groups are finite, and G(X)
is faithful, then I may be regarded as a uniform lattice in Aut(Y").

1.4.1. Towers. Let G(X) = (Gy,%s) and H(X) = (H,,v) be simple complexes
of groups over a polyhedral complex X. We say that G(X) is a full complezx of
subgroups of H(X) if there is a covering ¢ : G(X) — H(X) over the identity map
X’ — X’ such that each ¢(a) = 1. There is then, fixing oy € V(X’), a natural
homomorphism

m1(9,00) : m(G(X),00) — T (H(X),00)

which sends the homotopy class of the G(X)-loop (go,e1,91,---,€n,gn), with g; €
Gy,, to the homotopy class of the H(X)-loop

(¢O’0 (gO)a €1, ¢0'1 (gl)a ) (bO'r,L (gn)>

(see Proposition 3.6, [11]). Proposition 1.5 below shows that, in the presence of non-
positive curvature, the map 71 (¢, 0¢) is an injection. The proof of this proposition
is similar to that for trees in Proposition 2.7(ii), [2]. The result may be generalised
to coverings of developable complexes of groups [25].
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Proposition 1.5. Let G(X) = (G,,%,) and H(X) = (H., 1Y) be simple complexes
of groups over a complete connected polyhedral complex X, and fix o¢g € V(X’).
Suppose G(X) is a full complex of subgroups of H(X), with respect to a covering
¢. Assume in addition that G(X) and H(X) have nonpositive curvature. Then
m1(¢, 0p) is injective.

Proof. Choose a maximal tree T in the 1-skeleton of X’. Let ¥/ : 11 (H(X),00) —
m(H(X),T) and © : m(G(X),T) — m(G(X), 00) be the isomorphisms defined in
Section 1.4, and consider

A=V om(p,00) 00 :m(G(X),T) — m(H(X),T)

Since ¥’ and © are isomorphisms, it suffices to show that A is injective.

By Theorem 1.3 and the discussion following it, we may identify the groups
G, and H, to their images in respectively 7 (G(X),T) and m (H(X),T). By the
definitions of ¥’ and ©, for each g € G, we then have A(g) = ¢,(g). Thus, by Sec-

tion 2.18 [11], there is a A-equivariant map of the universal covers ¢ : D(G(X),T) —
D(H(X),T), defined by

(gGU,O') = (¢o<g)H0aU) and (gGi(a)aa) = (¢U(9)Hi(a)7a>

Since 56 preserves adjacency of vertices and edges, condition (2) of the definition of
a covering implies that ¢ is locally an isometric embedding. Thus, as D(G(X),T)
and D(H(X),T) are complete, simply connected and of nonpositive curvature, a
is an isometric embedding.

Suppose A(h) = 1. Since q~5 is injective and A-equivariant, h must act trivially on
D(G(X),T). In particular, h fixes (Gy,,00), 50 h € Go,. Thus ¢,,(h) = 1, which
implies h = 1 since ¢, is injective. O

Let X be a complete, connected polyhedral complex. A tower on X with uni-
versal cover Y is a sequence (G;(X)) of complexes of groups over X, such that

(1) for each i, G;(X) is a full complex of subgroups of G;;1(X) with respect
to a covering ¢;;
(2) the image of each (¢;), is a proper subgroup; and
(3) Y is the universal cover of each G;(X).
By Proposition 1.5, such a sequence induces an infinite ascending chain of funda-
mental groups

7T1(G1(X),O'0) < 7T1(G2(X),0'0) << ﬂl(Gi(X),O'()) < v

If each G;(X) is a faithful complex of groups, with finite covolume, then each
fundamental group in this chain is a lattice of Aut(Y’). We thus obtain a tower of
lattices in Aut(Y).

1.5. Application to right-angled hyperbolic buildings. Let X be a right-
angled building of type (W, I), with chambers isometric to P and parameters {g;}.
This building may be realised as the universal cover of a simple complex of groups
G(P) over P [22], as we now explain.

For i € I, let G; be a group of order ¢;. If ¢ € V(P’) has type J € S/, then
the local group G, is HjeJ Gj, with G, = 1 if o is the barycentre of P. The
monomorphisms along edges of P’ are natural inclusions.

Let o be a vertex of P of type J, with |[J| = n = dim(X). Then the local
development at o with respect to the complex of groups G(P) has link isomorphic
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to the join of n sets of points of cardinalities respectively g;, for j € J. Since P
is right-angled, by Gromov’s Link Condition (Theorem 5.2, Chapter II, [11]) each
local development has nonpositive curvature, so by Theorem 1.4 the complex of
groups G(P) is developable. The universal cover is a building (see [16], section
3.3), and by Theorem 1.2, the universal cover is the unique right-angled building X
having chambers P and parameters {¢;}. More generally, if G(Y) is a developable
complex of groups such that the universal cover of G(Y') is a right-angled building
with chambers P and parameters {g¢;}, then by Theorem 1.2 the universal cover of
G(Y)is X.

Since the local group at the barycentre of P is trivial, G(P) is a faithful complex
of groups. Hence the fundamental group I' of G(P) is a uniform lattice in Aut(X).
The covolume of T" is

1 1
> owm- > (g
Jest JjeJ
|7|=dim(X)

2. THE FuNCcTOR THEOREM

This section contains our key technical result, the Functor Theorem below, which
constructs a functor from graphs of groups to complexes of groups. Let G be the
category of graphs of groups and morphisms, as defined by Bass [2]. Let C be the
category of complexes of groups and morphisms, as defined by Haefliger [11]. In
Section 2.1 we make precise the relationship between G and the subcategory of C
consisting of complexes of groups over 1-dimensional polyhedral complexes. This
is used in Section 2.2 where we state and prove the Functor Theorem.

2.1. Relationship between graphs of groups and 1-dimensional complexes
of groups. Complexes of groups are generalisations of graphs of groups. How-
ever, Haefliger remarks that it is unclear whether the notion of morphism is the
same ([11], p. 566). Let C; be the subcategory of C consisting of complexes of
groups over 1-dimensional polyhedral complexes (that is, simplicial graphs), and
morphisms over nondegenerate polyhedral maps. The following result specifies the
relationship between the category G of graphs of groups and the category C;.

Proposition 2.1. There is a functor F' : G — C; which is a bijection on objects,
takes faithful graphs of groups to faithful complexes of groups, surjects onto the set
of morphisms of C; and takes coverings to coverings. However, there is no functor
from G to C; which is injective on the set of morphisms of G. Hence these categories
are not isomorphic.

Proof. We first define the functor F' on objects. Let A = (A, A) be a graph of
groups and let |A| be the geometric realisation of the graph A. We construct a
complex of groups F'(A) over |A|. The local groups at the vertices of |A| are the
vertex groups of A. For each e € E(A), let 0. = oz be the vertex of the barycentric
subdivision |A|" at the midpoint of e. Then the local group at o, in the complex of
groups is A, = Az. Each monomorphism a. : Ac — A of the graph of groups
induces the same monomorphism of corresponding local groups in the complex of
groups F'(A).
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It is clear that F' is a bijection from the set of objects of G to the set of objects
of C;. From the definitions of the actions on the respective universal covers, one
sees also that faithful graphs of groups are mapped to faithful complexes of groups.

To define the functor F' on morphisms, let ¢ : A — B be a morphism of graphs
of groups over a graph morphism f : A — B. By abuse of notation f induces a
nondegenerate polyhedral map f : |A]" — |B|’. We define a morphism of complexes
of groups F(¢) : F(A) — F(B) over f. The homomorphisms on local groups are
the same as for the morphism ¢. Let a be an edge of |A|". Then the monomorphism
g in the complex of groups F(A) is the same as some a, : A. — A;(¢ in the graph
of groups A. Put ¢(a) = d., and we obtain the required

Pt(a)a = Ad(P(a))Vf(a)Pi(a)

Hence F'(¢) is a morphism of complexes of groups. The map F respects composition
of morphisms, and is thus a functor.

Given a morphism of Cy, one can construct a morphism of the corresponding
objects in G by setting all v, = 1, and all 7. = ¢(a), where the monomorphism .
is the same as the monomorphism ),. Hence F' surjects onto the set of morphisms
of C;. By checking the definition of covering in both categories, we find that F
sends coverings to coverings, and surjects onto the set of coverings of C;.

However, since many choices of 7, and . could lead to the same collection of
0, there is no functor from G to C; which is injective on the set of morphisms of
G. O

2.2. The Functor Theorem. Let T be a tree and X a right-angled hyperbolic
building. We write G(T') for the category of graphs of groups with universal covering
tree T and C(X) for the category of developable complexes of groups with universal
cover X. We now construct a functor from G(7T') to C(X), for certain T" and X.

This functor will exist only when the building X is “sufficiently symmetric”, as
defined below. However, the proof of the Functor Theorem will show that even if
X is not sufficiently symmetric, we can construct a functor taking faithful graphs
of groups to faithful complexes of groups, and coverings to coverings, if we restrict
to graphs of groups whose vertices are 2-colourable and to coverings which preserve
this colouring. As shown in Section 3 below, the proof of the Main Theorem requires
only this restricted functor.

To explain when a right-angled building X is sufficiently symmetric, let (W, I) be
the right-angled Coxeter system, P the fundamental domain and {g;} the parame-
ters associated to X. Since the apartments of X are infinite, there exist 1,70 €
such that m;, ;, = oo, and since the chambers of X are right-angled hyperbolic
polyhedra, for each iy € I, there is an i3 € I such that m;, ;, = oo.

Consider the following symmetry conditions on X:

(1) there exists a bijection g on the set I such that m;; = my(;, 4¢;) for all
1,7 € I, and ¢(i1) = 2. This may be thought of as an isometry of P which
takes the ii-face to the io-face.

(2) there exists a bijection

h:{iejlmihi<OO}—>{Z.EI‘T7’LZ‘2,¢<OO}

such that m;; = my@yne) for all 4,7 in the domain, h(i;) = i, and
¢ = qu(;) for all 7 in the domain. This may be thought of an isometry
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from the simplicial neighbourhood in P’ of the i;-face to the simplicial
neighbourhood in P’ of the is-face, which preserves the cardinalities g;.

Conditions (1) and (2) are satisfied if, for example, P is regular and all ¢; are
equal. In dimension 2, all fundamental domains P are regular polygons. In each of
dimensions 3 and 4, there is only one regular P, the dodecahedron and the 120-cell
respectively (see, for example, [34]). The convex polyhedra in H? are classified
in [1]. Those of H* have not been classified.

Conditions (1) and (2) may be satisfied for P which is not regular. For example,
suppose P is 3-dimensional. We claim there exist 41,12 € I such that m;, ;, = oo
and the 7;- and is-faces of P are isometric. Since the 2-dimensional faces of P are
regular, it suffices to exhibit a pair of nonadjacent 2-dimensional faces with, say, 5
sides. Let as be the number of 2-dimensional faces of P. For each 2-dimensional
face F, let a1(F') be the number of sides of F and let ex(F) = a1(F) — 5 > 0.
Elementary calculations yield

as =12 + Z ex(F)

dim(F)=2

([26], p- 70). This implies that there are at least 12 faces F' with 5 sides. Hence
we can find two nonadjacent 2-dimensional faces of P with 5 sides. This kind of
argument cannot be extended to dimension 4, since the 3-dimensional faces of P
will not in general be regular.

We now state and prove the Functor Theorem.

Functor Theorem. Let X be a right-angled hyperbolic building of type (W, I),
with chambers P and parameters {¢;}. For each i1,i2 € I such that m;, ;, = o0,
let T be the (gi,, qi,)-biregular tree. Suppose condition (1) above holds, and that
if ¢;; = qi, then condition (2) above holds, with g an extension of h. Then there
is a functor F from G(T') to C(X), which takes faithful graphs of groups to faithful
complexes of groups, and coverings to coverings.

Proof. By Proposition 2.1, it suffices to construct a functor F' from the image of
G(T) in C; to C(X). We first define F' on objects. Let G(Y) be an object of C;
which is in the image of G(T).

For each edge e of the simplicial graph Y, let P. be a copy of P. Identify the
midpoint of e with the barycentre of P.. Suppose first that the vertices of Y may
be 2-coloured with the types i; and is. If ¢;, # ¢;,, then we use the colouring
induced by the valences of the vertices in the universal covering tree T'. For j = 1,2
identify the vertex of e of type ¢; with the i;-face of P,. If the vertices of Y are not
2-colourable and the edge e does not form a loop in Y, then identify one vertex of e
with the i1-face of P,, and the other vertex with the io-face. If the edge e does form
a loop in Y then use the isometry h of condition (2) above to form P./h. That is,
glue together the i1- and is-faces of P, using h. Then identify the vertex of Y to
which both ends of e are joined with the barycentre of this glued face.

Now, glue together, either by preserving type on i1- and io-faces, or if the vertices
of Y are not 2-colourable by using the isometry h, the faces of the various P, which
correspond to the same vertex of Y. Let F(Y") be the resulting polyhedral complex.
By construction, Y’ embeds in F(Y)". Note also that each cell of F(Y') has either
the type of a unique subset J € Sf, or the two types J and h(.J), where i; € J and
Je st
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We now construct a complex of groups F(G(Y)) over F(Y). First, fix the local
groups and monomorphisms induced by the embedding of Y’ in F(Y)’. For each
i €1, let G; = Z/q;Z. For each edge e of Y, let G, be the local group at the
midpoint of e in the complex of groups G(Y).

Consider J € S/ which does not contain i; or i5. The local group at the face
with type J of P. or P./h is then

Ge X H Gj
jeJ
The monomorphisms between such local groups are natural inclusions.

Now consider J € S¥ which contains one of i; or iy (since my, 4, = 00, J cannot
contain both 41 and i5). Without loss of generality suppose i; € J, and let F. be
either the i;-face of P., or the glued face of P./h. The face of type J in P. or
P./h is then contained in F.. Let v be the vertex of Y which is identified with the
barycentre of F,, and let G, be the local group at v in the complex of groups G(Y').
The local group at the face of type J of P. or P,/h is then

G, x ] G
jeJ
J#i
This is well-defined, since if the face of type J also has type h(.J), by condition (2)
we have q; = qy(;) for each j € J, hence G; = G},(j) = Z/q;Z. The monomorphism
from G, to this local group is the natural inclusion onto the first factor. For each
J' C J with i; € J’, the monomorphism

Gox [[Gi—Gox [] G
jeJ’ jeJ
J#i J7#i1
is the natural inclusion. For each J’' C J with i¢; & J’, the monomorphism

G, x HG]-—>GU>< HGj
jeJ’ je€J
Jj#i
is a monomorphism G, — G, from the complex of groups G(Y') on the first factor,
and natural inclusions on the other factors.

One verifies that the link in the local development at each vertex of F(Y) is
the join of n = dim(X) sets of points of the appropriate cardinalities. Thus, by
Section 1.5, the universal cover is X.

The tree T naturally embeds in X, and by construction, if the fundamental
group of G(Y') acts faithfully on T, then the fundamental group of F(G(Y)) acts
faithfully on 7', and hence on X. Thus F' maps faithful graphs of groups to faithful
complexes of groups.

We now define the functor F' on morphisms. Let G(Y) and H(Z) be objects
of C; in the image of G(T'), and let ¢ : G(Y) — H(Z) be a morphism over a
nondegenerate map f: Y’ — Z’. Let F(Y) and F(Z) be the polyhedral complexes
constructed from the simplicial graphs Y and Z as above.

If the vertices of Y and Z are 2-colourable by the types i1 and i3, and f preserves
these types, then f may be extended to a polyhedral map F(f): F(Y) — F(Z) by
preserving type on each copy of P. Otherwise, we use condition (1) to construct
F(f): F(Y) — F(Z). On each copy of P or P/h, F(f) maps the face of type J to
the face of type g(J). This is well-defined since h is the restriction of g.
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We now construct a morphism F(¢) of complexes of groups over F(f). If 7 is a
vertex of F(Y')’ then the local group at 7 is a direct product

GU X HGJ

where o is a vertex of Y/. The homomorphism of local groups

GU XHGj —>Hf(0) XHGj

is ¢, on the first factor, and the identity on other factors. Let b be an edge
of F(Y)'. If 1, the monomorphism along the edge b in the complex of groups
F(G(Y)), has as its first factor a monomorphism ), from the complex of groups
G(Y), put F(¢)(b) = ¢(a). Otherwise, put F(¢)(b) = 1.

The following claims all follow from definitions: F(¢) is a morphism of complexes
of groups, F'(¢) respects composition, and F(¢) takes coverings to coverings. This
completes the proof of the Functor Theorem. O

3. PROOF OF THE MAIN THEOREM

We conclude by proving the Main Theorem, stated in the Introduction. Most
parts of the theorem are proved using the Functor Theorem. Let X be the building
in the statement of the Main Theorem.

Our results on both uniform and nonuniform covolumes use Corollaries 3.1
and 3.2 below, concerning the covolumes of lattices in Aut(X) which act with-
out inversions. We note that any lattice constructed as the fundamental group of
a complex of groups acts without inversions.

Corollary 3.1 is a consequence of Theorem 1.1. If Y is a polyhedral complex,
then Y}, is the set of k-dimensional cells of Y.

Corollary 3.1. Let Y be a locally finite polyhedral complex and n = dim(Y).
Then there is a constant ¢(Y'), depending only on Y, such that for all lattices I' in
G = Aut(Y') which act without inversions,

p(I\G) = ¢(Y) Vol(T'\\Yy)

By Corollary 3.1, if both p(I'\G) and Vol(T'\\ X,,) are known for just one lattice T
acting without inversions on the building X, the constant ¢(X) may be computed.
Using the example of a uniform lattice in Section 1.5, we obtain

(3.1) (X)= > 11 !

Jest JEJ 4
|J|=dim(X)
Corollary 3.2 below, which follows from Corollary 3.1 and the proof of the Func-
tor Theorem, gives the relationship between covolumes of lattices in Aut(X), and
covolumes of tree lattices.

Corollary 3.2. Let X be as in the Main Theorem and G = Aut(X). Suppose G(Y)
is a faithful complex of finite groups over a polyhedral complex Y, with universal
cover X. Let I" be the fundamental group of the complex of groups G(Y') (with
respect to some choices). For each cell o € Y,,, let I, be the local group at the
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barycentre of that cell. Then if G(Y) = F(A), where F is the functor defined in
the Functor Theorem, and A = (A, A) is a graph of groups,

M(F\G)=C(X)<Z |F1|> = [ ¥ o
o ) €

oEYy ecE(A

where ¢(X) is as given in (3.1) above.

L

ecE(A) el

The sum

is called the edge covolume of the graph of groups A.
3.1. Uniform covolumes.

3.1.1. Proof of (la). We first show that the covolume of every uniform lattice
belongs to the set V,(G) of rationals given in (1a). Then we show that any v €
Vu(G) is the covolume of some uniform lattice.

Since X is a building, the group G = Aut(X) has a finite index normal subgroup
Auto(X), the group of type-preserving automorphisms, which acts without inver-
sions. Thus, any uniform lattice I' < G has a finite index subgroup I' N Autg(X)
which acts without inversions. Now, the set V,,(G) is closed under multiplication
by positive integers. Hence, to show that the covolume of every uniform lattice
belongs to V,(G), it suffices to consider only uniform lattices which act without
inversions.

Let ' be a uniform lattice in G which acts without inversions and let

a

Vol(T\\ X)) =

where ged(a,b) = 1. By Corollary 3.1 and the value of ¢(X) given in (3.1) above, it
suffices to show that the prime divisors of b are strictly less than max;{g;}. Let x be
a vertex of X. Then x has the type of some J € Sf with |J| = n = dim(X). Let Sy,
be the symmetric group on k letters. The group of type-preserving automorphisms
of the link of x in X is then

s,

JjeJ
and its subgroup which fixes an (n — 1)-dimensional cell of the link pointwise is

H Sg;-1

jeJ
By Theorem 3 of [31], this implies the restriction on the prime divisors of b. Thus
the covolume of any uniform lattice in G belongs to the set V,(G).

We now show that every v € V,,(G) is the covolume of some uniform lattice. By
Corollary 3.2 above, and the proof of the Functor Theorem, it suffices to show that,
for any rational § with ged(a,b) = 1 and the prime divisors of b strictly less than
max;{q;}, there is a faithful graph of finite groups A = (A4, .A) over a finite graph
A such that

(1) the universal covering tree of A is (g;,, ¢;, )-biregular, where m;, ;, = oo,
(2) the vertices of the graph A may be 2-coloured, and
(3) the edge covolume of A equals .
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FIGURE 1. Rosenberg’s graph for the case ¢ = 3

Suppose first that all g; are equal, and let T, be the g-regular tree.

If all g; = 2, we construct a graph of groups with universal covering tree T and
edge covolume ¢ = a, for any integer a > 1. Let A be the graph which is a ray of
a edges. The vertices of A are then 2-colourable. Let A = (A,.A) be the graph of
groups over A with each edge group trivial, the two vertex groups at either end of
the ray both Z/27Z, and all other vertex groups trivial. Since the edge groups are
trivial this graph of groups is faithful. Its universal covering tree is T5 and it has
edge covolume a.

If all ¢g; = ¢q are equal, and ¢ > 3, we require a graph of groups with universal
covering tree T, and edge covolume ¢, where gcd(a,b) = 1 and the prime divisors
of b are strictly less than ¢g. This is exactly the set of edge covolumes of uniform
lattices in Aut(Ty) (Proposition 9.1.2, [29]). For ¢ > 4, the vertices of each of the
graphs in Rosenberg’s proof are 2-colourable. In the case ¢ = 3, though, some of
the graphs of groups are over the graph shown in Figure 1. The vertices of this
graph cannot be 2-coloured.

A key idea of Rosenberg’s proof, which is also used below to prove (1b), is that of
finite-sheeted covers. In each case, the graph A, considered as a topological space,
is not simply connected. The fundamental group 71(A) is then a free group on
finitely many generators so has subgroups of arbitrary finite index. Hence A has a
finite-sheeted topological cover for any finite number of sheets. Thus, if a uniform
lattice constructed over A has edge covolume 3, we may construct a uniform lattice
with edge covolume a positive integer multiple of ¢, over a finite-sheeted cover of
A.

In particular, the 2-sheeted cover of the graph in Figure 1 has 4 vertices, which
may be 2-coloured. As explained in Example 4, Chapter 4, [29], the edge groups
of this graph of groups have order a power of 2, and this power may be chosen
arbitrarily. Thus, by taking a 2-sheeted cover and then doubling the order of the
edge groups, we obtain a graph of groups over a 2-colourable graph with unchanged
edge covolume. This completes the proof of (1a) in the case where all g; are equal.

Now suppose the ¢; are not all equal, and let ¢;; = max;{q;}. If there is a g,
with m;, ;, = oo and g;, = ¢;,, then we use the same graphs of groups as in the case
where all ¢; are equal. Otherwise, to simplify notation, if m;, ;, = oo put p = ¢;,
and ¢ = ¢;,, so that p > ¢ > 2, and let T}, ; be the (p, ¢)-biregular tree.

Rosenberg, in Theorem 9.2.1 [29], shows that the set of edge covolumes of uniform
lattices in Aut(7} 4) is the set of rationals ¢ such that ged(a,b) = 1 and the prime
divisors of b are strictly less than p. As with regular trees, for each such ¢, there is
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a faithful graph of finite groups, over a finite graph, with edge covolume 7. Since
each graph is covered by T}, 4, and p # ¢, the vertices of each graph are 2-colourable.
This completes the proof of (1la).

3.1.2. Proof of (1b). By the proof of the Functor Theorem and Corollary 3.2, it
suffices to prove Proposition 3.3 below.

Proposition 3.3. Let T be a regular or biregular tree, other than the 2-regular
tree. Let v > 0 be the (edge) covolume of a uniform lattice in Aut(7"). Then there
is a countably infinite number of nonconjugate uniform lattices in Aut(7") which
have (edge) covolume v.

Proof. By Corollary 3.1, it suffices to prove this proposition for edge covolumes.
Since there are only countably many finite graphs of finite groups, there are at
most countably many uniform lattices in Aut(7).

Assume that T is the m-regular tree, for m > 3 (the proof for biregular trees
is similar). Rosenberg, in the proof of Proposition 9.1.2 [29], constructs a faithful
graph of finite groups A = (A, .A) over a finite graph A such that

(1) the universal covering tree of A is T,

(2) the fundamental group I' of A has edge covolume v,

(3) the vertices of the graph A may be 2-coloured (in the case where T is

3-regular, use a 2-sheeted cover),

) the graph A is not simply connected, and

(5) the orders of the edge and vertex groups A. and A, may be multiplied
by powers of primes strictly less than m, and the new graph of groups is
faithful.

Let n be a positive integer whose prime divisors are strictly less than m. By (4),
we may obtain a uniform lattice in Aut(T") of edge covolume nv. Applying (5), we
may obtain a uniform lattice in Aut(T) of edge covolume v/n. By carrying out
these two processes at the same time, we obtain a new lattice I of edge covolume
v, which is nonconjugate to the original lattice T', since the graph I"\T is not the
same as A. This may be done for countably many values of n. Hence we obtain
countably many nonconjugate uniform lattices of edge covolume v. O

3.2. Nonuniform covolumes.

3.2.1. Proof of (2a). Let T be a regular or biregular tree, other than the 2-regular
tree, and let v > 0. By Corollary 3.1, Corollary 3.2 and the proof of the Functor
Theorem, it suffices to construct a nonuniform lattice I" in Aut(7") of covolume v,
such that the vertices of the graph I'\T may be 2-coloured.

Bass—Lubotzky showed that for m > 3 and every v > 0 there is a nonuniform
lattice T acting on the m-regular tree T,,, such that the covolume of T' is v (Theo-
rem 4.3, [4]). Moreover, the graph I'\T;,, is a ray, hence its vertices are 2-colourable.
Rosenberg showed the analogous result for biregular trees, without the conclusion
that the quotient graph is a ray (Theorem 8.2.2, [29]). Since the vertices of any
graph covered by a biregular tree T, ,,, with m # n, are 2-colourable, this completes
the proof of (2a) of the Main Theorem.

3.2.2. Proof of (2b). Let T, ,, be the (m,n)-biregular tree, with m,n > 3. In [15],
Farb—Hruska construct commensurability invariants for nonuniform lattices acting
on Tp, n, using the growth types of the quotient graph and the stabilisers. These
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commensurability invariants also apply to nonuniform lattices constructed using
the Functor Theorem. Thus, by Corollary 1.2 of [15], for each v > 0 there are
uncountably many commensurability classes of nonuniform lattices in Aut(X) of
covolume v.

3.3. Towers. We construct towers in Aut(X) using full subcomplexes of subgroups,
as explained in Section 1.4.1. Let T}, ; be the (p, ¢)-biregular tree, with at least one
of p and ¢ greater than 2. By the proof of the Functor Theorem, it suffices to find
a tower of tree lattices in Aut(T), ,), constructed as a sequence of full subgraphs of
subgroups, over a graph A whose vertices may be 2-coloured.

3.3.1. Proof of (3a). Let m and ¢ be integers > 2. Bass—Kulkarni, in the proof of
Proposition 7.15 of [3], give an example of a tower of uniform tree lattices acting
on the (m + 1, g)-biregular tree. The vertices of the graph A in this example may
be 2-coloured.

3.3.2. Proof of (3b). An indexing on a graph A is a map I from the edges of A to
the positive integers. A graph of groups A = (A, A) over A induces the indexing
I(e) = [Aie) : ac(Ae)]. We say that an indexed graph (A,I) admits a tower
of lattices if there exists a sequence of full subgraphs of subgroups over A which
induces a tower of tree lattices, such that each graph of groups in the sequence
induces the indexing I.

Theorem 5.3 of Carbone-Rosenberg [14] gives a sufficient condition for (A, I) to
admit a tower of nonuniform tree lattices. It is easy to construct examples of (A4, I)
which satisfy this condition, so that the tower of tree lattices acts on the regular or
biregular tree, and the vertices of A are 2-colourable.

3.3.3. Proof of (3c). We apply Example 7.13, [3]. The graph A in this construction
is a single edge, so its vertices are 2-colourable. The universal covering tree is the
(mp, q)-biregular tree, where m, p and ¢ are positive integers > 2. Thus, by the
proof of the Functor Theorem, if some ¢; is composite, there exists a tower of
uniform lattices in Aut(X) with quotient a single chamber.
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